
DATABASE Open Access

The Semantic Automated Discovery and
Integration (SADI) Web service Design-Pattern,
API and Reference Implementation
Mark D Wilkinson*, Benjamin Vandervalk and Luke McCarthy

* Correspondence:
markw@illuminae.com
Department of Medical Genetics,
Heart + Lung Institute at St. Paul’s
Hospital, University of British
Columbia, Vancouver, BC, Canada

Abstract

Background: The complexity and inter-related nature of biological data poses a
difficult challenge for data and tool integration. There has been a proliferation of
interoperability standards and projects over the past decade, none of which has
been widely adopted by the bioinformatics community. Recent attempts have
focused on the use of semantics to assist integration, and Semantic Web
technologies are being welcomed by this community.

Description: SADI - Semantic Automated Discovery and Integration - is a lightweight
set of fully standards-compliant Semantic Web service design patterns that simplify
the publication of services of the type commonly found in bioinformatics and other
scientific domains. Using Semantic Web technologies at every level of the Web
services “stack”, SADI services consume and produce instances of OWL Classes
following a small number of very straightforward best-practices. In addition, we
provide codebases that support these best-practices, and plug-in tools to popular
developer and client software that dramatically simplify deployment of services by
providers, and the discovery and utilization of those services by their consumers.

Conclusions: SADI Services are fully compliant with, and utilize only foundational
Web standards; are simple to create and maintain for service providers; and can be
discovered and utilized in a very intuitive way by biologist end-users. In addition, the
SADI design patterns significantly improve the ability of software to automatically
discover appropriate services based on user-needs, and automatically chain these
into complex analytical workflows. We show that, when resources are exposed
through SADI, data compliant with a given ontological model can be automatically
gathered, or generated, from these distributed, non-coordinating resources - a
behaviour we have not observed in any other Semantic system. Finally, we show
that, using SADI, data dynamically generated from Web services can be explored in a
manner very similar to data housed in static triple-stores, thus facilitating the
intersection of Web services and Semantic Web technologies.

Wilkinson et al. Journal of Biomedical Semantics 2011, 2:8
http://www.jbiomedsem.com/content/2/1/8 JOURNAL OF

BIOMEDICAL SEMANTICS

© 2011 Wilkinson et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:markw@illuminae.com
http://creativecommons.org/licenses/by/2.0

Background
Two Web technologies - Web services and the Semantic Web - hold the promise to

achieve integration and interoperability among the currently disparate bioinformatics

resources on the Web; however, this promise is not being widely achieved in practice.

The causes of failure are varied, but often relate to the fundamental differences

between the Web service and Semantic Web technologies themselves, and the widely

varying approaches taken by different projects who have attempted to superimpose

one technology over the other.

Archetypal Web services adopt a request/response model that utilizes HTTP POST

as the transport layer, and a technology called Simple Object Access Protocol (SOAP)

to surround the input/output messages with informative metadata. The functions

made available by the Web service are described via a machine-readable specification

called Web Services Description Language (WSDL)[1], which in turn utilizes XML

Schema to describe the syntactic structure of the each function’s input and output

messages. If the “meaning” of the syntactic XML elements of an output message, and a

desired subsequent input message, are known (or can be inferred) it is possible to

chain Web services together into workflows. However, because of the lack of shared

semantics regarding the meaning of elements in an XML Schema, workflow design is

most commonly done manually in an editing environment such as Taverna [2], and

the promise of automated Web service interoperability and workflow construction is

only truly successful within well-defined, often project-specific situations.

Defining these shared semantics is one of the aims of the emergent Semantic Web

initiative [3]. The Semantic Web can be thought of as a directed-graph in which the

nodes are anything that can be named (a concept, a document, a person) and the

labelled edges are meaningful properties that describe the relationships between the

nodes. Resource Description Framework (RDF) [4] is a way of encoding these nodes and

labelled edges such that they can be explored and traversed by machines, and most of

the data on the Semantic Web is currently stored in RDF documents made available by

HTTP GET, or in “triple-stores”, which are the RDF equivalent of relational databases.

All nodes and properties in RDF datasets are referenced by globally unique identifiers

(Uniform Resource Identifiers (URIs)), and thus the encoding provided by RDF is pre-

cise, unambiguous, and ideally suited for automated processing by software. Moreover,

it is possible to use logical reasoning to derive new facts which are not explicitly stated

in the data. Description logics (DL) are typically employed for this purpose due to their

improved computational characteristics in comparison to first order logic, and OWL [5]

is the family of description logics that has been developed for use with the Semantic

Web.

Here we describe our attempt to merge these two technologies in a way that directly

addresses the needs and behaviours of a specific end-user community, namely bioinforma-

ticians, who have strong resource and data interoperability requirements. SADI - Semantic

Automated Discovery and Integration - is a novel Semantic Web service design-pattern,

and supporting codebase together with a reference implementation, that utilizes Semantic

Web standards at all levels of the Web services “stack”, including discovery, messaging,

and service description. Following Carole Goble’s advice that “any integration technology

should only be as heavy as it needs to be, and no heavier” [6] SADI does not propose any

new technologies, standards, messaging formats or structures, metadata structures, result

Wilkinson et al. Journal of Biomedical Semantics 2011, 2:8
http://www.jbiomedsem.com/content/2/1/8

Page 2 of 23

codes, or unusual Web behaviours. SADI simply comprises a set of standards-compliant

conventions and suggested best-practices for data representation and exchange between

Semantic Web services that fully utilizes Semantic Web technologies to achieve the inte-

grative behaviours required by our target community.

For service providers, adopting SADI has many advantages:

• The SADI design patterns are supported by an accompanying codebase and plug-

in tools that almost completely automate the provision of resources as a Semantic

Web service, leaving the provider to focus entirely on their business-logic.

• The simplicity of the approach also means that there are few places a provider

can go wrong outside of the data model and their own business logic.

• Many of the decisions that need to be made when deploying Web services (of any

kind) have been made in these design patterns, and have been made specifically to

enhance service discoverability and interoperability. This simplifies the planning

process for providers, by reducing the number of ‘arbitrary’ decisions they need to

make.

• SADI services are easy to integrate with one another, greatly facilitating the

construction of analytical pipelines, and therefore enhancing the usability of these

services by the target end-users. This is made even simpler by the availability of

SADI plug-ins to popular workflow clients such as Taverna [7] and data explora-

tion environments such as the Knowledge Explorer [8] that dramatically simplify

service discovery and pipeline creation.

• SADI is cluster/cloud-ready, and the specification was specifically designed to

support multiplexed messages. This allows service providers to distribute incoming

requests over their computational resources without any requirement for request/

response tracking; responses from each processor may simply be concatenated

regardless of order. Moreover, we utilize standard RDF-based approaches to avoid

passing large datasets through workflows, and rather allow clients and providers to

pass-by-reference.

• SADI enforces other best-practices in Web development (e.g. that all URIs must

resolve), thus helping providers generate robust, error-free systems, and tools are

available to regularly evaluate and validate service functionality. This results in high

up-time, automated failure alerts, and therefore a higher quality of service for end-

users.

• Service providers do not need to “buy-in” to any particular ontology, specialized

protocol or message scaffold. SADI is agnostic to which ontologies are used to

describe its messages, reducing the “friction” of bringing the technology into a new

environment. SADI simply requires that providers utilize the Semantic Web stan-

dards of RDF and OWL for their data representation and modelling, under which-

ever ontological framework they wish.

• SADI is not in conflict with any existing network security software or protection

model. It concerns itself only with how services behave, and simply passes plain-

text messages via the standard HTTP Protocol.

Here we will first describe the SADI approach to Web service provision (an exten-

sion of the description here [9]). We will then briefly describe two implementations

Wilkinson et al. Journal of Biomedical Semantics 2011, 2:8
http://www.jbiomedsem.com/content/2/1/8

Page 3 of 23

that show how the conventions and practices defined by SADI enable novel data dis-

covery, interoperability, and integrative behaviors that we believe closely mirror the

needs and expectations of our specific end-user community. Finally, we will engage in

an extensive discussion of how SADI compares to peer technologies and other Seman-

tic Web service projects.

The next section of this manuscript examines SADI iteratively, with increasing levels

of detail at each iteration, such that the simplicity of the approach is made apparent

before discussing the finer points of how SADI’s integrative behaviours are achieved.

Construction and Content
Introduction - Hello World

Figure 1 shows a simple, synchronous interaction with a SADI service. A client calls

HTTP GET on the service endpoint in order to retrieve the service interface document

(Figure 1A). This document contains two OWL Class definitions, one describing the

properties that must be carried by input data, and the other describing the properties

that will be carried by the output data (Figure 1B). The client utilizes the input OWL

Class to validate their desired input data (through logical reasoning), then passes that

data verbatim to the service endpoint through a standard HTTP POST (Figure 1C).

The service processes the input, and returns RDF data carrying the properties

described in its output OWL Class; these represent the output of the service’s proces-

sing (Figure 1D). While this appears to be (and is) an extremely straightforward and

standard Web transaction, it embodies several simple constraints that make Web ser-

vices modeled in this way highly discoverable and interoperable.

SADI Approach to Semantic Web service modeling

Before describing SADI in detail, it is important to emphasise what SADI is not. SADI

is not a protocol (e.g. not a replacement for SOAP), is not a registry (e.g. not a replace-

ment for UDDI[10]), is not a data-typing system or ontology (unlike BioMoby[11]), and

is not a service metadata or annotation schema (e.g. not a replacement for OWL-S[12],

SAWSDL[13], or Feta[14]). SADI simply consists of a number of recommendations for

how services themselves should be implemented and described in order to achieve a

set of useful, interoperable behaviors that can be leveraged by existing Web service

standards. As such, SADI is extremely lightweight compared to many other approaches

to Semantic service provision. It consists of two key best-practices:

1. All service input and output data are RDF instances (i.e. owl:Individual’s) of

OWL classes

2. The URI of the output instance is the same as the URI of the input instance.

Best-practice #1enables sophisticated and flexible matchmaking between in-hand data

and tools that can operate on that data, and does so using an increasingly widely-used

data representation format - RDF. Best-practice #2 effectively standardizes the behaviour

of all services by making them all “annotators”, where the input becomes decorated by

additional information before being returned to the client. This latter constraint has sev-

eral very useful consequences, perhaps the most important being that the semantics of the

Wilkinson et al. Journal of Biomedical Semantics 2011, 2:8
http://www.jbiomedsem.com/content/2/1/8

Page 4 of 23

underlying service functionality becomes extremely transparent. This greatly facilitates

automated service discovery and pipelining as will be discussed and demonstrated below.

In the following sections, we will first describe the fundamental recommendations

that apply to all SADI-compliant services, and will then describe extensions to the core

recommendations that apply to, for example, asynchronous services or services that

require additional parameters to alter service functionality.

GET http://example.org/myservice

Service Description

INPUT OWL CLass
NamedIndividual: things with

a “name” property
from “foaf” ontology

OUTPUT OWL Class
GreetedIndividual: things with

a “greeting” property
from “hello” ontology

POST http://example.org/myservice

person:1

hello:Named
Individual

rdf:type

Guy Incognito

foaf:name

person:1

hello:Greeted
Individual

rdf:type

Hello, Guy Incognito!

hello:greeting

A

B

C

D

Figure 1 The most basic SADI service transaction. In (A) the client calls HTTP GET on the service
endpoint. This results in the retrieval of a service interface document (B) containing references to OWL
classes (defined anywhere on the Web) that describe the input and output datatypes of that service. The
client finds RDF data matching the service’s input OWL class (based on the property restrictions of that
class) and passes that data to the service endpoint using simple HTTP POST (C). The service strips the
properties from the input RDF node, uses that information to execute its analysis, and adds the results as
new properties of the input node before returning it to the client as appropriately typed output (D).

Wilkinson et al. Journal of Biomedical Semantics 2011, 2:8
http://www.jbiomedsem.com/content/2/1/8

Page 5 of 23

The Base SADI Specification

The core recommendations/requirements for a SADI compliant Web Service are listed

in Table 1. Examining each of these recommendations in more detail will clarify more

precisely what the service behaviour should be, why the decision was made and/or

what benefit is gained by following the recommendation.

Explanation/Justification for Base Recommendations

SADI Web services are stateless and atomic

This decision is simply pragmatic, and describes the vast majority of services in the bioin-

formatics domain. Restricting the range of possible service behaviours to only those that

are in-use simplifies the architecture. Services that cannot be modeled in a stateless man-

ner - for example, simulation services - are not the immediate target of the SADI recom-

mendations. That said, the flexibility of SADI’s input and output data-typing should allow

service providers considerable leeway in implementing services that behave in ways we

had not anticipated; however, defining these behaviours is beyond the scope of the core

SADI recommendations.

Service interface is retrieved by HTTP GET

It is useful to have a standard way of locating the service interface description for any

given service. With WSDL-based services, locating these documents was only possible

through a priori knowledge of the URL of the WSDL, or through querying a service regis-

try. With SADI, we have standardized this such that the service endpoint itself responds

to a GET by returning its service interface document (Figure 1A/B). Since (as described

below) all SADI services function through HTTP POST, there is no barrier to restricting

the use of GET in this way.

SADI does not define the format of the service interface document; however currently

all SADI services return an RDF-XML instance (owl:Individual) of the serviceDescription

Class from the myGrid/Moby service ontology [15]. This was chosen because the myGrid/

Moby ontology has useful features for assisting with, for example, automated service mon-

itoring, and moreover these annotations are compatible with the BioCatalogue[16] global

registry of Web services. We are, however, actively monitoring alternatives, such as OWL-

S, to determine if they become more widely accepted and/or more appropriate for the

needs of SADI.

SADI services consume and produce RDF instances of OWL-DL Classes

Included in the service interface document are references to the OWL-DL classes that

define the input and output data-types that the service will consume and produce. The

Table 1 Core Recommendations of SADI

1 SADI Web services are stateless and atomic.

2 SADI service endpoints respond to HTTP GET by returning the interface definition of the service.

3 Service interfaces (i.e., inputs and outputs) are defined in terms of OWL-DL classes; the property restrictions
on these OWL classes define what specific data elements are required by the service and what data will be
provided by the service, respectively.

4 SADI services consume and produce data in RDF format.

5 SADI services are invoked through plain HTTP POST of RDF data to the service endpoint.

6 Input RDF data - data that is compliant with (i.e. classifies into) the input OWL Class definition - is
“decorated” or “annotated” by the service provider to include new properties until it fulfills the Class
definition of the service’s output OWL Class. Importantly, in so doing, the URI of the input OWL Class
Instance is preserved and becomes the URI of the output OWL Class Instance.

Wilkinson et al. Journal of Biomedical Semantics 2011, 2:8
http://www.jbiomedsem.com/content/2/1/8

Page 6 of 23

ontologies defining those classes may exist anywhere on the Web, and may or may not

be “owned by” the service provider; however, the URI of the input and output class

must resolve, through HTTP GET, to an OWL document. SADI allows any provider

to utilize classes from any OWL ontology within the definition of their own service

interface.

The data consumed by a SADI service is an instance of the OWL-DL class that

describes the input of the service (Figure 1C). Likewise, the output is an instance of

the output class (Figure 1D). Both RDF-XML and RDF-N3 serializations are currently

supported, and is indicated in the Content-type element of the HTTP header.

Since both the client and the service are operating on potentially very large RDF

Graphs, it is important to indicate what URI(s) within that graph represent the “root” of

the data instances. Here again we rely entirely on Semantic Web standards, requiring

that the input instance must be classified according to the service provider’s input class,

and explicitly typed using the rdf:type predicate (See the “hello:NamedIndividual” node

in Figure 1C). This serves to reduce the complexity of service provision by not requiring

providers to reason over incoming data - an important consideration with respect to

encouraging widespread adoption of SADI. Moreover, it allows services to be written in

languages that do not have strong support for logical reasoners, such as Perl. When

accepting incoming data, a provider simply extracts the URI from the input document

that has the rdf:type property with a value equivalent to that service’s input class. Client

software can similarly expect that the service provider has added the rdf:type property to

its root output data node (see the “hello:GreetedIndividual” node in Figure 1D), in accor-

dance with its output class, and thus it is similarly straightforward for the client to iden-

tify output data elements within the returned graph.

Services are invoked by HTTP POST

SADI services are invoked by passing an RDF graph to the service end-point via HTTP

POST (Figure 1C), and any tool that can execute an HTTP POST (e.g. Unix “curl”) can

be used to invoke a SADI service. Importantly, SADI uses a non-parameterized POST -

i.e. does not use the HTTP FORM encoding. As such, all information required for ser-

vice invocation must be present in the data itself, since the invocation happens via a

single anonymous “package” of data. SADI accomplishes this by distinguishing various

data or service control elements by their ontological type, as described below.

Input data is “decorated” until it becomes an instance of the Output Class

This is the critical aspect of the SADI specification that leads to SADI’s striking interoper-

able behaviours; moreover, this manner of modeling services also provides simple solu-

tions to problems that would otherwise require project-specific standards (e.g. the

mapping of input to output in a multiplexed invocation, as described later). Simply put,

after a service analyses the predicate/values attached to a given input node, it then adds

the analytical output to that same node through one or more new predicate/values. The

output is associated to the input as a new property of that input URI (compare the URI of

the main node “person:1” in both Figure 1C and Figure 1D). All of the predicates and

values added by a service are defined in the Output OWL Class, and as such, output data

is then rdf:type’d according to that output Class definition. More importantly, appropriate

services can be discovered based on the properties they add. For example, Figure 2 shows

the SADI Plug-in to the IO Informatics Knowledge Explorer[8]. The UniProt protein

P09416 has been selected, and in the panel to the right, the SADI plug-in is displaying all

Wilkinson et al. Journal of Biomedical Semantics 2011, 2:8
http://www.jbiomedsem.com/content/2/1/8

Page 7 of 23

of the properties of that protein (e.g. 3D Structure, GO Annotations, etc.) that are avail-

able through invocation of one or more SADI services. Similarly, Figure 3 shows the plug-

in to Taverna, where a similar menu of property/values is provided based on the data-type

that will emerge from the output port of the currently selected service on the canvas.

Given the rapidly increasing size of bioinformatics datasets, and the movement to cloud-

based computing, SADI natively supports the ability to pass data by reference. In the case

of both input and output data, the URI of the owl:Individual may be annotated with an

rdfs:isDefinedBy predicate. The Object URI of that predicate, when resolved, should pro-

vide triples containing any missing data for that Individual. As such, it is possible to pass

large data objects from service-to-service without necessarily passing the data, but still

provide the ability to retrieve that data in a standards-compliant way.

Concrete Examples of SADI Service Description and Invocation Messages

Figures 4, 5, 6, 7, 8 and 9 provide concrete examples of the guidelines described above, in

the context of a “Hello World” style example. Figure 4 shows the service’s description,

which is obtained by performing an HTTP GET on the service’s endpoint. This document

contains both the human-readable annotations of the service, as well as the machine-read-

able pointers to the service’s input and output OWL Class definitions. Figure 5 shows the

ontology describing the input and output OWL Classes. The input Class is composed of a

single property restriction indicating that any incoming data must have at least one

“name” predicate. In this way, SADI allows data to be re-classified as valid input to a ser-

vice, even if it had been generated from another ontological framework, so long as it car-

ries the required properties. This provides extreme flexibility in data-to-service

matchmaking. The output OWL Class is similarly composed of a single property restric-

tion indicating that the output from the service will include the “greeting” predicate. It is

Figure 2 The SADI Plug-in to the IO Informatics Knowledge Explorer. In this image, we have selected
a node on the canvas representing UniProt protein P09416 and a right-click has raised the SADI Plug-in
menu. The menu is derived by requesting the rdf:type information for the selected node, and then
searching the SADI registry for all Semantic Web Services that consume that data class. From the
discovered services, the RDF predicates that are created by those services are then displayed in the menu
for the user to select. Clicking “GO” invokes the selected services and the returned data is added to the
graph on the canvas.

Wilkinson et al. Journal of Biomedical Semantics 2011, 2:8
http://www.jbiomedsem.com/content/2/1/8

Page 8 of 23

Figure 3 The SADI Taverna Plug-in. In this image, the user has already placed the SADI service “KEGG-
Pathway-to-Gene” on the canvas. This service reports that it consumes data of type
“KEGG_PATHWAY_Record” (upper/input port) and attaches the predicate “has participant” with a value of
“KEGG_Record” - the participants in this KEGG pathway (lower/output port). The user has now right-clicked
on the output port of this service to obtain the SADI Plug-in window. SADI has semantically examined the
properties of the output from the KEGG-Pathway-to-Gene service and has discovered services capable of
operating on those properties. Among these is a service “getUniprotByKeggGene” (selected and
highlighted in blue) which will provide the “encodes” annotation on any genes that appear in that service
output. To add the service, the user simply clicks the “Connect” button, and the services will be
automatically, and accurately, pipelined together with no additional manual intervention required.

@prefix : <http://www.mygrid.org.uk/mygrid-moby-service#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
<http://sadiframework.org/examples/hello> a :serviceDescription;
 :hasOperation <http://sadiframework.org/examples/hello#operation>;
 :hasServiceDescriptionText "A simple Hello";
 :hasServiceNameText "Hello"^^<http://www.w3.org/2001/XMLSchema#string> .

<http://sadiframework.org/examples/hello#operation> a :operation;
 :inputParameter <http://sadiframework.org/examples/hello#input>;
 :outputParameter <http://sadiframework.org/examples/hello#output> .

<http://sadiframework.org/examples/hello#input> a :parameter;
 :objectType <http://sadiframework.org/examples/hello.owl#NamedIndividual> .

<http://sadiframework.org/examples/hello#output> a :parameter;
 :objectType <http://sadiframework.org/examples/hello.owl#GreetedIndividual> .

Figure 4 An SADI service description in N3 format (for readability). The document describes an
instance of the serviceDescription class from the mygrid-moby-service ontology. In this “Hello” example,
there is a single operation (all SADI services consist of a single operation), with a single input parameter
that is of type NamedIndividual from the “hello.owl” ontology, and a single output parameter of type
“GreetedIndividual” from the same ontology. This document can be retrieved (in RDF/XML format) by
calling HTTP GET on the service’s endpoint at http://sadiframework.org/examples/hello

Wilkinson et al. Journal of Biomedical Semantics 2011, 2:8
http://www.jbiomedsem.com/content/2/1/8

Page 9 of 23

http://sadiframework.org/examples/hello

this “greeting” property that is indexed by the prototype SADI registry, and can be used

for service discovery. Put another way, the function of this service is to generate the “greet-

ing” property of an input URI based on its “name” property. This equivalency between a

Web service’s function and the creation of novel properties, to our knowledge, completely

unique to the SADI Web service model, and is largely responsible for the semantic beha-

viours that will be demonstrated in the Utility section of this manuscript. Figure 6 shows a

complete input message, passed by HTTP POST to the service’s endpoint. As described

earlier, the message has no additional scaffold or messaging format. It is simply an RDF

individual corresponding to the service’s input OWL class. Similarly, Figure 7 shows a

complete output message from the same invocation of the Hello service. Once again, it is

nothing more than an RDF individual of the service’s output OWL class, but importantly,

the URI of that individual has not changed. In this way, it is trivial to determine which

output was derived from which input when multiplexing service invocations.

@prefix : <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

 <> a :Ontology;
 :imports <http://xmlns.com/foaf/0.1/name> .

 <#NamedIndividual> a :Class;
 :equivalentClass [
 a :Restriction;
 :minCardinality "\n1\n"^^<http://www.w3.org/2001/XMLSchema#int>;
 :onProperty <http://xmlns.com/foaf/0.1/name>] .

 <#GreetedIndividual> a :Class;
 :equivalentClass [
 a :Restriction;
 :minCardinality "\n1\n"^^<http://www.w3.org/2001/XMLSchema#int>;
 :onProperty <#greeting>] .

<#greeting> a :DatatypeProperty .

===

Ontology: <>
Import: <http://xmlns.com/foaf/0.1/name>

Datatype: rdfs:Literal
DataProperty: <http://xmlns.com/foaf/0.1/name>
DataProperty: <#greeting>

Class: <#NamedIndividual>
 EquivalentTo:
 <http://xmlns.com/foaf/0.1/name> min 1 rdfs:Literal

Class: <#GreetedIndividual>
 EquivalentTo:
 <#greeting> min 1 rdfs:Literal

Figure 5 The OWL Ontology, shown in both N3 format (above the divider) and in Manchester OWL
syntax (below the divider), describing the “Hello” service’s input and output classes. The
NamedIndividual (input) class declares that the service consumes any URIs that include at least predicate of
type “name”, from the FOAF ontology. The GreetedIndividual (output) class indicates that the SADI service
will add the “greeting” property to the input data, and that “greeting” is a Datatype Property.

Wilkinson et al. Journal of Biomedical Semantics 2011, 2:8
http://www.jbiomedsem.com/content/2/1/8

Page 10 of 23

Complex services
Multiplexing service calls

The use of RDF, and lack of message scaffolding makes multi-plexing service invoca-

tions trivial, and is an important feature that distinguishes SADI from most prior Web

service and Semantic Web service frameworks. Any given service invocation RDF

document may contain one or more instances of the input class, and in this manner,

multiple service invocations can be “bundled” into a single POST. This allows the ser-

vice provider to optimize the way that request is managed, for example, by distributing

it over a computing “farm”. Because the URI of the input instance(s) is preserved in

the output instance(s), no additional mark-up, and no new standards, are required to

determine which output maps to which input. From the service provider’s perspective,

this means that no effort is required to re-compile the output message, since it is sim-

ply a concatenation of all outputs from all compute runs. From a client perspective, it

means that no SADI-specific software is required to invoke a SADI service, even when

multiplexing thousands of inputs.

POST /examples/hello HTTP/1.1
Host: sadiframework.org

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:foaf="http://xmlns.com/foaf/0.1/"
 xmlns:hello="http://sadiframework.org/examples/hello.owl#">

 <hello:NamedIndividual rdf:about="http://sadiframework.org/examples/hello-input.rdf#1">
 <foaf:name>Guy Incognito</foaf:name>
 </hello:NamedIndividual>
</rdf:RDF>

Figure 6 Invocation Message. This is the full HTTP message sent to invoke the “hello world” service. It
utilizes the HTTP POST method, and is sent to the service endpoint at http://sadiframework.org/examples/
hello. The message body consists of an RDF/XML instance of the NamedIndividual class (as per the Hello
service’s hello.owl ontology), with the property “name” and a value of “Guy Incognito”. The URI of this
individual is http://sadiframework.org/examples/hello-input.rdf#1.

HTTP/1.1 200 OK
Content-type: application/rdf+xml

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:hello="http://sadiframework.org/examples/hello.owl#">

 <hello:GreetedIndividual rdf:about="http://sadiframework.org/examples/hello-input.rdf#1">
 <hello:greeting>Hello, Guy Incognito!</hello:greeting>
 </hello:GreetedIndividual>

</rdf:RDF>

Figure 7 Synchronous Response Message. This is the full HTTP message sent in response to the
invocation message from Figure 3. It is an RDF/XML instance of the Hello service’s output class -
GreetedIndividual. As per that class definition, the instance carries a “greeting” predicate, with the value
“Hello, Guy Incognito!”. Note that the URI of the GreetedIndividual is identical to the URI of the
NamedIndividual input, as per the SADI best-practices.

Wilkinson et al. Journal of Biomedical Semantics 2011, 2:8
http://www.jbiomedsem.com/content/2/1/8

Page 11 of 23

http://sadiframework.org/examples/hello
http://sadiframework.org/examples/hello
http://sadiframework.org/examples/hello-input.rdf#1

Asynchronous services

In keeping with our longstanding recognition of the importance of asynchronous service

invocation within the BioMoby project, support for asynchronous services was a high

priority in the design of SADI. For long-running services, SADI proposes a very light-

weight, pure HTTP approach to asynchronous invocations. In an asynchronous service,

input URIs are decorated by the predicate ‘rdfs:isDefinedBy’ with a temporary, service-

specific URI as its value, and are immediately returned to the client. In compliance with

the defined usage of this predicate [17], the interpretation of this statement is that the

HTTP/1.1 202 Accepted
Content-type: application/rdf+xml

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://http://www.w3.org/2000/01/rdf-schema#"
 xmlns:hello="http://sadiframework.org/examples/hello.owl#">

 <hello:GreetedIndividual rdf:about="http://sadiframework.org/examples/hello-input.rdf#1">
 <rdfs:isDefinedBy rdf:resource="http://sadiframework.org/examples/hello?poll=1"/>
</hello:GreetedIndividual>
</rdf:RDF>

Figure 8 Asynchronous Response Message. This is the full HTTP message sent in response to the
invocation message from Figure 3, as it would appear if the Hello service were implemented
asynchronously. It is an RDF/XML instance of the Hello service’s output class - GreetedIndividual, but unlike
the response message in Figure 4, the output data is not yet attached. Rather, the input URI is now
decorated with the “isDefinedBy” predicate from the RDF-Schema standard vocabulary. The value of that
predicate is a URL which can be polled by the client until the data is ready. The response message carries
the HTTP Header standard response code of 202 “Accepted but incomplete”.

HTTP/1.1 302 Moved Temporarily
Pragma: sadi-please-wait = 5000
Location: http://sadiframework.org/examples/hello?poll=1

...

...

HTTP/1.1 200 OK
Content-type: application/rdf+xml

<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:hello="http://sadiframework.org/examples/hello.owl#">
 <hello:GreetedIndividual rdf:about="http://sadiframework.org/examples/hello-input.rdf#1">
 <hello:greeting>Hello, Guy Incognito!</hello:greeting>
 </hello:GreetedIndividual>
</rdf:RDF>

Figure 9 Asynchronous Polling Response Messages. At the top of the figure is the response obtained
when polling for an asynchronous response when the data is not yet ready. The “redirect” (HTTP 302)
header is used to indicate that the client should call a URL (in this case, the same URL). The ellipsis
indicate repeated polls of the same URL. When the data is ready, the full response is sent with an HTTP
200 header. Note that the response message is now identical to that of a synchronous service (Figure 4).

Wilkinson et al. Journal of Biomedical Semantics 2011, 2:8
http://www.jbiomedsem.com/content/2/1/8

Page 12 of 23

input URI is further defined by resolving the temporary URI provided by the service.

This incomplete output data is contained in the body of an HTTP 202 ("Accepted but

incomplete” [18]) response message (see Figure 8), in accordance with the proper usage

of the HTTP 202 header. The service-specific URIs, when resolved by GET, either return

the output graphs (if the service operations are complete) or the “redirect” (HTTP 302)

header is used to indicate that the client should re-call a URL (in this case, the same

URL; see Figure 9). Since this is the standard behaviour of most HTTP client programs,

this helps ensure that most existing Web-enabled software will deal appropriately with

Asynchronous SADI services without the need to invent a novel standard. To assist cli-

ents in regulating their repeat requests on an asynchronous service, we currently pass a

HTTP Retry-After directive in the response message header. In future implementations,

a Web services Resource Framework [19] reference may be passed in the HTTP 202/302

headers, providing information about the state of the asynchronous service, and to assist

clients in determining when an output graph will be available. Supplementary informa-

tion showing more complex sample message structures is provided at [20].

Services with control-parameters

Since SADI services are invoked by a non-parameterized POST, all information required

by the service to define its behaviour must be contained within the invocation message.

For services that have settable parameters (for example, selection of a BLOSUM matrix

and/or e-value cutoff in BLAST), such information is passed to the SADI service as an

independent RDF graph within the same invocation message. The service provider speci-

fies an OWL Class in which the parameters and value-restrictions for their interface are

defined. In the myGrid-Moby Ontology, these are differentiated from “data” input Classes

by virtue of being attached to mygrid:secondaryParameter nodes in the service definition

RDF document. When invoking a service, client software simply creates an instance of

this secondaryParameter Class, and passes it to the service along with the Input data

instances. The service then extracts the URI that is rdf:type [TheirParameterClassname]

and collects the parameter information from this object to configure the service prior to

analysing the data. Again, no project-specific standards or message structures are defined

by SADI to achieve this goal - parameter data is simply RDF data placed into the input

message, and typed according to the Class-name provided by the service host.

Utility
Observing the behaviors of several implementations of SADI client software will help

demonstrate both its utility, as well as how many common problems with Web service

interoperability are effectively resolved by this approach. In the first example, we will

demonstrate how SADI can be used to simplify the interaction between an untrained

end-user and the myriad resources they may need to dynamically access. The second

example will show how SADI contributes to the Linked Data movement by dynamically

generating Linked Data triples that can be queried, and also demonstrates the simplicity

with which SADI-compliant Web services can be pipelined together.

Example 1 - the SADI Plug-in to Taverna

Taverna is an open-source workflow design and enactment workbench that allows

users to “drag-n-drop” Web Services from a menu of available resources onto a canvas,

and link them together into an analytical pipeline.

Wilkinson et al. Journal of Biomedical Semantics 2011, 2:8
http://www.jbiomedsem.com/content/2/1/8

Page 13 of 23

We have created a SADI plug-in to Taverna (described in detail here [7]) that assists

users in discovering the service they need and automatically connecting it correctly

into the workflow. When an output port of a service is selected in Taverna, the SADI

plug-in provides a menu of relationships that can be attached to the type of data that

will flow out of that port when the workflow is executed. This list is obtained by

querying the SADI registry for services that consume that data-type as input, and the

relationships attached by each service are collected and displayed to the user. To add

that service to the workflow, the user simply selects their property of interest from the

menu. The service is added, and automatically properly connected to the previous ser-

vice (a process that can be quite difficult in Taverna, depending on the complexity of

the service interfaces being connected). For example, if the user has selected a port

from which gene identifiers will emerge, the SADI menu might include “encodes Pro-

tein” as a property that can be generated by the next service. The inclusion of the

semantic relationship (’encodes’) between the selected data-type, and the data-type that

is going to be generated by the service is (as far as we are aware) unique to SADI, and

we believe that this will make the selection of a desired service more intuitive for our

target end-users. Given that there are various relationships between genes and proteins

(genes are regulated-by proteins, genes encode proteins, etc.) clarity around this rela-

tionship is not trivial with respect to selection of an appropriate service by our target

end-users.

Example #2: The SHARE SPARQL query client

A slightly more complex example of usage is presented by our Semantic Health And

Research Environment (SHARE) prototype query system [21]. SHARE connects the

SADI middleware to the Pellet [22] SPARQL query engine and DL Reasoner. Predi-

cates presented to Pellet from SPARQL queries are “intercepted” and passed to SADI

to be used for Web service discovery and automatic invocation. Output data from the

invoked services is added into Pellet’s local triplestore. In this way, a query-specific tri-

plestore is dynamically generated as a query is being processed; effectively, the database

required to answer the question is automatically generated as a result of the question

being posed.

This approach has features of many prior attempts at data integration in that (a) it is

service oriented, (b) it is similar to link-integration in that every node in the graph is a

resolvable URL, (c) it offers the “data freshness” of view-integration since data is being

dynamically discovered (or generated) by the source, and (d) it offers the reproducibil-

ity of a warehouse, since the graph that results from a SHARE query can be perma-

nently stored and explored using a variety of tools.

Discussion
Justification for creating a new Semantic Web service standard

A decade ago, Stein expressed concern that, because a wide array of different

approaches to Web service provision were emerging “a chaotic world of incompatible

bioinformatics data standards will be replaced by a chaotic world of incompatible web

service standards” [23]. It would be difficult to argue that those words were not pro-

phetic! In an attempt to enhance interoperability between these resources post facto,

independent projects began using semantics to help map between the data elements

Wilkinson et al. Journal of Biomedical Semantics 2011, 2:8
http://www.jbiomedsem.com/content/2/1/8

Page 14 of 23

and representations used by each resource. These “Semantic Web service” initiatives

themselves, however, took various approaches in their utilization of semantics.

Preceding both Semantic Web technologies and the widespread emergence of Web

services in bioinformatics, TAMBIS [24] was a mediator system in which wrappers

containing resource-specific queries were mapped to an overarching ontology of bioin-

formatics concepts. Thus the semantics of TAMBIS is separate from the individual

resource interfaces, and the semantic layer acts to re-write multi-concept queries such

that individual components of that query are executed by one or more resource-speci-

fic wrappers.

myGrid [25] used an extensive bioinformatics domain ontology to annotate tradi-

tional bioinformatics Web services within a formal model called “Feta” [14], designed

primarily to enhance service discovery, rather than automate multi-service composi-

tion. Feta, thus, adds semantics to traditional Web services at the level of its own

annotation of a service interface.

OWL-S [12] seeks to improve Web service interoperability by providing a standard

OWL ontology for the description of Web services. OWL-S goes beyond the capabilities

of WSDL in the sense that it aims to describe the effects of web services on the real

world (e.g. adding a charge to a credit card). OWL- S describes the actions of a Web ser-

vice in a similar manner to how the actions of an agent are described in the planning

domain of AI. Each service has a set of pre-conditions and post-conditions which are

expressed as boolean formulas over a set of state variables. OWL-S is complex and is

under ongoing development.

SAWSDL (Semantic Annotations for WSDL)[13] is an extension to WSDL that

attempts to bridge the gap between the world of syntactically described Web services

and semantically described Web services. SAWSDL allows a service provider to “tag”

parts of a WSDL service description with semantic annotations. These annotations

either specify how to translate an XML schema element to/from an ontology instance

in another language such as RDF (via the liftingSchemaMapping and loweringSchema-

Mapping attributes), and indicate that an XML element corresponds to a certain class

in an ontology (via the modelReference attribute).

WSMO (Web service Modeling Ontology) [26] is a research project that has the

same general goals as OWL-S. In contrast to OWL-S, WSMO uses its own modeling

language, WSML (Web service Modeling Language) for encoding Web service descrip-

tions. One advantage of WSML over OWL-S is that it has built-in syntax for encoding

the boolean formulas that are used to describe the pre-conditions and post-conditions

of the services. In contrast, OWL-S employs a more ad hoc approach where the for-

mulas are encoded as XML literals or string literals in an external syntax such as

PDDL [27].

caBIO (part of caCORE [28]) designed a traditional Web service API describing all

“valid” operations for a given set of biological objects. Within the XML sent-to or

received-from caBIO services are semantic annotations compliant with a (vast) domain

vocabulary. Thus the semantics of caBIO data are contained in the values of XML ele-

ments, and the “meaning” of those XML elements themselves are defined by the

caBIO API.

BioMoby [11] carries its semantics in the data-structures themselves, and unlike

caBIO, does not constrain what operations can be done on any given biological object.

Wilkinson et al. Journal of Biomedical Semantics 2011, 2:8
http://www.jbiomedsem.com/content/2/1/8

Page 15 of 23

BioMoby requires service providers to utilize a common, end-user-extensible ontology

of biological data-types, and to consume and produce XML serializations of instances of

that ontology. The BioMoby ontology is both hierarchical, and partitive, thus the ele-

ment name at any given position in the resulting XML serialization, and its child-ele-

ment structure, can change without changing the semantics of the data. This enhances

interoperability because (a) the semantics of the data are self-describing and embedded

in the data, and (b) complex messages can be utilized by more simplistic services by sim-

ply paying attention to those data-components that they understood. As a result, assem-

bly of BioMoby Web services can be fully automated since the “meaning” of any given

data message can be reliably interpreted by the recipient without the need of mediators.

Unfortunately, this flexibility in the XML representation of the data precludes the ability

to use XML Schema to describe the syntax of the message, and thus traditional Web ser-

vice tools are of limited utility. Moreover, BioMoby’s XML serialization is non-standard

and only understood by other BioMoby services, hampering interoperability outside of

the project.

SSWAP [29] also carries the semantics of the data in the message itself, however it

utilizes Semantic Web standards to do so. SSWAP defines a shared, lightweight OWL

model of a service interface, where RDF-XML instances of this model are used as both

the interface definition and as the “container” of the input and output data during ser-

vice invocation. Because OWL-RDF cannot (reliably) be described in XML Schema,

and because SSWAP includes the service interface model as part of its required messa-

ging “scaffold”, SSWAP is also incompatible with traditional Web services toolkits, and

requires project-specific tooling, but exhibits significant interoperability and automat-

ability with other SSWAP services.

Though some of these approaches might still be considered “emergent”, even the

more mature ones are not in widespread use outside of their own communities. More-

over, each approach attempted to inject semantics at a different position within the

normal Web Services paradigm, making many of these Semantic Web service

approaches incompatible with one another.

To justify our creation of (yet) another approach to Semantic Web service provision,

we must discuss both published and subjective observations of Web service functional-

ity, and pinpoint areas that continue to be problematic with respect to either service

discoverability, or service interoperability. Clearly, if we cannot demonstrate the poten-

tial for a significant improvement over the status quo, service providers will have no

motivation to adopt this approach, and the project will fail. Here, then, are the core

observations that compel us to attempt a novel strategy.

First, we, and others [14,30], noted that Web services in bioinformatics (and other

scientific domains) exhibit only a small subset of the full range of complex behaviours

that service-oriented Architectures allow. With few exceptions, bioinformatics Web

services are independent, idempotent, stateless, transformative, and atomic. This stands

in stark contrast to Web service solutions to, for example, the ticket-ordering use-case

that is commonly discussed in this domain. Almost invariably, bioinformatics Web

services consume a specific input data type, and in a stateless and atomic operation,

return related output data type(s) generated by whatever transformation the service

executes on that input. That most services are transformative in this way suggests that

attempting to declare or model the underlying business-process may be unnecessary in

Wilkinson et al. Journal of Biomedical Semantics 2011, 2:8
http://www.jbiomedsem.com/content/2/1/8

Page 16 of 23

the bioinformatics domain - to quote Goble again, “any integration technology should

only be as heavy as it needs to be”. Indeed, this observation was made by both the Feta

and BioMoby projects [11,14], though both Feta and BioMoby acknowledged the need

for some level of simple service type annotation to assist in discovery.

A second important consequence of the observation that bioinformatics services are

transformative has not (to our knowledge) been previously highlighted; that is that the

transformation of input to output implies that there is some relationship between that

input and output, and this important metadata is not being captured or utilized by any

current framework. We believe that these relationships, while not capturing the ser-

vice’s “business process” per se, capture with great accuracy the purpose of the service;

moreover, through observations made on the students of training courses in Web ser-

vice workflow composition, we (subjectively) concluded that these relationships are

likely a more accurate reflection of the way our end-users think about these data trans-

formations, versus annotating the algorithmic function as is done in BioMoby and Feta.

For example, biologists do not execute a BLAST analysis because they wish to run a

sequence similarity matrix over their input data; they execute a BLAST analysis

because they are interested in finding sequences that are homologous to their input

sequence - they are interested in the homology relationship, not the BLAST algorithm.

As such, we believe that capturing these entity-relationships as service annotations is

an important criterion for enhancing discovery of relevant services by our target users.

This observation lead to our second core best-practice: that services add their output

to the input node via a meaningful property describing the relationship between input

and output, and services may therefore be indexed and discovered based on that

property.

Our third observation was twofold. On one hand, we noticed a general sense of dis-

dain, bordering on frustration, within much of the bioinformatics community with

respect to the SOAP protocol in general, and the incompatibilities between various

language and platform-specific implementations of SOAP. With the distinct exception

of the National Cancer Institute’s caBIO framework, bioinformatics resources only

rarely implement SOAP interfaces that utilize the Object-oriented style that SOAP

allows, and even fewer take advantage of the rich features of the SOAP envelope such

as intermediaries and message paths. Other than caBIO, almost all bioinformatics Web

interfaces are straightforward, single-operation request/response. For example, the

SOAP interface of TogoWS [31] provides a KeggGetEnzymesByPathway function that

consumes a KEGG pathway identifier and responds with a list of related Enzymes. For

these kinds of services, the overhead of SOAP is (demonstrably) unnecessary, so we

feel it would be preferable to avoid SOAP entirely. On the other hand, there is an

increasingly positive attitude in our community towards “RESTful” architectures [32].

It is worth taking a moment to dissect this goodwill, however, since it is in our opinion

slightly misplaced. Few, if any, bioinformatics interfaces that claim to be RESTful are

truly following a REST architecture. To be RESTful, all entities would be named

resources whose states are manipulated through a limited number of methods. This is

not a trivial architecture to achieve in practice, and most importantly is not, in any

way, the same as declaring that all parameters for all functions should be part of a

URL. Such interfaces (i.e. the vast majority of “RESTful” interfaces in bioinformatics)

would better be described as CGI GET-based interfaces. For example, the “REST”

Wilkinson et al. Journal of Biomedical Semantics 2011, 2:8
http://www.jbiomedsem.com/content/2/1/8

Page 17 of 23

interface of PhyloWS [33] consumes a specially-formatted query URL including a clade

identifier and other key/value parameters, and returns a phylogenetic subtree. There is

no identifiable resource whose state is being manipulated by that operation, and while

it might be argued that every conceivable query is its own GET-able resource, such an

argument would be a contrived interpretation of REST philosophy. As such, we believe

that the bioinformatics community’s goodwill is directed at interfaces that limit them-

selves to “pure” HTTP Protocol, rather than REST per se. As such, we decided to uti-

lize straightforward HTTP GET and POST for SADI, relying heavily on standard

HTTP response codes for special cases, though we do not claim SADI to be “RESTful”.

Fourth, after observing the barriers to up-take of both BioMoby and SSWAP, it

became clear that project- or protocol-specific message scaffolding should be avoided.

As such, the SADI recommendation is to pass data only, with no scaffolding

whatsoever.

Finally, we made a subjective evaluation of the cause of failure in (most) precedent

interoperability architectures, and concluded that, in our opinion, XML Schema is the

problem and should be abandoned. To briefly justify this conclusion, we observe the

following: XML Schema has been described as “far and away the most complex data

model ever proposed” and “seriously flawed” [34]. Bring into this complexity the num-

ber of different aspects of our target domain that need to be represented (Strömbäck

et al. found 85 different schemas within the sub-domain of systems biology alone[35]),

and there is immediately a requirement for either schema standardization, or schema

mapping to facilitate interoperability. Schema standardization is “prohibitively time-

consuming” [36], and though there have been numerous attempts to automate schema

mapping - that is, the ability for two schema to exchange data, as would be required to

automate the interaction between arbitrary Web services - none have proven reliable in

an open-Web situation [37]. Automated Schema mapping is likely an AI-complete pro-

blem since it requires the mapping of arbitrarily chosen natural-language labels (XML

tags) to one another based on the semantics of either the tag or its child-content. As

such, Schema mapping approaches are unlikely to yield an acceptable result in the

foreseeable future. This barrier has had significant and destructive consequences

beyond the obvious thwarting of interoperability. The inability to automatically map

between Schema has resulted, counter-intuitively, in an increase in the complexity of

Web service interfaces. Since it is extremely difficult to pipeline traditional Web ser-

vices together reliably, there is little point in making their operations highly granular;

it is more “efficient” to simply execute the entire service operation as a single function-

call. This, in turn, increases the complexity of the input and output messages[38] mak-

ing schema mapping even more difficult. Our final observation is that, there is consid-

erable early-adoption of Semantic Web technologies in the life sciences, with several

significant organizations already publishing their data in RDF format (e.g. UniProt

[39]). If we continue using XML Schema-based services, we may soon find ourselves

mapping semantically rich data back into semantically impoverished XML in order to

analyse it (this is, in fact, the purpose of the SAWSDL specification!). This would

defeat the purpose of utilizing Semantic Web technologies in the first place. Clearly,

more is gained by natively taking advantage of the enhanced interoperability inherent

in RDF representations of data, than is gained through trying to support legacy

Schema-based interfaces. For all of these reasons, we utilize RDF/OWL as both our

Wilkinson et al. Journal of Biomedical Semantics 2011, 2:8
http://www.jbiomedsem.com/content/2/1/8

Page 18 of 23

interface description and messaging layer, and require it for all SADI-compliant inter-

faces. Moreover, we suggest that our community’s continued adherence to traditional

Schema-based Web service specifications will, at best, be destructive to their attempts

to be interoperable. To quote Lincoln Stein, “to achieve seamless interoperability

among online databases, data providers must change their ways” [23].

SADI and the Linked Data movement

The behaviour of SADI is consistent with, and in fact furthers the goals of the Linked

Data[40] community. Consider, for example, what happens in a SADI service workflow,

such as those automatically generated by the SHARE client. Input data is passed to a

service, and comes back with output data attached. That output data may be utilized

as input to a subsequent service, and so on. As the data flows through that workflow,

a rich Linked Data graph is being constructed where every input is semantically linked

to every associated output. This graph of dynamically generated data can be integrated

with traditional static Linked Data resources, and queried or explored using standard

Linked Data toolkits.

SADI and the Semantic Web

SADI merges the domains of Web services and the Semantic Web in a novel way.

Every service generates one or more “edges” on an RDF graph, where the edge that

will be generated is defined as a property restriction in an OWL ontology. Therefore,

in SADI, OWL property restrictions “represent” potential services, and therefore SADI

can be used to generate instances of OWL classes through service discovery based on

these property restrictions. OWL, effectively, becomes an abstract workflow language.

Moreover, any OWL document - whether created for this purpose or not - can be

used by SADI-enabled software to retrieve instance data, so long as SADI services exist

that map to the properties used in the ontology. Thus SADI is able to take advantage

of any Semantic Web ontology.

Finally, while the bioinformatics community continues to utilize large, complex,

semantically opaque flat-files, we believe that SADI (and the Semantic Web in general)

starts to provide greater impetus to break-out the semantics of these files and increase

the granularity of both data and services in the bioinformatics space. While SADI does

not dictate the nature of the input and output data, it would be somewhat absurd for a

SADI BLAST service to output a BLAST flat-file linked to its input sequence by a

(nonsensical) “hasBLASTReport” property. Instead, the Linked-Data Web that SADI

services build make it much more useful to output a parsed BLAST report, where each

“hit” is linked to the original input sequence through some form of “sharesSimilari-

tyTo” relationship. Thus, by challenging service providers to make their services disco-

verable through a biological relationship, rather than a algorithmic one, we believe

SADI will provide the incentive to move beyond semantically opaque text reports and

start explicitly encoding the semantics contained in those documents, resulting in a

much richer data ecosystem.

SADI and other emergent Semantic Web service standards

As noted above, several of the existing Semantic Web service approaches are relatively

new, and may still experience widespread adoption. Among these, the SAWSDL

Wilkinson et al. Journal of Biomedical Semantics 2011, 2:8
http://www.jbiomedsem.com/content/2/1/8

Page 19 of 23

specification seems to be gaining considerable traction, though for reasons discussed

earlier, we have some concerns about the utility of this standard in an RDF-based

world, and about the lack of rigour in the standard itself. Description of SADI services

using the SAWSDL standard is trivial, but not particularly useful. SAWSDL enhances

traditional WSDL documents by indicating a semantic type for the service’s input and

output XML elements, and indicates a “lifting” or “lowering” schema to guide the

transformation of RDF data into XML and back again. In SADI, the semantic types are

simply the OWL Classes that the service provider declare as their input and output.

Moreover, because the service natively consumes RDF there is no need for a lifting or

lowering schema (or at worst, the lifting and lowering is an identity transformation).

Nevertheless, since the SAWSDL specification gives no guidance as to the format of

these lifting and lowering schemas, or how to interpret them, and since OWL Indivi-

duals cannot reliably be described using XML Schema, there will need to be an addi-

tional level of, as yet non-standardized community agreement before SAWSDL services

(SADI or otherwise) could expect to be interoperable. Moreover, the myGrid/Moby

service ontology contains far more detailed annotation than a SAWSDL document,

and these detailed annotations are useful for both service discovery as well as service

maintenance and testing. As such, while SADI is superficially compatible with the

SAWSDL standard, we find the standard itself lacking for our purposes.

Limitations of SADI

SADI suffers from the same limitations that pose barriers to other Web service and

Semantic Web projects [41]. As an interoperability system, the utility of SADI is

entirely dependent on the number of providers who adopt its conventions. We recog-

nize that there is extensive tooling support for traditional Web services and there is a

perceived simplicity of XML compared to RDF/OWL. Moreover, there are thousands

of legacy bioinformatics Web services that are not interoperable (neither with each

other, nor with SADI services), and thus there would appear to be little benefit to

becoming an early-adopter of SADI. To counter this, we have created software libraries

that partially automate the process of service construction in both Perl and Java. Simi-

lar to the “Dashboard” application for BioMoby[42], a plug-in has been created that

integrates a SADI service development environment into the Protégé [43] ontology

editing application, where the user designs the ontologies describing their data, the

plug-in creates the service scaffold, and the provider adds their business logic, setting

the values of “stubs” provided by the service scaffold. This automation is possible

because the behaviors of SADI services are predictable, and thus the code for SADI

services is similarly consistent and predictable. In addition, we believe that the

SAWSDL specification, together with XML transformations, will allow us to build

semi-automated “wrappers” around traditional Web services that will make them

SADI-compliant (at the expense of a loss in semantic richness versus creating a native

SADI service). In this way, we hope to bootstrap the SADI project by first simplifying

the task of service provision, and then by creating a core set of interoperable services

that these Providers can link into. At the time of writing, there are more than 400

bioinformatics and chemoinformatics services available in the SADI registry[44], and

several hundred more will be published by our team of collaborators by the end of this

year.

Wilkinson et al. Journal of Biomedical Semantics 2011, 2:8
http://www.jbiomedsem.com/content/2/1/8

Page 20 of 23

The reliance of SADI on the Semantic Web also exposes limitations. In particular,

success of the SADI architecture (like the success of the Semantic Web itself) will lar-

gely depend on widespread re-use of publicly-available and well-defined ontological

predicates, and the definition of service inputs in terms of OWL restrictions on these

properties. Unfortunately, the majority of focus in the Semantic Web efforts of the

health-care and life science community thus far has been on defining classes, rather

than predicates; asserting class-hierarchies without formally defining what properties a

member of that class is expected to have, or what distinguishes members of one class

from another. We hope, however, that the power we have demonstrated in these pro-

totype implementations provides a sufficiently compelling argument to initiate the evo-

lution of a slightly higher level of Semantic Web complexity in the health-care and

life-sciences space.

Conclusions
SADI proposes a set of conventions and best-practices, within the scope of accepted

standards for Web services and the Semantic Web, that enable the creation of bioin-

formatics software with novel interoperable and integrative behaviors. These were

derived by examining the “nature” of Web services in the bioinformatics domain, and

observing and subjectively evaluating how these services are found and used by biolo-

gists and informaticians. The resulting approach, we believe, accurately models both

the services and the end-user requirements for dynamic and automated discovery of

relevant services, automated pipelining of these services, and integration of the result-

ing data.

Availability and Requirements
SADI is an open-source project and its supporting codebase is hosted at Google Code

(http://sadi.googlecode.com). The SHARE demonstration is available for public access

(http://biordf.net/cardioSHARE/). The SADI Plug-in to Taverna is available at the

SADI homepage (http://sadiframework.org). The SADI Plug-in to the Sentient Knowl-

edge Explorer is not publicly available at this time, but will be released late in 2011.

List of Abbreviations Used
HTTP: HyperText Transport Protocol; OWL & OWL-DL: Web Ontology Language - Description Logic; RDF: Resource
Description Framework; SADI: Semantic Automated Discovery and Integration; SAWSDL: Semantic Annotations of Web
service Description Language; SHARE: Semantic Health And Research Environment; WSDL: Web service Description
Language; XML: eXtensible Markup Language

Acknowledgements and Funding
The SADI and SHARE projects were founded through a special initiatives award from the Heart and Stroke Foundation
of British Columbia and Yukon. Additional funding was obtained from Microsoft Research and an operating grant
from the Canadian Institutes for Health Research (CIHR). Core laboratory funding is derived through an award from
the Natural Sciences and Engineering Research Council of Canada. Funding for the BioMoby project, from which SADI
was derived, is through an award from Genome Alberta, in part through Genome Canada. We would like to thank Dr.
Stephen Withers for donation of laboratory space in the Center for High Throughput Biology (CHiBi) at the University
of British Columbia.

Authors’ contributions
MW conceived of SADI, directed its development and the development of other plug-ins and libraries, and wrote the
manuscript. LM implemented the SADI core codebase and supplementary libraries, created the SHARE prototype
client, created the Knowledge Explorer plug-in, in collaboration with David Withers created the Taverna plug-in, wrote
numerous SADI services, and edited the manuscript. BV optimised the automated workflow pipelining behind the
SHARE client, contributed to the core code and libraries, created numerous SADI services, and contributed large
portions of the manuscript. All authors read and approved the final manuscript.

Wilkinson et al. Journal of Biomedical Semantics 2011, 2:8
http://www.jbiomedsem.com/content/2/1/8

Page 21 of 23

http://sadi.googlecode.com
http://biordf.net/cardioSHARE/
http://sadiframework.org

Competing interests
The authors declare that they have no competing interests.

Received: 28 January 2011 Accepted: 24 October 2011 Published: 24 October 2011

References
1. Web services Definition Language. [http://www.w3.org/TR/wsdl].
2. Oinn T, Addis M, Ferris J, Marvin D, Senger M, Greenwood M, Carver T, Glover K, Pocock MR, Wipat A, Li P: Taverna: a

tool for the composition and enactment of bioinformatics workflows. Bioinformatics 2004, 20(17):3045-3054.
3. W3C Semantic Web Activity. [http://www.w3.org/2001/sw/].
4. Resource Description Framework (RDF). [http://www.w3.org/RDF/].
5. OWL Web Ontology Language Guide. [http://www.w3.org/TR/owl-guide/].
6. Goble C, Stevens R: State of the nation in data integration for bioinformatics. Journal of Biomedical Informatics 2008,

41(5):687-693.
7. Withers D, Kawas E, McCarthy L, Vandervalk B, Wilkinson MD: Semantically-Guided Workflow Construction in Taverna:

The SADI and BioMoby Plug-Ins. LNCS Leveraging Applications of Formal Methods, Verification, and Validation 6415
2010, 301-12.

8. Case Study: Applied Semantic Knowledgebase for Detection of Patients at Risk of Organ Failure through Immune
Rejection. [http://www.w3.org/2001/sw/sweo/public/UseCases/IOInformatics/].

9. Wilkinson MD, Vandervalk B, McCarthy L: SADI Semantic Web Services -, cause you can’t always GET what you want!
Services Computing Conference 2009. APSCC 2009. IEEE Asia-Pacific 13-18, Dec. 7-11.

10. UDDI Version 2.04 API Specification. [http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.pdf].
11. The BioMoby Consortium: Interoperability with Moby 1.0–It’s better than sharing your toothbrush! Briefings in

Bioinformatics 2008, 9(3):220-231.
12. OWL-S: Semantic Markup for Web services. [http://www.w3.org/Submission/OWL-S/].
13. Semantic Annotations for WSDL. [http://www.w3.org/2002/ws/sawsdl/].
14. Lord P, Alper P, Wroe C, Goble C: Feta: A Light-Weight Architecture for User Oriented Semantic service Discovery.

ESWC 2005, LNCS 3532:17-31.
15. The myGrid Moby service Ontology. [http://www.mygrid.org.uk/mygrid-moby-service].
16. Bhagat J, Tanoh F, Nzuobontane E, Laurent T, Orlowski J, Roos M, Wolstencroft K, Aleksejevs S, Stevens R, Pettifer S,

Lopez R, Goble CA: BioCatalogue: a universal catalogue of web services for the life sciences. Nucleic Acids Research
2010, 38(suppl 2):W689-W694.

17. RDF Schema. [http://www.w3.org/TR/rdf-schema/#isDefinedBy].
18. HTTP 1.1/Status Code Definitions. [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html].
19. The Web services Resource Framework specification. [http://www.oasis-open.org/committees/wsrf/].
20. Supplementary Information for this manuscript. [http://sadiframework.org/documentation/].
21. Vandervalk B, McCarthy L, Wilkinson MD: SHARE: A Semantic Web Query Engine for Bioinformatics. The Semantic

Web. Lecture Notes in Computer Science proceedings of the ASWC 2009, v5926:367-369.
22. Sirin E, Parsia B, Grau BC, Kalyanpur A, Katz Y: Pellet: A practical OWL-DL reasoner. Web Semantics: Science, services and

Agents on the World Wide Web 5 2007, 51-53.
23. Stein L: Creating a bioinformatics nation. Nature 2002, 417:119-120, May 9.
24. Stevens R, Baker P, Bechhofer S, Ng G, Jacoby A, Paton NW, Goble CA, Brass A: TAMBIS:transparent access to multiple

bioinformatics information sources. Bioinformatics 2000, 16:184-185.
25. Stevens RD, Robinson AJ, Goble CA: myGrid: personalised bioinformatics on the information grid. Bioinformatics

2003, 19(Suppl 1):302-304.
26. Roman D, Keller U, Lausen H, de Bruijn J, Lara R, Stollberg M, Polleres A, Feier C, Bussler C, Fensel D: Web service

Modeling Ontology. Applied Ontology 2005, 1(1):77.
27. Ghallab M, et al: PDDL-The Planning Domain Definition Language V.2. Technical Report, report CVC TR-98-003/DCS

TR-1165, Yale Center for Computational Vision and Control; 1998.
28. Covitz PA, Hartel F, Schaefer C, De Coronado S, Fragoso G, Sahni H, Gustafson S, Buetow KH: caCORE: a common

infrastructure for cancer informatics. Bioinformatics 2003, 19:2404-12.
29. Gessler DDG, Schiltz GS, May GD, Avraham S, Town CD, Grant D, Nelson RT: SSWAP: A Simple Semantic Web

Architecture and Protocol for semantic web services. BMC Bioinformatics 2009, 10:309.
30. Potter S, Aitken S: A Semantic service Environment: A Case Study in Bioinformatics. ESWC 2005, LNCS 3532:694-709.
31. Katayama T, Nakao M, Takagi T: TogoWS: integrated SOAP and REST APIs for interoperable bioinformatics Web

services. Nucleic Acids Research 2010, 38(suppl_2):W706-W711.
32. Fielding RT: Architectural Styles and the Design of Network-based Software Architectures. 2000 [http://www.ics.uci.

edu/~fielding/pubs/dissertation/top.htm], Thesis dissertation.
33. PhyloWS - evoinfo. [http://evoinfo.nescent.org/PhyloWS].
34. Stonebraker M, Hellerstein J: What Goes Around Comes Around. Readings in Database Systems The MIT Press;, 4 2005,

2-41.
35. Strömbäck L, Hall D, Lambrix P: A review of standards for data exchange within systems biology. Proteomics 2007,

7:857-867.
36. Zhang J, Webster A, Lawrence M, Nepal M, Pottinger R, Staub-French S, Tory M: Improving the usability of standard

schemas. Information Systems 2011, 36(2):209-221.
37. Ozan Kılıç Y, Aydin MN: Automatic XML Schema Matching. European and Mediterranean Conference on Information

Systems 2009 (EMCIS2009) 2009, July 13-14.
38. Petrie C: Practical Web Services. Keynote; IEEE Semantic Web Services in Practice Workshop; 2009 [http://logic.stanford.

edu/talks/practicalws/], (available at).
39. Jain R, Bairoch A, Duvaud S, Phan I, Redaschi N, Suzek BE, Martin MJ, McGarvey P, Gasteiger E: Infrastructure for the

life sciences: design and implementation of the UniProt website. BMC Bioinformatics 2009, 10:136.

Wilkinson et al. Journal of Biomedical Semantics 2011, 2:8
http://www.jbiomedsem.com/content/2/1/8

Page 22 of 23

http://www.w3.org/TR/wsdl
http://www.ncbi.nlm.nih.gov/pubmed/15201187?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15201187?dopt=Abstract
http://www.w3.org/2001/sw/
http://www.w3.org/RDF/
http://www.w3.org/TR/owl-guide/
http://www.ncbi.nlm.nih.gov/pubmed/18358788?dopt=Abstract
http://www.w3.org/2001/sw/sweo/public/UseCases/IOInformatics/
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.pdf
http://www.ncbi.nlm.nih.gov/pubmed/18238804?dopt=Abstract
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/2002/ws/sawsdl/
http://www.mygrid.org.uk/mygrid-moby-service
http://www.ncbi.nlm.nih.gov/pubmed/20484378?dopt=Abstract
http://www.w3.org/TR/rdf-schema/#isDefinedBy
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.oasis-open.org/committees/wsrf/
http://sadiframework.org/documentation/
http://www.ncbi.nlm.nih.gov/pubmed/12000935?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10842744?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10842744?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14668224?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14668224?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19775460?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19775460?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20472643?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20472643?dopt=Abstract
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://evoinfo.nescent.org/PhyloWS
http://www.ncbi.nlm.nih.gov/pubmed/17370264?dopt=Abstract
http://logic.stanford.edu/talks/practicalws/
http://logic.stanford.edu/talks/practicalws/
http://www.ncbi.nlm.nih.gov/pubmed/19426475?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19426475?dopt=Abstract

40. Berners-Lee T: Linked Data. International Journal on Semantic Web and Information Systems 2006, 4(2):1.
41. Martin D, Domingue J, Sheth A, Battle S, Sycara K, Fensel D: Semantic Web services, Part 2. IEEE Intelligent Systems

2007, 22(6):8-15.
42. The BioMoby Dashboard. [http://biomoby.open-bio.org/CVS_CONTENT/moby-live/Java/docs/Dashboard.html].
43. Knublauch H, Fergerson R, Noy NF, Musen MA: The Protégé OWL Plugin: An Open Development Environment for

Semantic Web Applications. Third International Semantic Web Conference, Hiroshima, Japan; 2004.
44. SADI Registry - registered services. [http://sadiframework.org/registry/services/].

doi:10.1186/2041-1480-2-8
Cite this article as: Wilkinson et al.: The Semantic Automated Discovery and Integration (SADI) Web service
Design-Pattern, API and Reference Implementation. Journal of Biomedical Semantics 2011 2:8.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Wilkinson et al. Journal of Biomedical Semantics 2011, 2:8
http://www.jbiomedsem.com/content/2/1/8

Page 23 of 23

http://biomoby.open-bio.org/CVS_CONTENT/moby-live/Java/docs/Dashboard.html
http://sadiframework.org/registry/services/

	Abstract
	Background
	Description
	Conclusions

	Background
	Construction and Content
	Introduction - Hello World
	SADI Approach to Semantic Web service modeling
	The Base SADI Specification
	Explanation/Justification for Base Recommendations
	SADI Web services are stateless and atomic
	Service interface is retrieved by HTTP GET
	SADI services consume and produce RDF instances of OWL-DL Classes
	Services are invoked by HTTP POST
	Input data is “decorated” until it becomes an instance of the Output Class

	Concrete Examples of SADI Service Description and Invocation Messages

	Complex services
	Multiplexing service calls
	Asynchronous services
	Services with control-parameters

	Utility
	Example 1 - the SADI Plug-in to Taverna
	Example #2: The SHARE SPARQL query client

	Discussion
	Justification for creating a new Semantic Web service standard
	SADI and the Linked Data movement
	SADI and the Semantic Web
	SADI and other emergent Semantic Web service standards
	Limitations of SADI

	Conclusions
	Availability and Requirements
	Acknowledgements and Funding
	Authors' contributions
	Competing interests
	References

