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Abstract

This paper presents a new approach to exploit coreference information for extracting
event-argument (E-A) relations from biomedical documents. This approach has two
advantages: (1) it can extract a large number of valuable E-A relations based on the
concept of salience in discourse; (2) it enables us to identify E-A relations over
sentence boundaries (cross-links) using transitivity of coreference relations. We
propose two coreference-based models: a pipeline based on Support Vector Machine
(SVM) classifiers, and a joint Markov Logic Network (MLN). We show the effectiveness
of these models on a biomedical event corpus. Both models outperform the systems
that do not use coreference information. When the two proposed models are
compared to each other, joint MLN outperforms pipeline SVM with gold coreference
information.

Introduction
The increasing amount of biomedical texts resulting from high throughput experi-

ments demands the automatic extraction of useful information by Natural Language

Processing techniques. One of the more recent information extraction tasks is biome-

dical event extraction. With the introduction of the GENIA Event Corpus [1] and the

BioNLP’09 shared task data [2], a set of documents annotated with events and their

arguments, various approaches for event extraction have been proposed so far [3-5].

Previous work has considered the problem on a per-sentence basis and neglected

possibly useful information from other sentences in the same document. In particular,

no one has yet considered using coreference information to improve event extraction.

Here we propose a new approach to extract event-argument (E-A) relations that does

make use of coreference information.

Our approach includes two main ideas:

1. extracting coreferent arguments based on salience in discourse

2. predicting arguments over sentence boundaries with the help of a transitivity

relation.

First, noun phrases (NPs) that corefer with other NPs have an implicit significance in

discourse structures based on Centering Theory [6]. Significant entities are highly likely

to be mentioned multiple times. We call this kind of significance ”salience in
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discourse.” Salience in discourse is a useful criterion for measuring the importance of

entity mentions, and this criterion gives our E-A relation extractors a higher chance to

extract arguments which are coreferent with other mentions. When considering dis-

course structure, arguments which are coreferent to something (e.g. “The region” in

Figure 1) also have higher salience in discourse. They are hence more likely to be argu-

ments of other events mentioned in the document. Using this information helps us to

identify the correct arguments for candidate events and increases the likelihood of

extracting arguments with antecedents corresponding to the Arrow (A) in Figure 1.

Note that identifying coreferent arguments is not just important to improve the F1

score of event-argument relation extraction: assuming that salience in discourse indi-

cates the novel information the author wants to convey, these are the arguments we

should extract at any cost.

Secondly, transitivity is a property of event-argument relations such that the relation

between an event and its argument is transitive across coreference relations. It enables

us to extract cross-sentence mentions as arguments of events. Previous work on this

task has primarily focused on identifying event-arguments within a sentence. However

cross-sentence event-argument relations are common, for example see Figure 1. It

illustrates an example of E-A relation extraction including cross-sentence E-A. In the

sentence S2, we have “inducible” as an event to be identified. When identifying intra-

sentence arguments in S2, we obtain “The region” as Theme and “both interferons” as

Cause.

However, in this example, “The region” is not optimal as a Theme because “The

region” is coreferent to “The IRF-2 promoter region” in S1. Thus, the true Theme of

“inducible” is “The IRF-2 promoter region” as this phrase is more informative as an

argument. In this case, “The region” is just an anaphor of the true argument. The idea

of transitivity entails that if “The region” is a Theme of “inducible” and “The region” is

coreferent to “The IRF-2...”, then “The IRF-2...” is also a Theme of “inducible”. It

allows us to extract cross-sentence E-A relations such as the Arrow (C) in Figure 1.

We propose two models which implement these ideas to extract event-argument (E-

A) relations involving coreference information. One is based on local classification

with SVM, and another is based on a joint Markov Logic Network (MLN). To remain

efficient, and akin to existing approaches, both look for events on a per-sentence basis.

Figure 1 Cross-sentence event-argument relation. An example of event-argument relation crossing
sentence boundaries. In this figure, an event, “inducible” has “The region” as an Theme. But “The region” is
coreferent to “The IRF-2 promoter region” in the forward sentence. So, “The IRF-2 promoter region” is also
a Theme of “inducible”.
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However, in contrast to previous work, our models consider as candidate arguments

not only the tokens of the current sentence, but also all tokens in the previous sen-

tences that are identified as antecedents of some tokens in the current sentence. We

show the effectiveness of our models on a biomedical corpus. They enable us to

extract cross-sentence E-A relations: We achieve an F1 score of 69.7% in our MLN

model, and 54.1 % in the SVM pipeline. Moreover, with the idea of salience in dis-

course our coreference-based approach helps us to improve intra-sentence E-A extrac-

tion, in particular when arguments have antecedents. In this case adding gold

coreference information to MLNs improves F-score by 16.9%. In place of gold corefer-

ence information, we also experiment with predicted coreferences from a simple core-

ference resolver. Although the quality of predicted coreference information is relatively

poor, we show that using this information is still better than not using it at all.

Background
Biomedical event extraction

Event extraction on biomedical text involves three sub-tasks; identification of event

trigger words; classification of event types; extraction of the arguments of the identified

events (E-A). Figure 2 shows an example of event extraction. In this example, we have

three event triggers: “induction”, “increases”, and “binding”. The corresponding event

types are Positive_regulation (Pos_reg) for “induction” and “increases”, and Binding for

“binding”. In Figure 2, “increases” has two arguments; “induction” and “binding”. The

roles we have to identify fall into two classes: “Theme” and “Cause”. In the case of our

example the roles of the two arguments of “increases” are Cause and Theme, respec-

tively. Note that in biomedical corpora a large number of nominal events can be

found. For example, in Figure 2 the arguments of “increases” are both nominal events.

Such events which are arguments of other events are often hard to identify.

Biomedical corpora for event extraction

There are two major corpora for biomedical event extraction: The GENIA Event Cor-

pus (GEC) [1], and the data of the BioNLP’09 shared task (http://www-tsujii.is.s.u-

tokyo.ac.jp/GENIA/SharedTask/). The latter is in fact derived from the GEC. There are

some important differences between them.

event type GEC has fine-grained event type annotations (35 classes), while

BioNLP’09 data focuses on only 9 event subclasses.

non-event argument BioNLP’09 data does not differentiate between protein, gene

and RNA, while the GEC corpus does.

Figure 2 Biomedical event extraction. A simple example of biomedical event extraction. Event:
induction, increases, binding. Argument: AP-1 factors, this element, induction, binding Role: increases -
induction (Cause), increases - binding (Theme), binding - AP-1 factors (Theme), binding - this element
(Theme)
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coreference annotation Both GEC and BioNLP’09 corpora provide coreference

annotations related to event extraction. However, in the case of the BioNLP’09 data

coreference information primarily concerns protein names and abbreviations that fol-

low in parenthesis. The GEC, on the other hand, provides proper cross-sentence core-

ference. Moreover, the sheer number of coreference annotations is much larger. Björne

et al. [3] also mentioned that coreference relations could be helpful for cross-sentence

E-A extraction but the coreference annotation necessary to train a coreference resolver

is not present in BioNLP’09 data.

For our work we choose the GEC, primarily because of the amount and quality of

coreference information it provides. This allows us to train a coreference resolver, as

well as testing our hypothesis when gold coreference annotations are available. The

second reason to prefer GEC over the BioNLP’09 corpus is its fine-grained annotation.

We believe that this setting is more realistic.

Issues of previous work

Various approaches have been proposed for event-argument relation extraction on bio-

medical text. However, even the current state-of-the-art does not exploit coreference

relations and focuses exclusively on intra-sentence E-A extraction.

BioNLP’09 has three tasks 1, 2, and 3. Task 1 is core event extraction and mandatory.

Our work also focuses on Task 1. For example, Björne et al. achieved the best results for

Task 1 in the BioNLP’09 competition [3]. However, they neglected all cross-sentence E-A.

They also reported that they did try to detect cross-sentence arguments directly without

the use of coreference. This approach did not lead to a reasonable performance increase.

In BioNLP’09, Riedel et al. proposed a joint Markov Logic Network to tackle the

task, and achieved the best results for Task 2 [7]. Their system makes use of global

features and constraints, and performs event trigger and argument detection jointly.

Poon and Vanderwende [5] also applied Markov Logic and achieved competitive per-

formance to the state-of-the-art result of Björne [3]. However, in both cases no cross-

sentence information is exploited. To summarize, so far there has been no research

within biomedical event extraction which exploits coreference relations and tackles

cross-sentence E-A relation extraction. By contrast, for predicate-argument relation

extraction in a Japanese newswire text corpus (http://cl.naist.jp/nldata/corpus/), Taira

et al. do consider cross-sentence E-A extraction [8]. However, they directly extract

cross-sentence links without considering coreference relations. Moreover, their

approach is based on a pipeline of SVM classifiers, and their performance on cross-

sentence E-A extraction was generally low (Low 20s% F1).

The direction of our work

We present a new approach that exploits coreference information for E-A relation

extraction. Moreover, in contrast to previous work on the BioNLP’09 shared task we

apply our models in a more realistic setting. Instead of relying on gold protein annota-

tions, we use a Named Entity tagger; and instead of focusing on the coarse-grained

annotation of the BioNLP task, we work with the GEC corpus and its fine-grained

ontology.

From now on, for brevity, we refer to cross-sentence event-argument relations as

“cross-links” and intra-sentence event-argument relations as “intra-links”.
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We propose two coreference-based models. One is an SVM based model that

extracts intra-links first and then cross-links as a post-processing step. The other is a

joint model defined with Markov Logic that jointly extracts intra-links and cross-links

and allows us to model salience of discourse in a principled manner.

Methods
We have two ideas for incorporating coreference information into E-A relation

extraction:

• Extracting valuable E-A relations based on “salience in discourse”

• Predicting cross-links by using “transitivity” including coreference relations

Salience in discourse is the idea of considering how important the occurring men-

tions are. We exploit it as a likelihood of arguments of events. Transitivity is a prop-

erty of event-argument relations such that the relation between an event and its

argument is transitive across coreference relations. It enables us to identify the E-A

relations over sentence boundaries. According to these ideas, we propose two

approaches. One is a pipeline model based on SVM classifiers, and the other is a joint

model based Markov Logic.

SVM pipeline model

In our pipeline model we apply the SVM model proposed by [3]. Their original model

first extracts events and event types with a multi-class SVM (1st phase). Then it identi-

fies the relations between all event-protein and event-event pairs by another multi-

class SVM (2nd phase). Note that in our setting, the 1st phase classifies event types

into 36 classes (35 types + “Not-Event”). Moreover, while protein annotations were

given in the BioNLP’09 shared task, for the GEC we extract them using an NE tagger.

The features we used for the 1st and 2nd phases are summarized in the first and the

second columns of Table 1, respectively.

Table 1 Used local features for SVM pipeline and MLN joint

Description SVM 1st phase event
&eventType

SVM 2nd phase role
(E-A)

MLN
predicate

Word Form X X word(i,w)

Part-of-Speech X X pos(i, p)

Word Stem X X stem(i, s)

Named Entity Tag X X ne(i,n)

Chunk Tag X X chunk(i, c)

In Event Dictionary X X dict(i, d)

Has Capital Letter X X capital(i)

Has Numeric Characters X X numeric(i)

Has Punctuation Characters X X pun()

Character Bigram X bigram(i, bi)

Character Trigram X trigram(i, tri)

Dependency label X X dep(i, j, d)

Labeled dependency path between
tokens

X path(i, j, pt)

Unlabeled dependency path between
tokens

X pabhNL(i, j,
pt)

Least common ancester of
dependency path

X lca(i, j, L)
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After identifying intra-links, the pipeline model deterministically attaches, for each

intra-sentence argument of an event, all antecedents inside/outside the current sen-

tence. We implement transitivity as a post-processing step. However, it is difficult for

the SVM pipeline to implement the idea of salience in discourse. We believe that a

Markov Logic model is preferable in this case.

MLN joint model

Markov Logic [9] is an expressive template language that uses weighted first-order

logic formulae to instantiate Markov Networks of repetitive structure. In Markov Logic

users design predicates and formulae to model their problem. Then they use software

packages such as Alchemy (http://alchemy.cs.washington.edu/) and Markov thebeast

(http://code.google.com/p/thebeast/) in order to perform inference and learning.

It is difficult to construct Markov Logic Networks for joint E-A relation extraction

and coreference resolution across a complete document. Hence we follow two strate-

gies: (1) restriction of argument candidates based on coreference relations; (2) con-

struction of a joint model which collectively identifies intra-links and cross-links.

Restricting argument candidates helps us to construct a very compact yet still effective

model. A joint model enables us to simultaneously extract intra-links and cross-links

and contributes to the performance improvement. In addition, we will see that this

setup still allows us to implement the idea of salience in discourse with global formulae

in Markov Logic.

Predicate definition

Our joint model is based on the model proposed by [7]. We first define the predicates

of the proposed Markov Logic Network (MLN). There are three “hidden” predicates

corresponding to what the target information we want to extract(Table 2).

In this work, role is the primary hidden predicate since it represents event-argument

relations. Next we define observed predicates representing information that is available

at both train and test time. We define corefer(i, j), which indicates that token i is core-

ferent to token j (they are in the same entity cluster). corefer(i, j) obviously plays an

important role in our coreference-based joint model. We list the remaining observed

predicates in the last column of Table 1.

Our MLN is composed of several weighted formulae that we divide into two classes.

The first class contains local formulae for event, eventType, and role. We say that a for-

mula is local if it considers only one single hidden ground atoms. The formulae in the

second class are global: they involve two or more atoms of hidden predicates. In our

case they consider event, eventType, and role atoms simultaneously.

Basic local formulae

Our local features are based on features employed in previous work [3,7] and listed in

Table 1. We exploit two types of formula representation: “simple token property” and

“link tokens property” defined by [7].

Table 2 The three hidden predicates

event(i) token i is an event

eventType(i, t) token i is an event with type t

role(i, j, r) token i has an argument j with role r
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The first type of local formulae describes properties of only one token and such

properties are represented by the predicates in the first section of Table 1. The second

type of local formulae represents properties of token pairs and linked tokens property

predicates (dep, path, pathNL, and lca) in the second section of Table 1.

Basic global formulae

Our global formulae are designed to enforce consistency between the three hidden pre-

dicates and are shown in Table 3. Riedel et al. [7] presented more global formulae for

their model. However, some of these do not work well for our task setting on the

GENIA Event Corpus. We obtain the best results by only using global formulae for

ensuring consistency of the hidden predicates.

Using coreference information

We explain our coreference-based approaches using the example in Figure 1. First, the

two intra-links in S2 are represented by role(13, 11, Theme) – Arrow (A) and role(13,

15, Cause) – Arrow (D). Note, in these terms, phrasal arguments are driven by anchor

tokens which are the ROOT tokes on dependency subtrees of the phrases. The corefer-

ence relation is represented by corefer(11, 4) – Bold Line (B). Finally, the cross-link is

represented by role(13, 4, Theme) – Arrow (C).

With the example in Figure 1, we explain the two main concepts : Salience in Dis-

course (SiD) and Transitivity (T). We also present an additional idea, Feature Copy

(FC).

Salience in discourse

The entities mentioned over and over again are important in discourse and accordingly

highly likely to be arguments of some events. In order to implement this idea of sal-

ience in discourse, we add the Formula (SiD), shown in the first row of Table 4. For-

mula (SiD) requires that if a token j is coreferent to another token k, there is at least

one event related to token j. Our model with Formula (SiD) prefers coreferent argu-

ments and aggressively connects them with events. Note that our coreference resolver

always extracts coreference relations which are related to events, since coreference

annotations in GEC are always related to events.

Transitivity

Another main concept is “transitivity”, which is important for intra/cross-link extrac-

tion. As mentioned earlier, the SVM pipeline enforces transitivity as a post-processing

step. For the MLN joint model, let us consider the example of Figure 1 again.

role(13,11, Theme) ∧ corefer(11, 4) ⇒ role(13, 4, Theme)

This formula denotes that, if an event “inducible” has “The region” as a Theme and

“The region” is coreferent to “The IRF-2 promoter region”, then “The IRF-2 promoter

region” is also a Theme of “inducible”. The three atoms, role(13,11, Theme), corefer

(11, 4), and role(13,4, Theme) in this formula correspond respectively to the three

Table 3 Basic global formulae

Formula Description

event(i) ⇒ ∃t.eventType(i, t) If there is an event there should be an event type

eventType(i, t) ⇒ event(i) If there is an event type there should be an event

role(i, j, r) ⇒ event(i) If j plays the role r for i then i has to be an event

event(i) ⇒ ∃j.role(i, j, Theme) Every event relates to need at least one argument.
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Arrows (A), (B), and (C) in Figure 1. This formula is generalized as Formula (T) shown

in the second row of Table 4. The merit of using Formula (T) is that we can take care

of cross-links by only solving intra-links and using the associated coreference relations.

The only candidate arguments of cross-links are the arguments which are coreferent to

intra-sentence mentions (antecedents).

The improvement due to Formula (T) depends on the accuracy of the intra-link role

(i, j, r) and coreference relation corefer(j, k) atoms. Clearly, this accuracy depends par-

tially on the effectiveness of Formula (SiD) above. It should also be clear that the

improvement due to Formula (SiD) is also affected by Formula (T) because T impacts

the condition ∃i.role(i, j, r) in Formula (SiD). Thus, the formulae representing Salience

in Discourse and Transitivity interact with each other.

Feature copy

We make additional use of coreference information through “Feature Copy”. The main

idea is to supplement the features of an anaphor by adding the features of its antece-

dent. According to the example of Figure 1, the formula:

corefer(11, 4) ∧ word(4, “IRF-2”) ⇒ role(13, 11, Theme)

describes a word feature “IRF-2” to the anaphor “The region” in S2. Here word(i, w)

represents a feature that the child token of the token i on the dependency subtree is

word w. To be exact, this formula allows us to employ additional features of the ante-

cedent to solve the link role(13, 11, Theme). This formula is generalized as Formula

(FC) in the last row of Table 4. In Formula (FC), F denotes the predicates which repre-

sent basic features such as word, POS, and NE tags of the tokens. Formula (FC) copies

the features of cross-sentence arguments (antecedents) to intra-sentence arguments

(anaphors). Feature Copy is not a novel idea but it helps improve performance. For the

SVM pipeline model we add equivalent features.

Coreference resolution

In our work, we introduce a simple coreference resolver based on a pairwise corefer-

ence model [10]. It employs a binary classifier which classifies all possible pairs of

noun phrases into “corefer” or “do not corefer”. Popular external resources like Word-

Net often do not work well in the biomedical domain. Hence, our resolver identifies

coreference relations using only basic features such as word form, POS, and NE tag.

We use SVM-struct for learning and testing the binary classifiers. In this model, nega-

tive examples often overwhelm positive ones, and we therefore select a value over

10000 for the C-parameter. We achieve 59.1 pairwise F1 on GENIA Event Corpus eval-

uating 5-fold cross validation.

There is some previous work on coreference resolution for biomedical domains

[11,12]. They constructed original coreference annotations for learning and testing.

Table 4 Coreference formulae

Symbol Name Formula Description

(SiD) Salience in
Discourse

corefer(j, k) ⇒ ∃i.role(i, j,
r) ∧ event(i)

If a token j is coreferent to another token k, there is at least
one event related to token j

(T) Transitivity role(i, j, r) ∧ corefer(j, k)
⇒ role(i, k, r)

If j plays the role r for i and j is coreferent to k then k also
plays the role r for i

(FC) Feature Copy corefer(j, k) ∧ F(k, +f) ⇒
role(i, j, r)

If j is coreferent to k and k has feature f then j plays the
role r for i
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Their models use much richer features for machine learning classifiers and their sys-

tems achieve better results with around 70 F1. However, owing to the differences of

the data used, it is difficult to directly compare their results with ours. Moreover, using

the richer feature they propose, we would likely see improvements in our system as

well. Finally, we confirm that there is enough room for improvement by also evaluating

with gold coreference annotations.

Note that we optimize our resolver for event extraction because our event extractors

require high precision results from coreference resolution. For the SVM model, core-

ference resolution errors directly hurt performance. For MLN model, noisy results

from coreference resolution often disturb the coreference formulae when learning

weights. We noticed that the weights of coreference formulae remain small when the

coreference resolution results have less than 70 precision and our MLN event extractor

rarely obtains cross-sentence event-argument relations as a result. Some features and

string distance metrics may enable us to better balance precision and recall, but we

attach greater importance to precision. As a result, our high precision resolver achieves

over 90 for precision but lower than 50 for recall.

Results
Let us summarise the data and tools we employ. The data for our experiments is the

GENIA Event Corpus (GEC) [1]. For feature generation, we employ the following tools.

POS and NE tagging are performed with the GENIA Tagger (http://www-tsujii.is.s.u-

tokyo.ac.jp/GENIA/tagger/), for dependency path features we apply the Charniak-John-

son reranking parser with a Self-Training parsing model (http://www.cs.brown.edu/

~dmcc/biomedical.html), This model is optimized for biomedical parsing and achieves

84.3pt F1 on GENIA corpus [13]. We convert the parsed results to dependency tree

using the pennconverter tool (http://nlp.cs.lth.se/software/treebank_converter/). Learn-

ing and inference algorithms for joint model are provided by Markov thebeast[14], a

Markov Logic engine tailored for NLP applications. Our pipeline model employs SVM-

struct (http://www.cs.cornell.edu/People/tj/svm_light/svm_struct.html) both in learning

and testing. As we mentioned in the previous section, for coreference resolution, we

also employ SVM-struct for binary classification.

Figure 3 shows the structure of our experimental setup. Our experiments perform

the following steps. (1) First we perform preprocessing (tagging and parsing). (2) Then

we perform coreference resolution for all the documents and generate lists of token

Figure 3 Experimental setup. An illustration of experimental setup. Data for learning and evaluation:
GENIA Event Corpus (GEC). POS and NE Tagger: GENIA Tagger. Dependency Parser: Charniak-Johnson
reranking parser with a Self-Training parsing model. Coreference Resolver: Pairwise model. Event Extractor:
SVM-struct(SVM) and Markov TheBeast(MLN)
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pairs that are coreferent to each other. (3) Finally, we train the event extractors: SVM

pipeline (SVM) and MLN joint (MLN) involving coreference relations. We evaluate all

systems using 5-fold cross validation on GEC.

In the following we will first show the results of our models for event extraction

with/without coreference information. We will then present more detailed results con-

cerning E-A relation extraction.

Impact of coreference based approach

We begin by showing the SVM and MLN results for event extraction in Table 5. We

present F1-values of event, eventType, and role (E-A relation) extraction. The three

columns (event, eventType, and role) in Table 5 correspond to the hidden predicates

in Table 2.

Let us consider rows (a)-(b) and (c)-(g). They compare the SVM and MLN

approaches with and without the use of coreference information. The column “Core-

fer” indicates how the coreference information is used: “NONE”–without coreference;

“SYS”– with coreference resolver; “GOLD”– with gold coreference annotations.

We note that adding coreference information leads to 1.3 point F1 improvement for

the SVM pipeline, and a 2.1 point improvement for MLN joint. Both improvements

are statistically significant (p < 0.01, McNemar’s test 2-tailed).

With gold coreference information, systems (b′) and (g′) clearly achieve more signifi-

cant improvements. Let us move on to the comparisons between SVM pipeline and

MLN joint models. For event and eventType we compare row (b) with row (g) and

observe that the MLN outperforms the SVM. This is to be contrasted with results for

the BioNLP‘09 shared task, where the SVM model [3] outperformed the MLN [7].

This contrast may stem from the fact that GEC events are more difficult to extract

due to a large number of event types and lack of gold protein annotations, and hence

local models are more likely to make mistakes that global consistency constraints can

rule out. For role extractions (E-A relation), SVM pipeline and MLN joint show com-

parable results, at least when not using coreference relations. However, when corefer-

ence information is taken into account, the MLN profits more. In fact, with gold

coreference annotations, the MLN outperforms the SVM pipeline by a 1.3 point

margin.

Detailed results for event-argument relation extraction

Table 6 shows the three types of E-A relations we evaluate in detail.

Table 5 Results of event extraction (F1)

System Coreference event eventType role

(a) SVM NONE 77.0 67.8 52.3 ( 0.0)

(b) SVM SYS 77.0 67.8 53.6 (+1.3)

(b′) SVM GOLD 77.0 67.8 55.4 (+3.1)

(c) MLN NONE 80.5 70.6 51.7 ( 0.0)

(g) MLN SYS 80.8 70.8 53.8 (+2.1)

(g′) MLN GOLD 81.2 70.8 56.7 (+5.0)

“Coreference” has the tree options: without coreference information (NONE), with coreference resolver (SYS), and with
gold coreference annotations (GOLD)
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They correspond to the arrows (A), (C), and (D) in Figure 1, respectively. We show

the detailed results of E-A relation extraction in Table 7. All scores shown in the table

are F1-values.

SVM pipeline model

The first part of Table 7 shows the results of the SVM pipeline with/without corefer-

ence relations. Systems (a), (b) and (b′) correspond to the first three rows in Table 5,

respectively. We note that the SVM pipeline manages to extract cross-links with an F1

score of 27.9 points with coreference information from the resolver. The third low in

Table 7 shows the results of the system with gold coreference which is extended from

System (b). With gold coreference, the SVM pipeline achieves 54.1 points for “Cross”.

However, the improvement we get for “W-ANT” relations is small since the SVM

pipeline model employs only Feature Copy and Transitivity concepts. In particular, it

cannot directly exploit Salience in Discourse as a feature.

MLN joint model

How does coreference help our MLN approach? To answer this question, the second

part of Table 7 shows the results of the following six systems. The row (c) corresponds

to the fourth row of Table 7 and shows results for the system that does not exploit any

coreference information. Systems (d)-(g) include Formula (FC). In the sixth (e) and the

seventh (f) rows, we show the scores of MLN joint with Formula (SiD) and Formula

(T), respectively. Our full joint model with both (SiD) and (T) formulae comes in the

eighth row (g). System (g′) is an extended system from System (g) with gold corefer-

ence information.

By comparing Systems (d)(e)(f) with System (c), we note that Feature Copy (FC), Sal-

ience in Discourse (SiD), and Transitivity (T) formulae all successfully exploit corefer-

ence information. For “W-ANT”, Systems (d) and (e) outperform System (c), which

establishes that both Feature Copy and Salience in Discourse are sensible additions to

an MLN E-A extractor. On the other hand, for “Cross (cross-link)”, System (f) extracts

cross-sentence E-A relations, which demonstrates that Transitivity is important, too.

Table 6 Three types of event-argument relations

Type Description Edge in Figure 1

Cross E-A relations crossing sentence boundaries (cross-link) Arrow (C)

W-ANT Intra-sententence E-As (intra-link) with antecedents Arrow (A)

Normal Neither Cross nor W-ANT Arrow (D)

Table 7 Results of E-A relation extraction (F1)

System Corefer Cross W-ANT Normal

(a) SVM NONE 0.0 56.0 53.6

(b) SVM SYS 27.9 57.0 54.3

(b′) SVM GOLD 54.1 57.3 55.4

(c) MLN NONE 0.0 49.8 ( 0.0) 53.2

(d) MLN FC 0.0 51.5 (+1.7) 53.7

(e) MLN FC+SiD 0.0 54.6 (+4.8) 53.3

(f) MLN FC+T 36.7 51.7 (+1.9) 53.7

(g) MLN FC+SiD+T 39.3 56.5 (+6.7) 54.3

(g′) MLN GOLD 69.7 66.7 (+16.9) 55.3

“Coreference” options include without coreference information (NONE), with coreference resolver (SYS), with gold
coreference annotations (GOLD), with Feature Copy (FC), with Salience in Discourse (SiD), and with Transitivity (T)
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Next, for cross-link, our full system (g) achieved 39.3 points F1 score and outper-

formed System (c) with 6.7 points margin for “W-ANT”. The further improvements

with gold coreference are shown by our full system (g′). It achieved 69.7 points for

“Cross” and improved System (c) by 16.9 points margin for “W-ANT”.

SVM pipeline vs MLN joint

The final evaluation compares SVM pipeline and MLN joint models. Let us consider

Tables 7 again. When comparing System (a) with System (c), we notice that the SVM

pipeline (a) outperforms the MLN joint model in “W-ANT” without coreference infor-

mation. However, when comparing Systems (b) and (g) (using coreference information

by the resolver), MLN result is very competitive for “W-ANT” and 11.4 points better

for “Cross”. Furthermore, with gold coreference, the MLN joint (System (g′) outper-

forms the SVM pipeline (System (b′)) both in “Cross” and “W-ANT” by a 15.6 points

margin and a 9.4 points margin, respectively. This demonstrates that our MLN model

will further improve extraction of cross-links and intra-links with antecedents if we

have a better coreference resolver. Note that the MLN model has advantages over the

SVM model especially when higher recall is required. We have 2, 124 links of “Cross”

and 2, 748 of “W-ANT” for the evaluation of Table 7. MLN model-System (g′) finds 1,

236 correct “Cross” and 1, 778 correct “W-ANT” links. The SVM model-System (b′)

finds only 833 correct links for “Cross” and 1, 149 for “W-ANT”. We believe that the

reason for these results are two crucial differences between the SVM and MLN

models:

• With Formula (SiD) in Table 4, MLN joint has more chances to extract “W-ANT”

relations. It also effects the first term of Formula (T). By contrast, the SVM pipeline

cannot easily model the notion of salience in discourse and the effect from coreference

is weak.

• Formula (T) of MLN is defined as a soft constraint. Hence, other formulae may

reject a suggested cross-link from Formula (T). The SVM pipeline deterministically

identifies cross-links and is hence more prone to errors in the intra-sentence E-A

extraction.

Finally, the potential for further improvement through a coreference-based approach

is limited by the performance on intra-links extraction. Moreover, we also observe that

the 20% of cross-links are cases of zero-anaphora. Here the utility of coreference infor-

mation is naturally limited, and our Formula (T) cannot come into effect due to miss-

ing corefer(j, k) atoms.

Conclusions
In this paper we presented a novel approach to event extraction with the help of core-

ference relations. Our approach incorporates coreference relations through the con-

cepts of salience in discourse and transitivity. The coreferent arguments we focused on

are generally valuable for document understanding in terms of discourse structure and

they should be extracted at all cost. We proposed two models: SVM pipeline and

MLN joint. Both improved the attachments of intra-sentence and cross-sentence

related to coreference relations. Furthermore, we confirmed that improvements of cor-

eference resolution lead to the higher performance of event-argument relation extrac-

tion. However, potential for further improvement through a coreference-based

approach is limited by the performance of intra-sentence links and zero-anaphora
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cases. To overcome these problems, we plan to investigate a collective approach that

works on the full document. Specifically, we are constructing a joint model of corefer-

ence resolution and event extraction considering all tokens in a document based on

the idea of Narrative Schemas [15]. If we take into account all tokens in a document at

the same time, we can consider various relations between events (event chains)

through anaphoric chains. But to implement such a joint model in Markov Logic, we

will have to cope with the time and space complexities that arise in such a setting. We

are now investigating reasonable approximations for learning and inference of such

joint models.
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