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Abstract

Background: Rapid identification of subject experts for medical topics helps in
improving the implementation of discoveries by speeding the time to market drugs
and aiding in clinical trial recruitment, etc. Identifying such people who influence
opinion through social network analysis is gaining prominence. In this work, we
explore how to combine named entity recognition from unstructured news articles
with social network analysis to discover opinion leaders for a given medical topic.

Methods: We employed a Conditional Random Field algorithm to extract three
categories of entities from health-related new articles: Person, Organization and
Location. We used the latter two to disambiguate polysemy and synonymy for the
person names, used simple rules to identify the subject experts, and then applied
social network analysis techniques to discover the opinion leaders among them
based on their media presence. A network was created by linking each pair of
subject experts who are mentioned together in an article. The social network analysis
metrics (including centrality metrics such as Betweenness, Closeness, Degree and
Eigenvector) are used for ranking the subject experts based on their power in
information flow.

Results: We extracted 734,204 person mentions from 147,528 news articles related to
obesity from January 1, 2007 through July 22, 2010. Of these, 147,879 mentions have
been marked as subject experts. The F-score of extracting person names is 88.5%.
More than 80% of the subject experts who rank among top 20 in at least one of the
metrics could be considered as opinion leaders in obesity.

Conclusion: The analysis of the network of subject experts with media presence
revealed that an opinion leader might have fewer mentions in the news articles, but
a high network centrality measure and vice-versa. Betweenness, Closeness and
Degree centrality measures were shown to supplement frequency counts in the task
of finding subject experts. Further, opinion leaders missed in scientific publication
network analysis could be retrieved from news articles.

Background
We are witnessing an exponential increase in biomedical research citations in PubMed.

However, Balas and Boren [1] estimated that translating biomedical discoveries into

practical treatments takes around 17 years, and 86% of research knowledge is lost dur-

ing this transition through peer-review process, bibliographic indexing and meta-analy-

sis. At the other end, pharmaceutical companies spend on an average 24% of their

total marketing budgets on opinion leader activities [2]. We can reduce such huge
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delays and costs in bringing discoveries to practice by connecting those who produce

the knowledge with those who apply it. An important step in this direction is the

large-scale discovery of subject experts and key opinion leaders involved in specific

areas of research, based on their mentions in literature and news articles.

Public health programs manually identify opinion leaders to promote an intervention

or a change in behavior and norms [3]. However, it is becoming increasingly common

in the domain of medical informatics to study the interaction patterns of scientists in

relation to a research area or a department using Social Network Analysis (SNA) [4,5].

Although there are systems that assign topics of expertise to the identified persons

[6,7], there are no systems that identify the opinion leaders themselves. In this paper,

we explore how social network analysis could be applied for studying the relative

media presence of persons based on their mentions in news articles. There are several

text mining systems that extract named entities such as Person, Organization and

Location from English news [8-10]; Protein, Gene and other biomedical entities cate-

gories from biomedical literature [11,12], Medical problem, Treatment and Test cate-

gories from clinical notes [13,14]. Similar methods could be used to extract subject

expert names from medical news articles. The scope of this work is two folds: 1) to

use existing text mining methods for extracting the names of subject experts, and 2)

ranking the subject experts based on their media presence using their mention fre-

quency and network analysis metrics to find opinion leaders.

The problem of extracting the relevant concepts automatically from text is known as

“Named Entity Recognition and Classification”, or “Named Entity Recognition (NER)”.

This has been studied for almost two decades [15] and there has been significant pro-

gress in the field. Earlier attempts were predominantly dictionary or rule-based sys-

tems; however, many modern systems use supervised machine learning where a system

is trained to recognize named entity mentions in text based on specific (and typically

numerous) features associated with the mentions that the system learns from anno-

tated corpora. Thus, machine learning based methods are dependent on the specific

technique or implementation details and the features used for it. In the former cate-

gory, generative models (e.g. Naïve Bayes Classifier and Hidden Markov Models) and

instance-based classifiers (e.g. Logistic Regression and Naïve Bayes Classifier) proved to

be less accurate for extracting concepts or named entities from text than sequence-

based discriminative models like Conditional Random Fields [16,17]. Most of the high-

performing tools use non-semantic features such as parts of speech, lemmata, regular

expressions, prefixes and n-grams. The high computational cost associated with using

deep syntactic and semantic features had traditionally restricted the NER systems to

the orthographic, morphological and shallow syntactic features.

Normalization, on the other hand, is the step of disambiguating polysemy and syno-

nymy. Polysemy is the phenomenon of the same name having different meanings in

different contexts. For example, Dr. John Doe working in ASU on obesity might not be

the same person as Dr. John Doe working at EBI even if he is also working on obesity.

The first step in normalization is to assign different identifiers to polysemous entities.

Synonymy is the phenomenon of two different names having the same meaning in

respective contexts. For example, a scientist who worked previously in UP on clinical

text mining might be the same person if she changes her last name after marriage and
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moves to UC to continue working on clinical text mining. Synonymous names are

assigned a common identifier, after NER.

Direct ad-hoc literature searches for finding subject experts are time consuming, and

rely on a researcher’s library science skills and domain expertise, as well as their ability

to distill massive quantities of information. Surveys are often helpful in overcoming the

limitations of literature searches, as a replacement or a supplement. However, collec-

tive wisdom can be wrong [18] and non-responders might lead to bias. Alternatively,

an expert familiar with the community could identify its most influential members

[19]. This is known as the informant method, where individuals within a particular

community name someone they believe to be influential, but not necessarily someone

who influences the informant. Arguably, the expert’s bias leans towards the more visi-

ble and higher profile organizations. The self-identification method assists in assessing

entity’s impressions of themselves as key players. Most people view their own work as

important, and as a result, may estimate themselves to be more important and influen-

tial than they actually are. The informant approach is reasonable for small, relatively

homogeneous communities where informants are likely to have knowledge of the

entire community, but not so when the community has thousands of members [20].

With SNA, it is possible to analyze a much larger social network containing thousands

of nodes. For example, a cross-sectional study of the spread of obesity used 12,067

nodes and 38,611 links [21]. With such a large, objectively gathered sample, we might

reduce the bias significantly.

For this study, we chose obesity as the topic and obtained news articles related to

this subject from the Internet. The links were provided to us by Intuli (http://intuli.

com) using their proprietary technology that uses archived news articles and keywords

related to “obesity” (see Additional file 1 for the links). After extracting Person, Orga-

nization and Location concepts from the media articles, we applied an approach to

identify subject experts among persons by filtering out persons without relevant educa-

tion or affiliation and without scientific publications. We then performed social net-

work analysis using the identified subject expert mentions in the sample news articles

related to obesity.

Methods
Figure 1 describes our process to create a social network for subject experts. It consti-

tuted of extracting concepts, filtering the names of subject experts, manually normaliz-

ing subject expert mentions and using SNA to identify opinion leaders. We conducted

our research in relation to the disease area of obesity. However, this process is applic-

able to any medical topic.

Concept extraction

Figure 2 describes our machine learning system to extract the names of person, organi-

zation and location. We used CoNLL-2003 NER shared task corpus for English docu-

ments labeled with Person, Organization and Location along with other named entity

classes [22] for training, and the retrieved news articles (see Additional file 1) for test-

ing i.e. the execution of the trained model. “Boilerplate program” [23] converted the

html format of the news articles to text format.

Jonnalagadda et al. Journal of Biomedical Semantics 2012, 3:2
http://www.jbiomedsem.com/content/3/1/2

Page 3 of 13

http://intuli.com
http://intuli.com


We used the first order CRF algorithm as implemented by MALLET [24]. Concepts

are identified by tagging tokens of each sentence with labels to represent whether the

token belongs to each concept class (inside) or not (outside). More sophisticated label-

ing also identifies whether a token begins or ends a concept class. Previous work (e.g.

[25]) has shown that the accuracy is similar for all label types such as - IO, IOB and

IOBEW, where I stands for labeling a token to be Inside, O for Outside, B for Begin-

ning, E for End and W for Within. A CRF-based system calculates the probabilities of

different labeling sequence assignments for sentences based on the individual words

(tokens) using their natural language (i.e. text) features in relations to the words in the

training sentences. It chooses the sequence of labels for all the concepts with the

Figure 1 Overall architecture. We first retrieved the articles related to obesity from the Internet using
web-crawlers. The Person, Organization and Location named entities were extracted from the collected
articles. Among the person names, only medical experts were retained. The semi-automatic normalization
step addressed polysemy as well as synonymy. In the social network analysis step, we analyzed the
network presence of the subject experts.
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highest probability. The time complexity of the CRF algorithm is O(L2*N*M*F*I),

where L is the number of labels, N is the number sentences, M is the average length

of the sentences, F is the average number of the features and I is the number of itera-

tions. Hence, we chose the IO notation that allows minimum labels for labeling to

minimize time complexity. Thus, Iperson, Iorg, Iloc and O are the labels used because

Person, Organization and Location are the annotated concepts.

Table 1 describes the features used for the CRF algorithm. The feature extraction

component extracts features of natural language at the level of words (lexical), syntax,

context (pragmatic) and meaning (semantic). The features (other than distributional

semantic features, see below) are adapted from BANNER [25], an open source NER

system. We compiled the dictionaries for person names from the US census and

names of authors in Medline. The dictionaries for organizations and locations are

reused from the “NEMO: Normalization Engine for Matching Organizations” [26] pro-

ject. It was shown previously that the meaning of words could be represented in high-

dimensional vector space. Semantic vector representation [27] of terms are created to

Figure 2 Concept extraction process. The CRF system is trained using the CoNLL-2003 NER shared task
corpus and run on the 147,528 obesity-related news articles. The model created during the training phase
is used to tag the input sentences with the concepts “person”, “organization” and “location”.

Table 1 List of features used in the CRF method.

Feature
name

Type Description

Dictionary Semantic Person names; Organization names; Location names

Distributional Semantic Distributional thesaurus

Section Pragmatic Name of the section in which the sentence appears

Part of
speech

Syntactic Part of speech of the token in the sentence

Others Lexical Lower case token, Lemma, Prefixes, Suffixes, n-grams, Matching patterns such as
beginning with a capital, etc.

Dictionary features: all the three dictionaries contain words that have a single token and are obtained by removing stop
words. Each dictionary corresponds to one feature depending on whether a token is present in the dictionary.
Distributional features: using the Semantic Vectors package [27] trained on the text retrieved from the links obtained for
the case study, each word is represented in a 2000-dimensional vector space. The vector representation is used to find the
20 most similar words from the text to each word. For each token, we thus have 20 distributional semantic features that
represent the entries in the thesaurus. Section features: section names are detected automatically using simple rules (e.g. a
sentence ending with a semi-colon). Other features: there are about a hundred more features considering different part of
speech tags according to Penn Treebank format, the different matching patterns used, prefixes, n-grams etc
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automatically obtain a thesaurus of terms that are paradigmatically similar (occur in

similar contexts; see [13,28] for more information). The Dragon toolkit [29] tagged the

part of speech for each word in a sentence. The other features are generated using reg-

ular expressions and simple rules.

Filtering out likely irrelevant person names

The CRF classification algorithm, because of the inability to perform nested labeling,

does not label names of people within an organization name. However, when the fea-

tures are not strongly indicative that a phrase belongs to an organization, it might

label a person within the phrase. For example, the second Mayo in “Mayo Clinic is a

leading hospital for Obesity. So, I visited Mayo to know more about Obesity“, could be

tagged as a Person. Hence, the system removes person names that are part of a major

organization name after the annotation by the CRF classifier.

Since research work is an important identifier of expertise, the persons who have no

published work are not considered as subject experts since they are not likely to be

authorities on the subject. Such names are eliminated by further constraining that the

person names should be within 100 characters (in any direction) of certain keywords

indicating that they are likely to be scientists or closely associated with biomedical

research. The complete list of the keywords that include acronyms such as Dr, MD

and PhD is presented in Table 2. To further aid in this, we counted the number of

their publications indexed in PubMed (using their first and last name) and persons

having fewer than 10 publications are removed.

Normalization

The names of extracted subject experts were checked manually for polysemy and syno-

nymy using the assistance of a heuristic rule-based system that takes into account the

lexical distance between two person names, their associated organization and their

location. The matching engine was developed at Lnx Research to support resolving

more quickly the issues caused by polysemy and synonymy. It exploits known likeli-

hoods of common co-authors and common organizations or locations as well as lexical

distance between named entities. While this can be done automatically with high pre-

cision for most person names, the rest needs to be matched manually. We estimate

that the accuracy of this proprietary system is greater than 95%. As a result of this

step, a list of unique names of (potential) subject experts is generated.

Table 2 Keywords used to filter subject expert mentions out of person mentions in news
articles

Dr MD PhD M.D

PhD Prof Dr. M.D.

Ph.D. Prof. Program Director Professor

Journal Colleague Colleagues Researcher

Faculty Doctor Doctors Publish

Published University Hospital Hospitals

Research Lab Laboratory School

Engineering Sciences Institute Institutes

Clinic College
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Social network analysis

We generated links between subject experts (persons whose names are extracted by the

previous steps) if they are mentioned in the same news article. The resultant co-mention

network is analyzed using traditional social network analysis techniques: Degree centrality,

Betweenness centrality, Closeness centrality and Eigenvector centrality. In social network

terms, these centrality measures are associated to prestige, power, prominence, and impor-

tance, respectively - sometimes called the four P’s [30]. Degree centrality, the number of

nodes immediately connected to a node, suggests the expert node has more prestige than

comparable nodes. This is particularly evident in friendship networks where linkages

represent friendship between people. For example, a famous person in Facebook may have

hundreds of thousands of friends - an amount considerably greater than the typical Face-

book account holder. Betweenness centrality relates to the node’s importance in connect-

ing and transmitting information across the entire network. Closeness reflects a node’s

position relative to the geodesic center of a network. Nodes close to the center are promi-

nent. As an example, consider the typical club or professional organization. The key mem-

bers (President, Vice President, Membership Chairperson, Activities Chairperson, etc.) are

all central and prominent to the group’s functioning. The fourth measure, Eigenvector

centrality, is most analogous to importance. In this measure, consideration is given to the

connections of a node’s connections, or in the Facebook example, your friends’ friends. A

person with connections to people with few friends is different from a person with the

same number of connections to friends with many friends themselves. The first three

aforementioned centrality measures are more completely discussed by Freemen [31] and

the fourth measure, Eigenvector by Bonacich [32].

Formally, for a graph (V, E) with n vertices [33,34],

- the Degree centrality CD(v) for vertex v is:

CD(v) =
deg(v)
n − 1

where deg(v) is the number of edges connected to v.

- the Betweenness centrality CB(v) for vertex v is:

CB(v) =
∑

s,v,t∈V and s�=v �=t

σst(v)
σst

where sst is the number of shortest paths from s to t, and sst(v) is the number of

shortest paths from s to t that pass through a vertex v;

- the Closeness centrality CC(v) for a vertex v is:

CC(v) =
1∑

t∈V−v dG (v, t)

where dG(v, t) is the shortest distance between v and t;

- the Eigenvector centrality CE(v) for a vertex v is calculated recursively using the

Eigenvector centrality values of the adjacent vertices:

CE(v) =
1
λ

∑

μ∈M(v)

CE(μ)
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where M(v) is the set of nodes that are connected to node v and l is the largest

eigenvalue of the adjacency matrix representing the corresponding graph.

Results
Concept extraction and normalization

We extracted 734,204 person mentions from 147,528 news articles related to obesity

from January 1, 2007 through July 22, 2010. Of these, 147,879 person mentions have

been marked as subject experts after the filtering step (using advanced degree (MD or

PhD or equivalent) and by presence in PubMed). During the normalization process, we

identified the mentions of the subject experts that refer to the same individual. The

147,879 subject expert mentions were mapped to 16,416 unique individuals. In addi-

tion, we extracted 834,423 organization mentions and 564,262 location mentions,

which were not normalized.

For the purpose of evaluating the accuracy of our concept extraction system, we ran-

domly chose 100 news articles and annotated the persons mentioned in the articles. As

a baseline, we considered a dictionary-based system that identifies person names using

a list of first and last names gathered from the US census data. Table 3 shows the per-

formance of our machine-learning system compared to the baseline before filtering.

The accuracy of the system is measured using the percentage of person names in the

gold standard that were extracted (recall) and also the percentage of extracted entities

that were actually person names (precision). The harmonic mean of precision and

recall (F-measure) was also used to tradeoff between precision and recall. Although the

recall of the baseline system is comparable for both exact and partial match of the

names with the gold standard names, the precision of the machine learning system is

significantly better. This is because the machine learning system is trained to learn the

context from examples. The overall accuracy of the system (including filtering) for

exact match is 88.5%. The precision of the system was further improved after removing

the person names that are part of major organization names (data not shown).

Among the top 100 person names in terms of the number of mentions extracted

from all the news articles, only one name was a false positive subject expert because of

name ambiguity. However, the number of articles for the subject expert with that

name is adjusted during the normalization step. On the other hand, the number of

mentions of the top 100 persons that were extracted with the subject expert filter was

3,813, while the number of mentions without the filter was 4,572. Thus, 16.6% of men-

tions were filtered out because not all subject expert mentions were surrounded by the

keywords.

Table 3 Performance of the CRF-based concept extraction system, compared to the
dictionary-based baseline on 100 news articles

True Positives False Negatives False Positives Recall Precision F-measure

Machine learning system

Exact Match 54 9 5 85.7 91.5 88.5

Partial Match 55 8 4 87.3 93.2 90.1

Dictionary Baseline

Exact Match 45 18 254 71.4 15.0 24.9

Partial Match 58 5 241 92.1 19.4 32.0
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Social network analysis

We constructed a network that contained 16,416 unique subject expert nodes and

97,516 links between them. The frequency of the person names as well as the central-

ity metrics were used to produce a list of subject experts ranked by their relative

importance. Figure 3 shows the largest connected component (with 11,742 nodes and

56,431 links between them) among the subject experts extracted and connected for

this study. The fact that more than half of the subject experts are in the largest con-

nected component signifies that the persons in this network are well connected. Many

of the subject experts are at the center of the network, which shows their high con-

nectedness with other persons in the network.

Using the social network analysis package in R [35], the key network metrics were

calculated for all individuals in the largest connected component. We found that a

majority of these experts are prevalent closer to the center of the network. This is

where the Betweenness centrality, Eigenvector centrality, and Closeness centrality are

high. We found that subject experts toward the periphery connect entire branches or

arms of the structure to the center. These arms may be based on specialty in research,

geography, institution, or some other cause. Experts that connect branches have a high

Betweenness score, while Closeness scores can remain relatively low and the prestige

Figure 3 Network map of the largest connected component with subject experts marked. Each
person appears in at least one news article. The persons appearing at the center have a higher centrality.
The links are unweighted and show the co-occurrence (mentioned together in an article) of subject
experts.
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and importance of a person in the network still remains high. These features contri-

bute to a kind of fingerprint of a person’s functional role in a network. A person with

a high Betweenness score, medium Eigenvector score, and a low Closeness score may

be the best choice for communicating information to an arm of a network. This logic

extends to other parts and features of the network. If the purpose of a news piece is to

raise awareness outside the community, subject experts with high Eigenvector scores

but low Betweenness scores and medium Closeness scores may be the most effective

to disseminate the message.

We have created a list of 51 subject experts that rank among the top 20 in at least

one of the metrics used: the number of mentions in the news articles, Degree central-

ity, Betweenness centrality, Eigenvector centrality and Closeness centrality. Manual

evaluation based on the information available on the Internet revealed that many won

awards for teaching and research, published book chapters and authored popular best-

selling books on topics related to obesity. In some cases, they have been national news-

makers because of innovative revolutionary research in obesity. We found that 41

among the 51 (80.4%) could be considered as opinion leaders in obesity. Only four of

the persons that rank among the top 20 by number of mentions in the news articles

were not considered opinion leaders in obesity. Two of them are (neuro and cardi-

othoracic) surgeons who corresponds to media on a variety of health problems; two

are social networks researchers who use obesity as an example in their research. We

noticed that three of these four researchers were not among the top 20 in any of the

SNA metrics. The full evaluation details are available in Additional file 2.

We then used the presence of a person’s biography in Wikipedia as an objective

measure of a person’s expertise and media presence. Although Wikipedia is an open

encyclopedia, only biographies that are “significant, interesting, or unusual enough to

deserve attention or to be recorded” are present [36]. Among the 51 persons that were

among top 20, in at least one of the metrics, 27 have biographies in Wikipedia. How-

ever, Wikipedia does not always index a prominent subject expert. For example, as of

July 31 2011, David Haslam (the chair of National Obesity Forum of UK) and Barry

Popkin (a US-based anti-obesity crusader since the last three decades) who rank high

in our list did not have a biography in Wikipedia. Twelve of the top 20 persons in

Betweenness, Closeness and Degree centralities each have Wikipedia biographies. Ele-

ven of the top 20 persons in number of mentions in news articles are mentioned in

Wikipedia. However, only seven of the top 20 persons in Eigenvector centrality have

Wikipedia biographies. While Wikipedia itself is not exhaustive and hence not useful

for ranking or even simply listing subject experts, we used it as an external validation

for our method.

Among the top 20 subject experts ranked by the number of media mentions, all have

contributed significantly (20 or more peer review journal articles) to both the advance-

ment of science in the literature (mean = 117 publications) and in newswire (mean =

56 media mentions). Twelve of these 20 have top 20 Betweenness scores and nine of

the top 20 have top 20 Closeness scores. Among the different SNA metrics, the Eigen-

vector centrality is the least useful based on the external evaluation.

We have also created a list of the most frequently extracted subject experts from

media that are highly relevant to the subject, but were missed using co-authorship

information used in our previous work [37]. 34 out of the top 100 (by news mentions)
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subject experts are not part of the largest connected component of the collaboration

network based on obesity publications. A likely reason is that some opinion leaders do

not publish in scientific journals, but are active in educating the public and appearing

in media. This suggests that news articles can complement authorship information in

scientific databases in the identification of subject experts.

Discussion
The named entity recognition or concept extraction component uses the Conditional

Random Field algorithm which is currently used in some of the best performing sys-

tems in NER [9,12,13,25,38]. Based on the performance in the randomly created gold

standard, we estimate that the accuracy of the system for extracting person names is

between 85-90% measured using F-score, where F-score is the harmonic mean of pre-

cision (about 90%) and recall (about 85%). Creating the CRF model or classifier, a one-

time process, took around 10 hours. The various concepts were extracted within an

hour using Hadoop [39] data-processing framework: the process was concurrently exe-

cuted on the 147,528 links using a leased cloud of 20 octa-core servers each having 15

GB of RAM.

We currently use heuristics such as presence of keywords and publication counts to

retain subject expert names among the extracted person names. In the future, we

could use an instance classification algorithm such as Support Vector Machines with

the orthographic features as well as publication counts to create a classifier that auto-

matically separates subject experts from person names. The data we are currently gath-

ering for the obesity project as well as future projects will be used as training data.

The analysis of the network of subject experts revealed that a subject expert might

have fewer mentions in news articles. The Eigenvector centrality is found to be the

least useful metric, but different metrics tend to find different persons.

The extrapolation of these findings can help us differentiate the way subject experts

can be interpreted. This depends on the end user classification of a subject expert. A

celebrity can lend their name to a social cause for public awareness in a particular dis-

ease area but that does not qualify them to be an expert in that area. The media count

in those cases might be higher but that will be due to higher mention of the name in

electronic media. It does not necessarily correlate with the deemed expertise on that

particular topic. For a media-focused or a consumer goods company, a person with a

high media count might simply make the mark due to the ease of name identification

with the general public.

Conclusion
The major contribution of this study is to use named entity recognition (concept

extraction) for discovering potential opinion leaders based on mentions in news arti-

cles. This provides a platform to “create” a list of prominent subject experts empirically

using publicly available text. Additionally, we learned that network centrality measures

supplement frequency counts in finding opinion leaders with media presence. Among

the 51 subject experts that are among top 20 in at least one of the metrics we have

used, 41 were considered as opinion leaders for obesity. Betweenness, Degree and Clo-

seness centrality metrics are at least as accurate as the frequency count. The combina-

tion of subject experts that rank high in network centrality measures in additions to
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the number of mentions gave a list of the relevant opinion leaders to obesity. Further,

a significant number of opinion leaders were discovered from news articles that were

not discovered in our previous work using PubMed data. Network analysis of person

names in news articles is useful as a supplement to the number of news articles citing

a person in understanding the relative media presence of persons for a medical topic.

Identical work needs to be conducted in other disease areas to validate further the

model and the findings presented here.

Availability of supporting data
The links to the internet news articles used in the study is available as part of this

paper as Additional File 1. A Table that lists the relative centrality measures of the

identified opinion leaders, their presence in the Wikipedia, their mention frequency in

the news articles and their publication counts in the disease area is available as Addi-

tional File 2. The names of the persons are anonymized. The software used to generate

this data uses third-party proprietary components and is not shared, but might be

available at no cost as a web-service for non-commercial research projects. Please con-

tact the corresponding author or email info@lnxresearch.com.
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Additional file 2: Centrality measures and other comparison of the identified opinion leaders. This table
lists the relative centrality measures of the identified opinion leaders, their presence in the Wikipedia, their
mention frequency in the news articles and their publication counts in Obesity.
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