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Abstract

Background: Advances in Natural Language Processing (NLP) techniques enable the
extraction of fine-grained relationships mentioned in biomedical text. The variability
and the complexity of natural language in expressing similar relationships causes the
extracted relationships to be highly heterogeneous, which makes the construction of
knowledge bases difficult and poses a challenge in using these for data mining or
question answering.

Results: We report on the semi-automatic construction of the PHARE relationship
ontology (the PHArmacogenomic RElationships Ontology) consisting of 200 curated
relations from over 40,000 heterogeneous relationships extracted via text-mining.
These heterogeneous relations are then mapped to the PHARE ontology using
synonyms, entity descriptions and hierarchies of entities and roles. Once mapped,
relationships can be normalized and compared using the structure of the ontology
to identify relationships that have similar semantics but different syntax. We compare
and contrast the manual procedure with a fully automated approach using WordNet
to quantify the degree of integration enabled by iterative curation and refinement of
the PHARE ontology. The result of such integration is a repository of normalized
biomedical relationships, named PHARE-KB, which can be queried using Semantic
Web technologies such as SPARQL and can be visualized in the form of a biological
network.

Conclusions: The PHARE ontology serves as a common semantic framework to
integrate more than 40,000 relationships pertinent to pharmacogenomics. The PHARE
ontology forms the foundation of a knowledge base named PHARE-KB. Once
populated with relationships, PHARE-KB (i) can be visualized in the form of a
biological network to guide human tasks such as database curation and (ii) can be
queried programmatically to guide bioinformatics applications such as the prediction
of molecular interactions. PHARE is available at http://purl.bioontology.org/ontology/
PHARE.
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Background
A large amount of biomedical knowledge is in the form of text embedded in published

articles, clinical files or biomedical public databases. In order to construct computable

knowledge bases from these sources, there is a great interest in capturing and formaliz-

ing this knowledge. The capture of relationships between biological entities is of parti-

cular interest since such relationships represent elementary and reusable knowledge

units—often called “nano-publications” [1].

Our work is motivated by the need for automated approaches capturing and

formalizing knowledge extracted from the literature via manual or computational

approaches. Consider for example, that five curators at the Pharmacogenomics Knowl-

edge Base (PharmGKB) manually browse the pharmacogenomics (PGx) literature to

curate relationships relevant for storage in the PharmGKB [2]. The result of this

curation process is a high quality database queried by clinicians and bioinformaticians.

Nevertheless this manual curation process is not sustainable considering the growth of

the scientific literature in this domain [3]. Automatic approaches using Natural

Language Processing (NLP) are therefore increasingly utilized [4].

The simplest methods to capture relationships rely on co-occurrence of two entities

to derive a relation between them. For example, in the sentence “Our study shows that

warfarin inhibits the expression of VKORC1” a drug, warfarin, and a gene, VKORC1,

can be recognized using simple lexicons. The co-occurrence of these two entities in

one or more sentences is used to derive a relation of the form (warfarin, VKORC1).

One key limitation of the co-occurrence based approach is identification of false

positive connections. For example the sentence “Warfarin inhibits the expression of

VKORC1 while sulfamethoxazole inhibits the expression of CYP2C9” would provide

co-occurrence counts towards four relationships including the relationships (war-

farin, VKORC1) and (warfarin, CYP2C9); only one of which is true. A second limita-

tion is the coarse granularity of the identified relationships. Considering the previous

example, the mentioned relationship links warfarin and theexpression of VKORC1,

and not VKORC1 per se. We consider this distinction of importance since VKORC1

and expression of VKORC1 refer to a gene and a phenotype respectively—two very

distinct entities. Despite these limitations, co-occurrence is successfully used to gen-

erate networks including protein-protein interaction networks, gene-disease networks

and regulatory gene expression networks [5,6]. Most of these networks are hard to

compute on since their representation format does not support queries with typed

relationships and the semantics associated with the nodes and edges differ in every

network.

Other NLP approaches can identify typed relationships and recognize entities that

can either be the whole or a part of a subject and an object [7-9]. For example pro-

cessing the previous sentence can identify the following relationship inhibits

(warfarin, the expression of VKORC1) — that can also be represented as inhibits

(warfarin, VKORC1 expression). Figure 1 shows three levels of granularity commonly

encountered in text-mined relationships. Fine-grained relationships can be identified

via syntactic parsing of sentences, which generates structures such as Parse Trees or

Dependency Graphs (DG) [10]. In previous work, we presented a method based on

syntactic parsing and DG exploration to extract fine-grained PGx relationships [11].

Given the variation in natural language, it is difficult to normalize the fine-grained
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and typed relationships extracted by this method. In this paper, we report on the

construction of a relationship ontology and describe its use for integrating and pub-

lishing text-mined relationships on the Semantic Web. The relationships captured as

instances of the PHARE ontology can be queried using Semantic Web technologies

such as SPARQL and can be visualized in the form of a biological network. Seman-

tics associated with relationships declared in PHARE-KB allow the text-extracted

relationships to be consumed both by humans (for example, to guide curation) as

well as by machines (for example, to guide computational prediction of molecular

interactions).

Methods
In previous work, we described the extraction of over 40,000 raw relationships in the

domain of pharmacogenomics from MEDLINE abstracts [11]. In following sections we

briefly summarize this extraction process and then describe how we use the PHARE

ontology we have created to normalize and integrate these relationships.

Relationships and PGx relationships

We define a relationship as a binary relation R (a, b), where a, and b are subjects and

objects related by a relationship of type R. In PGx relationships a and b can be

instances of a gene (e.g., VKORC1 gene), drug (e.g., warfarin), or phenotype (e.g.,

clotting disorder). We note that a and b can also be entities that are related to genes

(e.g., VKORC1 expression), drugs (e.g., warfarin dose) or phenotypes (e.g., clotting

disorder treatment). R is a type of relation described by words such as “inhibits”,

“transports”, or “treats” and their synonyms.

The three key entities in PGx (genes, drugs, and phenotypes) can be either direct

targets for relation extraction, or indicators of latent PGx knowledge, as they modify

other entities to create a second set of entities necessary to precisely describe PGx rela-

tionships. We refer to these modified entities as composite entities in contrast with the

key entities. These composite entities can be any biomedical entity, such as a gene

variation, drug effect, or disease treatment. For example, the gene entity VKORC1 (a

key entity) is used as a modifier of expression in “warfarin inhibits the expression of

VKORC1.” Specifically, composite entities are composed of a sequence of terms that

can be read left to right and where left term progressively specializes the term on its

right. The last word is named the head entity. Figure 2 shows the components of

relationships.

Figure 1 Coarse to fine-grained relationships. Coarse to fine-grained relationships identified in the
sentence “Our study shows that warfarin inhibits the expression of VKORC1”. Relationships are mainly of three
forms: (1) non-typed relationships composed of two atomic entities; (2) typed relationships between
atomic entities; (3) typed relationships between atomic or composite entities.
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Identification of a sentence with PGx relationships

Given the definition of PGx relationships, a sentence that potentially contains a PGx

relationship would mention a gene and drug, a gene and a phenotype, or a drug and a

phenotype. We used a Lucene index created on individual sentences of MEDLINE

abstracts published before 2009 (17,396,436 abstracts and 87,806,828 sentences) pro-

cessed by Xu et al. to identify those sentences that might contain a PGX relationship

[12,13]. To select only sentences that potentially mention a PGx relationship we quer-

ied the index with pairs of key PGx entities (only gene-drug and gene-phenotype pairs)

for sentences that are indexed with both the terms in the query. The PharmGKB lexi-

con, provides the sets of synonyms used to build such queries for the key entities.

Overall, for this study we used 41 genes highlighted by PharmGKB as key, well charac-

terized pharmacogenomic genes [14], as well as 3,007 drugs and 4,202 phenotypes.

Future work will expand the relationship extraction to all genes.

Extraction of heterogeneous raw relationships

Sentences returned by the index are parsed using the Stanford Parser to build Depen-

dency Graphs (DGs) [15]. DGs are rooted, directed, and labelled graphs, where nodes

are words and edges are dependency relations between words (e.g., noun modifier,

nominal subject). The extraction of raw relationships of the form R(a,b) relies on the

exploration of syntactic structure provided by DGs where:

- a and b are nodes or chains of nodes in a DG, depending on whether they are a

single key entity (an instance of gene, drug or phenotype) or a composite entity;

- R is a node in the DG that connects a and b, and indicates the nature of their

relationship.

We have developed an algorithm to explore the DG and extract raw relationships

from the raw text. The extraction of raw relationships is constrained by a set of rules

defined using the different type of dependencies that associate nodes in DG. This step

results in the extraction of over 40,000 raw relationships discussed in [11]. These rela-

tionships are highly heterogeneous and contain multiple equivalent ways to express

one single fact. The details of the DG exploration algorithm appear in Table 1 of [11].

Building the PHArmacogenomic RElationship ontology

In order to create a smaller, normalized set of relationships, we first identified the 200

most frequent relationship types from the ~40,000 raw relationships. In the next step,

we manually merged similar relationships and organized them hierarchically. Groups

of similar relationships are used to define roles in the PHARE ontology. For example

Figure 3 shows how inhibit, repress, and antagonize are merged to define the role

Figure 2 Components of relationships. A relationship has three components: relationship type, subject
(here limited to a key entity), and object (here a composite entity which uses key entity as a modifier).
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Table 1 Normalization algorithm

Algorithm for the normalization of composite entities using a domain ontology

Algorithm for the normalization of composite entities usinng a domain ontology

  1  raw  O: : ,Input

:

    a raw entity and an ontology

 2 norm

{ }
== Ø          initialization of  the normalized entity  

 3 RawWords split raw  

{ }
= ( ): []      split words that compose the raw entity

 4  Raw

{ }
: while WWords hasNext  

 5    norm_word Ø

. ()

:

do

=
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   initialization of the normalized word

 6    norma

{ }
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 7:    read_word RawWords next

     read_

=
= . ()

:8 if wword RawWords   read word is the key entit= [ ]0 then yy
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{ }
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{ }
=12 : [] ( ,, . )

: _

∃ modified concept

      modified concept in Modif13 for iiedConcepts

14:          hasLabel modified_concept  read_if , wword  then
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16: 
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{ }
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     :
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:27 ¬ iized then     no corresponding concept foound

         then create corresponding con

{ }
ccept modified by last concept

     concept crea

{ }
=28 : tteConcept O  read_word  modified concept

   end  

( , , . )

: ;

∃
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while

Output33 :
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inhibits. Role labels are declared using the rdfs:label annotation property. The first

label of each role is used as its preferred name. Please note that the symbol $$ is a

simple separator symbol that enables us to distinguish the passive voice from the

simple past during the next normalization step.

In a similar manner we identified the 200 most frequent terms modified by key enti-

ties (e.g., expression for gene names or sensitivity for drug names). Then five PGx

experts, including 3 co-authors and 2 PharmGKB curators, manually merged similar

ones and organized them hierarchically in the entity hierarchy. Figure 4 shows how

variant, polymorphism, and mutation are merged to define the entity Variant.

The entity hierarchy is defined with the subsumption relation (noted as ⊑ or subClassOf

in OWL). Existential quantification is used to define sets of composite entities that are

only modified by certain concepts. For example the set of entities that are modified by

drugs is defined with the existential quantifier (Ǝ) and the role modified by: Ǝ modified.

Drug (or modified someValuesFrom Drug in Manchester OWL syntax), see Figure 4 for

examples. This definition is associated through a subsumption relation to entities that can

be modified by drugs, such as DrugSensitivity. This pattern is used to distinguish what

thing is specialized (or modified) by drugs from what is specialized by other modifiers (e.g.

disease names). For example warfarin that we know to be a drug enables us to distinguish

warfarin sensitivity from cancer sensitivity and to classify warfarin sensitivity as a kind of

drug sensitivity versus disease sensitivity (represented by the DiseaseSensitivity concept).

Inverse roles are explicitly defined using the inverse constructor (-1 or inverseOf in

OWL). As shown in the example in Figure 5, roles inhibits and isInhibitedBy are

inverses of one another.

Figure 3 A portion of the role hierarchy of the PHARE ontology. Each box represents a role and
words in the lower part of the box are the alternative labels for that role. Arrows represent sub-role
relation. Each label can only belong to one role.
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Class declarations are used to list all key entities of the domain of interest and what

entity type they belong to. In our case, where gene-drug relationships are studied,

known drugs and genes must be defined in the ontology as being an instance of the

entity types Drug and Gene.

Building of WN-PHARE ontology using WordNet

In order to quantify the utility of manual review and editing of the raw relationships

in building PHARE, we built a second ontology named WN-PHARE in a purely

automated manner using the lexical resource WordNet [16]. In this case

Figure 4 A portion of the Entity hierarchy of the PHARE ontology. Each box represents an entity type
and terms in the lower part of the box are the alternative labels for that entity. Subsumption relations are
represented with arrows. Non-hierarchical relations are represented without arrow.

Figure 5 Integration of heterogeneous relationships. Four raw relationships are normalized to two
expressions, using the PHARE ontology. The first two (s1 and s2) mention the same relationships with
different words and sentence structures and are consequently integrated (e.g. ‘drug dose’ and ‘drug
requirement’ are declared synonyms). s3 illustrates the utility of being able to distinguish between
concepts modified by Gene and by Drug to disambiguate two different occurrences of “level”: one
specialized by a gene name, the other by a drug name. Given the ontology, ‘gene level’ is a reference to
gene expression, whereas ‘drug level’ refers to drug dose. s3 and s4 illustrate the utility of role inverses in
the ontology, which enable the integration of relationships extracted from s3 and s4 by swapping subject
and object of s3. The last two raw relationships are inverses that express the same relationship.
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all relationship types—and not just the 200 most frequent ones—are computationally

merged in groups according to WordNet synsets. Resulting groups are directly

used to define roles without any manual review. Similarly, all terms that modify

gene, drug or phenotype names are merged in groups used to define composite

entities.

Normalization and integration of heterogeneous relationships

The algorithm to normalize typed relationships between composite entities consists of

four steps. The first three steps normalize the subject entity, the object entity, and the

relationship type. The last step, assembles the three normalized pieces in a normalized

relationship of the kind shown in Figure 1.

Normalization of composite entities (steps 1 and 2)

This step—described in Table 1—takes as input a raw composite (or atomic) entity and

the PHARE ontology to return a normalized entity. The first word of the entity is

recognized as the key entity. Then each following word that composes the entity is

considered from left to right as something further specialized by previous words. The

ontology is searched for an entity label that matches with the processed word (named

read_word in the Table 1 algorithm). This algorithm is applied successively to the

subject entity and the object entity of a relationship (Figure 6).

Normalization of relationship types (step 3)

The next step is to normalize the relationship type. The ontology is searched for role

labels that match the raw relationship. When a match is found, the preferred name of

the corresponding role is used to normalize the relationship type. Note that during

this step the normalization process distinguishes between passive voice of the present

tense, such as “A is inhibited by B” and active voice of simple past tense “B inhibited

A”. Dependency Graphs of these two sentences are different because “inhibited” in the

Figure 6 Normalization of a composite entity. Starting with the text “differences in coumadin
requirements”, NLP tools generate the raw entity “coumadin requirements differences” on which we can
apply the normalization algorithm (described in table 1) using the PHARE ontology. The first step ensures
that the preferred name warfarin is used instead of coumadin. The second step maps “requirements” to
the entity type DrugDose, and the final step maps “differences” to the entity type Variation. The axiom
noted with a * is added to the ontology during the normalization as a result of the inference that a
variation in drug dose was found.
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passive voice sentence is related through an aux dependency to “is” (standing for

auxiliary). This difference is used during the relationship extraction to extract either is

$$inhibited(A, B) or inhibited(A, B).

Assembly of normalized pieces (step 4)

The final step is to group together normalized composite entities and relationship type

to produce normalized relationships. For each relationship, this step relies on the

simple assembly of normalized type, subject and object. In addition if the role used to

normalize the type has inverses or is symmetric then this step also creates the

appropriate additional relationships. For each inverse role in the ontology, an inverse

relationship is created with the preferred name of the inverse and where normalized

subject and object are swapped. If the role is symmetric, one additional relationship is

created with the same normalized relationship type but with subject and object

swapped. Figure 5 illustrates the integration process that applies such relationship nor-

malization on four heterogeneous sentences.

Applying the normalization on raw relationships produces a set of relationships

represented as PHARE entities and roles. Consequently normalized relationships can

be directly added to PHARE as instances to create a knowledge base.

Refinement of PHARE by repeating the normalization step

Raw relationships have been normalized twice using PHARE to iteratively refine the

ontology. After the first iteration of the normalization, from the pool of un-normalized

relationships we manually identify terms and roles that are either frequent or of PGx

interest. Such terms (or roles) are then used to extend the set of synonyms of an entity

already defined in the ontology, or used to create a new entity in the ontology.

Visualizing gene-disease networks

Figures 7 and 8 are made using a RDF to GML (Geography Markup Language) conver-

ter developed in-house. This converter enables the representation of RDF graphs in

GML. GML files are then visualized and edited using Cytoscape 2.7 [17].

Results
The PHARE ontology

The PHArmacogenomic RElationship ontology (or PHARE) contains 229 entity classes

and 76 roles of interest in the PGx domain. PHARE is encoded in OWL-DL and is

constructed semi automatically by (i) listing terms derived from relationships extracted

automatically from text ; and (ii) the manual organization of the relationship terms by

domain experts. Figures 2 and 3 illustrate how the extracted terms are organized in

these hierarchies. The PHARE ontology is available online at http://purl.bioontology.

org/ontology/PHARE.

The PHARE-Knowledge Base (PHARE-KB)

The ontology-driven integration process described in the method section takes as input

a set of relationships extracted from MEDLINE abstracts and outputs a set of normal-

ized relationships of the form Role(subject, object) represented using entity types and

roles defined in PHARE. Therefore, normalized relationships can be used to instantiate

roles defined in PHARE without additional processing. We performed such instantia-

tion and obtained the PHARE-Knowledge Base (or PHARE-KB) that contains 28,676
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roles instantiations encoded as RDF triples from over 41,000 raw relationships. If we

consider instantiation of role inverses (e.g., isInhibitedBy (a,b) ≡ inhibits-1 (b,a)), the

number of role instantiations rises to 46,526. Note that some roles in PHARE do not

have inverse or are symmetric (e.g., isAssociatedWith).

Almost 77% role instantiations use roles initially encoded in PHARE and 23% neces-

sitate the creation of new roles in PHARE. In other words PHARE roles are sufficiently

detailed to capture 77% of the relationships we extracted from text analysis. New roles

correspond to types of relationships that are not frequent enough in our corpus and

consequently have not yet been manually reviewed and defined in PHARE. These

roles, which are added solely to instantiate the 23% of un-normalized relationships are

associated with only one, label and thus do not yet contribute to the integration of

relationships.

The 28,676 role instances link roughly 16,000 individuals of the KB, including 285

genes, 1,083 drugs and 990 diseases. To facilitate overlap comparisons of PHARE-KB

with other data sources individuals that are of type genes, drugs, or diseases are asso-

ciated with their Entrez Gene, DrugBank, and MeSH identifiers respectively.

Individuals in the PHARE-KB can be classified using reasoning. Classification allows

us to make the implicit knowledge units explicit. For example, classification infers that

Figure 7 Sub-network related to Alzheimer’s disease. Sub-network of genes (or associated entities)
strongly related to Alzheimer’s Disease (AD) according to PHARE-KB. Linked entities are linked by more
than 5 sentences in MEDLINE abstracts. Relationships shown on the edges are the two most frequent type
of relations mentioned in these sentences. Some relationships type are false such as “hearing”.
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Phenotype(VKORC1 expression)

i.e., VKORC1 expression is a phenotype

on the basis of the following two axioms

Expression(VKORC1 expression)

Expression ⊑ Phenotype

i.e., VKORC1 expression is a gene expression and gene expression is a phenotype.

Every relationship available in the PHARE-KB (in the form of a RDF triple) is asso-

ciated with its provenance using the property rdfs:comment. For example, the triple

isAssociatedWith(UCHL1, parkinson disease) is associated with the following string:

”[14522054, Neuronal ubiquitin C-terminal hydrolase (UCH-L1) has been linked to

Parkinson’s disease (PD), the progression of certain nonneuronal tumors, and neuro-

pathic pain]”, Where 14522054 is the PMID (PubMed ID) of the article and the text is

the sentence based on which the triple is created.

Evaluation and comparison

To evaluate the impact of the manual review and curation in the construction of the

PHARE ontology, we constructed an alternate relationship ontology—named WN-

PHARE—in a fully automated manner using WordNet as described in the methods

Figure 8 Sub-network related to Parkinson’s disease. Sub-network of genes (or associated entities)
strongly related to Parkinson’s Disease (PD) according to PHARE-KB. Linked entities are linked by more
than 5 sentences in MEDLINE abstracts. Relationships shown on the edges are the two most frequent type
of relations mentioned in these sentences.
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section. Table 2 compares the structure and the effectiveness of PHARE and

WN-PHARE in integrating heterogeneous text-mined relationships. These features are

measured for the task of integrating a subset of relationships extracted for Parkinson’s

Disease (PD). This subset contains 2,827 PD relationships extracted from 2,124 distinct

MEDLINE abstracts. Logic criteria (e.g., satisfiability) of the ontologies are not included

in the comparison since both ontologies are consistent and coherent.

We find that the roles represented in PHARE cover the set of extracted relationships

incompletely but they normalize more relationships than the roles in defined in

WN-PHARE. Thus the manually reviewed ontology results in a better identification of

similar relationships that are phrased differently in natural language, but it captures a

smaller fraction of the total relationships extracted from text. Table 3 provides addi-

tional evaluation with numbers of similar relationships (same subject, predicate and

object) identified first before normalization, second after normalization using PHARE,

and third after normalization using WN-PHARE.

SPARQL query point

In order to publish the PHARE-KB for use on the Semantic Web, we set up a

SPARQL endpoint, which is available at http://sparql.bioontology.org/webui/. Examples

of queries are provided as additional file 1.

The KB is classified and inferred triples are materialized before loading into the triple

store underlying the SPARQL endpoint. As a consequence queries return asserted as

well as inferred facts.

An example of query for entities related to the uchl1 gene is shown below:

SELECT $y $z

FROM <http://www.stanford.edu/~coulet/phare.owl>

WHERE <http://www.stanford.edu/~coulet/phare.owl#uchl1> $y $z;

Table 2 Comparison of PHARE and WN-PHARE

Ontology Number of entity types Number of roles Labels per entity type Labels per role Reduction Coverage

PHARE 229 77 3.91 6.06 64% 77%

WN-
PHARE

1327 591 2.18 3.38 31% 89%

Comparison of PHARE (built semi automatically with added manual review and curation) and WN-PHARE (built in a fully
automated manner). The Reduction column quantifies the ability of each ontology to normalize text-mined relationships.
Reduction is the ratio of the number of normalized relationships and the initial number of raw relationships. The
Coverage column quantifies the fraction of raw relationships that are normalized using roles and entity types encoded in
the ontology.

Table 3 Comparison of the identification of similar relationships

Raw relationships (no normalization) Relationships
normalized with

PHARE WN-PHARE

Number of relationships identified n times 2 ≤ n <5 7 87 70

5 ≤ n <10 0 12 6

n ≥ 10 0 5 2

Comparison of the occurrence of relationships in three differentially normalized sets of relationships. Identifications are
made on 2,827 relationships related to Parkinson’s Disease. Before any normalization only 7 distinct relationships can be
identified as occurring several times. Normalization with PHARE and WN-PHARE (built semi automatically) and WN-
PHARE (built in a automated manner) enable to reveal more identical relationships. For instance, with PHARE
normalization, 5 relationships are found to occur more than 10 times (n ≥ 10).
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This query returns the RDF triple isAssociatedWith(UCHL1, parkinson disease)

mentioned previously. Queries can also return sets of RDF triples that are used to

build sub-network related to a specific diseases as shown in Figure 7.

Disease related gene networks

Figures 7 and 8 show gene-disease sub-networks related to AD and PD respectively.

For display purpose, these have been reduced by selecting only those nodes that are

asserted to be related in more than 5 different sentences. Since the type of relationship

differ in sentences, only the two most frequent relationships are displayed as labels on

the edges. Each network was obtained using a SPARQL query to select triples where

the disease (AD or PD) is either subject or object. Resulting set of triples is then fil-

tered to keep the frequent relationships. Such filtering enables to us remove both false

positives as well as irrelevant triples such as phare:alzheimer=disease rdf:type phare:

Disease . Note that in RDF we use the symbol ‘=’ as a simple separator to replace

spaces in coumpound nouns.

Discussion
Our work is motivated by the need for automated approaches capturing and forma-

lizing knowledge extracted from the literature and the need for publishing such

knowledge on the Semantic Web. Recent advances in Natural Language Processing

(NLP) techniques enable the extraction of fine-grained relationships mentioned in

biomedical text [4]. The variability and the complexity of natural language in

expressing similar or simple relationships causes the extracted relationships to be

highly heterogeneous. We show that the use of a relationship ontology can normal-

ize and integrate the heterogeneous relationships extracted from text and serve as a

common semantic framework to integrate text-mining derived facts into a knowl-

edge base. However, the manual construction of a relationship ontology is a slow

and expensive process [18]. We have devised a method to construct such an ontol-

ogy using the text-extracted heterogeneous relationships as a starting point.

Although we only report on our experiments in the pharmacogenomics domain; we

note that the approach described here can be applied for relationship extraction in

other domains.

Linked data cloud and text-mined relationships

Our results in publishing RDF triples extracted from text align closely with the objec-

tives of the Linking Open Data community project [19] and that of efforts such as the

Concept Web Alliance [20]. The goal of projects such as Linked Open Data is to publish

various data sets as RDF on the Web and to declare links between data items from

different data sources.

Currently, the relationships we extract do not integrate easily with content in the

Link Data Cloud for two main reasons: the lack of resource unique identifiers and

the lack of an agreed upon relation ontology. Despite community efforts to create

unique resource identifiers for life sciences, currently there is no clear consensus

[21,22]. In addition, composite entities, such as VKORC1 expression that participate

in relationships are too complex to reference using a single identifier. Moreover, the

absence of an expressive and comprehensive relation ontology led us to develop our
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own in a boot-strapped manner from example instances of text-mined relationships.

PHARE is designed for the purpose of representing PGx relationships and we antici-

pate that sharing it with the community will provide a much needed example set for

the development of a proper, formal biomedical relation ontology. PHARE is particu-

larly suited to seed that activity, because it is built from the most frequent relation-

ships that are used in the scientific literature. One challenge is thus to propose

consistent mappings between relationship types arising from the literature, such as

those suggested by PHARE and relationship types arising from functional annota-

tions such as “suppresses gene” or “enhances gene” suggested by TAIR relations or

the Gene Ontology [23].

Limitations of our approach

Adequately representing provenance information at the sentence level is a challenge.

Currently, we utilize the rdfs:comment property to store provenance for each extracted

fact in PHARE-KB. In the future, we plan to evaluate the Annotation Ontology devel-

oped by Ciccarese et al. [24] for its utility is representing provenance at the sentence

level, particularly in workflows where both automated and manual approaches are used

simultaneously.

Another limitation is the incoherence between gene name identifiers across data

sources. Our gene identifiers are based on PharmGKB gene names that are not

entirely consistent with the HUGO Gene nomenclature [25], making cross referen-

cing with other sources time consuming. In a similar vein, recall for extracted

relations may improve upon using advanced Named Entity Recognition such as dis-

ambiguation techniques rather than the current PharmGKB-derived dictionary based

approach.

The efficacy of the relationship normalization and integration might vary depending

on the source of the text such as full articles, clinical reports, clinical files or drug

labels. However, because PHARE has been designed using MEDLINE abstracts, it may

capture relationships mentioned in diverse sources.

Conclusions
We have described the construction of an ontology of relationships in the PGx domain

and its use to integrate heterogeneous relationships extracted by text-mining. The

synonyms, entity descriptions, and the hierarchies of entities and roles represented in

the ontology are used to map text-derived relationships to the ontology. Once mapped,

relationships can be normalized and compared using the semantics defined in the

ontology to identify relationships that have similar semantics but different syntax. We

compare and contrast a fully automated and a manually edited version of the PHARE

ontology to quantify the degree of integration enabled by manual inspection, curation

and refinement of the PHARE ontology. PHARE has been successfully used in a pipe-

line for the integration of pharmacogenomic relationships extracted from MEDLINE

abstracts [11]. The result of the integration is compiled into a knowledge base named

PHARE-KB, which can now be queried using Semantic Web technologies such as

SPARQL and can be visualized in the form of a biological network. PHARE-KB can

also be queried programmatically, for example, to guide computational prediction of

molecular interactions [26].
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Additional material

Additional file 1: Examples of SPARQL queries Description of data: This file proposes examples of SPARQL
queries that can be used to query PHARE-KB on the SPARQL endpoint set up at http://sparql.bioontology.
org/webui/

List of abbreviations used
AD: Alzheimer’s Disease; DG: Dependency Graph; KB: Knowledge Base; NER: Named Entity Recognition; NLP: Natural
language Processing; OWL: Web Ontology Language; OWL-DL: Web Ontology Language, Description Logic Kind; PD:
Parkinson’s Disease; PHARE: PHArmacogenomic Relationships; PGx: Pharmacogenomics; RDF: Resource Description
Framework; SPARQL: SPARQL Protocol And RDF Query Language.
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