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Abstract

We demonstrate a heterogeneity of representation types for breast cancer
phenotypes and stress that the characterisation of a tumour phenotype often
includes parameters that go beyond the representation of a corresponding
empirically observed tumour, thus reflecting significant functional features of the
phenotypes as well as epistemic interests that drive the modes of representation.
Accordingly, the represented features of cancer phenotypes function as epistemic
vehicles aiding various classifications, explanations, and predictions. In order to clarify
how the plurality of epistemic motivations can be integrated on a formal level, we
give a distinction between six categories of human agents as individuals and groups
focused around particular epistemic interests. We analyse the corresponding impact
of these groups and individuals on representation types, mapping and reasoning
scenarios. Respecting the plurality of representations, related formalisms, expressivities
and aims, as they are found across diverse scientific communities, we argue for a
pluralistic ontology integration. Moreover, we discuss and illustrate to what extent
such a pluralistic integration is supported by the distributed ontology language DOL,
a meta-language for heterogeneous ontology representation that is currently under
standardisation as ISO WD 17347 within the OntoIOp (Ontology Integration and
Interoperability) activity of ISO/TC 37/SC 3. We particularly illustrate how DOL
supports representations of parthood on various levels of logical expressivity,
mapping of terms, merging of ontologies, as well as non-monotonic extensions
based on circumscription allowing a transparent formal modelling of the normal/
abnormal distinction in phenotypes.

Introduction
In this paper, we keep in line with two different, yet related traditions. We base our

work closely on the position of perspectivism, as developed in the philosophy of

science (for instance in [1,2]), whilst on the logical side we endorse Carnap’s principle

of ‘logical tolerance’ and the corresponding pragmatic version of logical pluralism [3-5]

that ensues. Perspectivism accepts the position that human agents can never have a

completely neutral and perspective-independent picture of ‘the world’, i.e. ‘a view from

nowhere’ [1,2,6-9]. Rather, every scientific representation is defined by its research con-

text and particular questions that scientists address [10,11]. Moreover, both traditions,
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perspectivism and logical pluralism, reconcile with a broader pluralistic stance [12-15]

in philosophy of science and epistemology. However, we label our pluralistic stance as

perspectivism because we believe it enables us to give a fruitful account of scientific

practices, without committing to any particular metaphysical position. Therefore,

following van Fraassen’s view that

What scientific representation is and how it works is everyone’s concern, and there

we may find a large area where more general philosophical differences need make

no difference. ([1], p. 3)

we focus our analysis on the level of perspective-driven scientific representations.

Indeed, this paper itself provides a view on phenotype representations from various

perspectives. In the first part of the paper, we discuss the concept of phenotype

through a number of examples, illustrating a variety of phenotype representations

that co-exist in biomedical practice. From a position of perspectivism, we explain

this heterogeneity of representations as originating in a huge variety of epistemic

and pragmatic interests, distributed across and within biomedical sub-domains.

Through the case of breast cancer research, we briefly clarify how various epistemic

groups within the biomedical community, having different perspectives on the cancer

related problems, produce domain specific representations. We emphasise a tight

connection between 1) the epistemic and pragmatic interests of the agents who are

building representations and 2) a plurality of the corresponding representations,

thereby arguing that the heterogeneous representations reflect a plurality of domain

interests. In order to resolve if and how these diverse interests and heterogeneous

representations of biomedical and ontological communities can get integrated into a

knowledge base, we distinguish epistemic agents as groups and individuals involved

in ontology building. Furthermore, we specify similarities and differences among the

groups regarding the representational means, the degree of formalisation, representa-

tional and semantic explicitness used in representation, as well as related knowledge

base types. The remainder of the paper relates the representational pluralism, as an

unavoidable part of the scientific practices, with a logical pluralism. We argue that

not only the distributed epistemic and pragmatic interests influence various forms of

scientific representation and reasoning, addressing the problems through diverse

levels of granularity and expressivity, but the plurality of reasoning also converges

into diverse kinds of logical formalisms, resulting in numerous ‘most suitable lan-

guages’ that may be used to model some domain formally. Therefore, we argue that

the distributed ontology language (DOL) currently best fits the scientific practices

composed of distributed epistemic and pragmatic interests. The paper concludes

with a discussion of how DOL can support the interoperability of distributed ontolo-

gies, inter-connecting knowledge domains, while preserving domain specific needs

and semantics. In particular, we illustrate this by sketching a modular, formal specifi-

cation of mereology using ontology languages of increasing expressivity and by dis-

cussing how the various modules may be re-used in bio-medical ontologies with

different purposes. Moreover, we re-use the mereology ontology in an OWL ontol-

ogy extended with circumscription (which is a feature of DOL), modelling the nor-

mal/abnormal distinction in breast cancer related phenotypes.
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Perspectivism in phenotype representation
Biomedical representations of phenotypes

In general terms, a phenotype is defined as a set of features of an organism that

emerges as a result of interactions of its genetic material (specified as genotype) and

the environment (see e.g. [16,17]). While the genotype of an organism is the class to

which that organism belongs as determined by the description of the physical material

made up of DNA passed to the organism by its parents, the phenotype of an organism

is the class to which the organism belongs as determined by the description of the

organism’s physical and behavioural characteristics [17]. So, a person’s genotype

belongs to the class ‘human’ thanks to its inherited genetic material, description of

which, despite of individual variations, fits to the general description of genome that is

typical for the species ‘homo sapiens’. The long lasting debate on species classification

illustrates best that an agreement on what the typical features are, even on a gene

level, is not a trivial task. We therefore consider typical features in terms of a conven-

tional agreement at the current stage of scientific understanding. A person’s phenotype

includes features such as its size, its shape, its metabolic activities and its patterns of

movement and behaviour. Some of these features can be selected to describe a typical

human phenotype. In the case of anatomical descriptions, a canonical human anatomy

represents a human phenotype as the organism composed of parts such as legs, arms,

organs, cells etc. However, phenotypic features highly vary among individuals, and

which particular features will be selected to classify individuals depends on classifica-

tory aims. For example, a phenotype can be described through its structural, func-

tional, or dispositional features, or through some quality such as eye colour [18].

Phenotypes of disease

The representation of phenotypes plays an important role in clinical and biomedical

knowledge, aiming at describing disease, assigning diagnoses and recommending thera-

pies. Therefore, phenotypes are of particular interest to the biomedical expert if they

include features that describe aberrances from what is considered a ‘normal’ pheno-

type. Moreover, exactly the aberrant features play a crucial role in the classification of

a disease. A disease usually gets characterised through a distinction between ‘normal’

and ‘abnormal’ phenotypes, where ‘abnormal’ phenotypes serve as the marks of disease.

The ‘abnormal’ phenotypes associated with a disease are labelled as phenotypes of dis-

ease (PD). However, the questions of what is ‘abnormal’ and what should be consid-

ered as a phenotype of a disease and how such a phenotype should be represented are

rather contentious [18]. Clearly, the choice of how a PD should be represented is nor-

mative and context dependent. Consider the case of breast cancer and BRCA1 and

BRCA2 gene mutations. In the age of genomic medicine, the very definition of disease

has changed introducing a new kind of asymptomatic diagnosis. So, the carriers of

BRCA mutations, without having developed any signs of breast cancer, still have a like-

lihood of 40-80% for developing an aggressive cancer phenotype during their life span

[19]. The establishment of preventive treatments such as prophylactic surgery, chemo-

prevention and screening designed for the BRCA mutation carriers demonstrates that

carriers of the mutated genes are indeed treated as patients [20]. Genomic medicine,

thus, shifts the focus of PD from a traditional organ level approach to the gene level,

treating apparently healthy people as ‘patients’. For, the ‘normal’ breast phenotype in a
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BRCA mutations carrier will be irrelevant in the light of knowledge about ‘abnormal’,

fine-grained phenotypes related to the gene expression patterns of the mutated genes.

Since such a phenotype is classified as PD based on a disposition to develop the dis-

ease, the BRCA mutations carriers can get assigned a dispositional PD, according to

the phenotype classification proposed in [18].

Representing phenotypes in research contexts

Although these new directions in biomedicine aim at an integration of clinical and bio-

logical knowledge, the requirements across biomedical sub-domains significantly vary.

So, a clinician will have different criteria for the representation of a phenotype than a

molecular biologist. Regarding the goals of a discipline and the research context, infor-

mation that is relevant for a clinician does not need to satisfy the needs of a molecular

biologist who is mostly interested in phenotypic information about the molecular

mechanisms associated with a disease. Likewise, features of a phenotype such as ‘obe-

sity’, although clinically significant for breast cancer risk assessment, are excluded from

the molecular description of a phenotype. Moreover, as we will illustrate by an exam-

ple, the representations that a molecular biologist is typically interested in prioritise

the explanatory role of the selected features, while the clinical representations usually

aim towards clinical usability such as diagnosis assessment and therapy choice. As a

result, heterogeneous representations and classifications of breast cancer phenotypes

are employed in clinical and biomedical practice [21-23].

We will here not go into a detailed discussion of the philosophical debate on ‘scienti-

fic representation’. For the purposes of this paper, in short, our approach is in line with

Suárez’s view which specifies two general, but necessary conditions that any scientific

representation needs to satisfy. Namely,

A represents B only if (i) the representational force of A points towards B, and (ii)

A allows competent and informed agents to draw specific inferences regarding B.

[[24], p. 773]

So, for instance, a mathematical, a pictorial, or a logical representation are the poten-

tial sources for an inference about a target. If A leads a scientist to an inference about

B (a phenotype), then A will be a representation of B.

In light of this view of representation, concerning ways phenotypes can be captured

by various technological and scientific tools, representations of PDs will include images

acquired by technologies such as ultrasound, X-ray, and microscopy of histopathologi-

cal samples. Moreover, representations of PDs are not limited to visual representations

of a tumour, but include mathematical equations [25], statistical graphs, molecular

markers, microarrays data [26], and the phenotype specific protein interactions [27],

thus describing PDs according to the needs of and knowledge about a particular

domain aspect. That is to say, a representation reflects which aspects of knowledge

have been targeted by the representation and for what purpose. Differential equations

of a mathematical model aim at representing cancer phenotypes whilst modelling, for

example, carcinogenesis’ dynamics. A PD is sometimes represented by the equations

that model the response to a particular treatment, thereby playing a predictive role

[25]. Some other representations have primarily a heuristic role, using mechanistic and
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causal models to represent various aspects of a PD, which can support the understand-

ing of carcinogenesis or a specific response to a therapy [28]. Accordingly, a represen-

tation reflects a scientist’s choice to model a certain subset of the domain knowledge

for a particular purpose. Not every PD representation can equally satisfy all possible

explanatory, predictive, and pragmatic needs, even within a single domain. Rather, var-

ious types of representations have been employed to model diverse aspects of a domain

problem. Therefore, ‘choosing a representation’ might be considered a highly inten-

tional act [8].

However, a representation such as a histopathological image will not, itself, represent

any knowledge unless it gets interpreted. Knowledge within a domain is explicitly

represented only if the representations get systematically connected with related inter-

pretations, knowledge claims, and reasoning over the representations. As a representa-

tion may have various interpretations, expressing diverse aspects of knowledge about

what is being represented, it can also get assigned diverse knowledge claims and map-

ping relations. Therefore, besides heterogeneity of PD representations, biomedical

ontologies have to deal with a heterogeneity of reasoning about PDs, comprising differ-

ent kinds of formal (or logical) representations as well as various types of reasoning.

Conversely, the intended reasoning methods or types over PDs also influence the

choice of representation of PDs because such representations are mediated by domain

specific methods and interventions, employed in the imaging, measuring of the gene

expression and other diagnostic and experimental techniques [29]. Consider, for exam-

ple, clinical representations of breast cancer that go beyond the tumour imaging repre-

sentation. According to the standards of the TNM classificatory system [21], the

clinical classification of tumours considers tumour size (T), lymph nodes involvement

(N), and presence of metastasis (M). Of course, tumour size is just one feature and is

not sufficient for the characterisation of the tumour type. Cancer is a dynamic and

complex disease of an organism and the PD representations, therefore, go beyond the

characterisation of a tumour captured in a static picture. For example, knowledge

about lymph nodes’ status or proliferation marker KI-67 provides additional informa-

tion about a tumour’s phenotype. Likewise, tumour markers provide a view on the PDs

through the specific interventions on the representation. A detection system can target

a gene or a protein of interest, staining the samples in order to produce a clinically

useful PD representation. Had the estrogen receptor (ER) been detected, the PD would

have been described as an ER+ positive tumour, which significantly differs from an

ER- (negative) tumour, which does not respond to the endocrine therapy [30]. Thus,

the therapeutic criteria often play a crucial role in the specification of the tumour

phenotypes.

Phenotype ontologies

Phenotype ontologies aim at capturing phenotypes formally. Developing phenotype

ontologies has been recognised as a particularly challenging task for ontologists

because of the complexity and heterogeneity of features used to describe a phenotype.

Several approaches have been proposed to describe phenotypes formally, some of

which use ‘qualities’ as attributes assigned to ‘entities’ [16,31,32]. In particular, pheno-

type ontologies encounter the problem of having to represent features that are not

‘normal’ in terms of canonical anatomy. For instance, Hoehndorf et al. [18] have
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introduced two disjoint predicates, C (canonical) and NC (non-canonical) in order to

support ‘abnormal’ phenotype representations. This approach is part of a general fra-

mework that categorises the concept of phenotype as ‘Phene’ into the classes of ‘object

phene’ and ‘process phene’, while ‘object phene’ is subdivided into the classes ‘struc-

tural phene’, ‘qualitative phene’, ‘dispositional phene’ and ‘participatory phene’, includ-

ing further subdivisions [18]. The phenotypic relations of the Phene ontology are

formalised using the OWLDEF method [33] in order to endow phenotype representa-

tions with explicit semantics and to enable interoperability with existing domain ontol-

ogies. An advantage of such an approach compared to the entity-quality (EQ)

characterisation of phenotypes [16] is that it can support inference among the pheno

classes that are imported from domain ontologies such as FMA, while EQ has limited

interoperability and inferential potentials as it considers all phenotypic features as qua-

lities (see [18]). The introduced Phene relations such as CC-pheneOf-lacks-part nicely

describe phenotypes that are ‘abnormal’ due to absence of anatomical parts. In contrast

to this, we address the case where the quantity of a part (e.g. the HER2 protein which

is present in the cell membrane in both ‘normal’ and ‘abnormal’ phenotypes) makes a

qualitative difference, resulting in an ‘abnormal’ phenotype. We here deal with this

problem using a non-monotonic mereology specification.

Merging perspectives of distributed ontologies

Regarding biomedical ontologies in general, there have been particular efforts in creat-

ing alignments among the internationally recognised biomedical vocabularies [34-36],

e.g. as represented in the form of a thesaurus (e.g. NCI, SNOMED), metathesaurus

(UMLS), and biomedical classifications such as the International Classification of Dis-

ease (ICD), (Respectively, http://ncit.nci.nih.gov/, http://www.ihtsdo.org/snomed-ct/,

http://www.nlm.nih.gov/research/umls/, http://www.who.int/classifications/icd/en/)

with OBO foundry ontologies and other formal ontologies such as General Formal

Ontology GFO [37], GALEN [38], and the Dolce ontology [39]. The OBO foundry

includes various ontologies each of which covers some aspects that are relevant for the

representation of phenotypes. For instance, the Human Disease Ontology (DO) (http://

www.obofoundry.org/cgi-bin/detail.cgi?id=disease_ontology) aims to represent disease

related concepts. For the representation of breast cancer phenotypes some of the key

terms from DO include ‘cancer’, ‘breast cancer’, ‘Her2-receptor positive breast cancer’,

‘female breast cancer’, ‘male breast cancer’, ‘estrogen-receptor positive breast cancer’,

‘estrogen-receptor negative breast cancer’, ‘progesterone-receptor positive breast can-

cer’, ‘progesterone-receptor negative breast cancer’, and ‘triple-receptor negative breast

cancer’ (The DO terms’ identifiers listed are, respectively, DOID:162, DOID:1612,

DOID:0060079, DOID:0050671, DOID:1614, DOID:0060075, DOID:0060076,

DOID:0060077, DOID:0060079, DOID:0060081). The represented concepts in DO are

organised in a hierarchical structure using the is_a relation. However, the hierarchy

of DO concepts is not sufficient to represent breast cancer phenotypes. Although ‘can-

cer’ and ‘breast cancer’ within DO are specified by their lexical definitions, DO does

not represent explicitly the defined concepts. That is to say, definitions of cancer as

‘disease of cellular proliferation that is malignant and primary, characterized by uncon-

trolled cellular proliferation, local cell invasion and metastasis’ and of breast cancer as

‘a thoracic cancer that originates in the mammary gland’ do not represent how, for

example, ‘cancer’, ‘breast cancer’, and ‘Her2-receptor positive breast cancer’ relate to
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each other in a more specific way than what the relation of subsumption can commu-

nicate. A more specific representation of a breast cancer phenotype asks for concepts

and relations that DO does not contain. As it has already been recognised in the case

of prostate cancer [40] and phenotype ontologies in general [18], abreast cancer pheno-

type ontology needs to combine various other ontologies each of which is designed for

a specific purpose. The Foundational Model of Anatomy (FMA) aims to represent ana-

tomical concepts and relations in a canonical way. Thereby, FMA does not include

‘abnormal’ anatomical features. However, FMA can provide a phenotypic characterisa-

tion of a canonical breast anatomy and its lymphatic system that is lacking in DO.

Likewise, the Phenotypic Quality Ontology (PATO) (see http://www.bioontology.org/

wiki/index.php/PATO:Main_Page) provides representations of the qualities that are

lacking in FMA and DO. Even if DO includes some of the quality terms such as

‘aggressive’, the particular qualities are not represented as separate concepts, rather

they are just included in a definition or they make an inseparable part of a more com-

plex concept such as ‘aggressive periodontitis’. Particular qualities from PATO (e.g.

‘abnormal’, ‘increased concentration’, ‘poorly differentiated’, ‘aggressive’, ‘progressive’)

(Respectively, PATO:0000460, PATO:0001162, PATO:0002106, PATO:0000871,

PATO:0001818) can be easier reused in various contexts, facilitating automated infer-

ence. The Units of Measurement Ontology (UO), on the other hand, provides concepts

such as ‘count’, ‘molecule count’, ‘percent’, ‘length unit’ (Respectively, UO:0000070,

UO:0000192, UO:0000187, UO:0000001), which are important for molecular and clini-

cal descriptions of breast cancer phenotypes. In a similar manner, an ontology that

aims to represent breast cancer phenotypes needs to consider, inter alia, the concepts

‘assay’ and ‘specimen’ (Respectively, OBI:0000070, OBI:0100051) from the Ontology for

Biomedical Investigation (OBI) (see http://obi-ontology.org/), ‘HER2 signaling pathway’

and ‘regulation of Neu/ErbB-2 receptor activity’ (Respectively, GO:0038128,

GO:0060726) from the Gene Ontology (GO), ‘Tyrosine kinase-type cell surface recep-

tor HER2’ (CCO:B0005540) from the Cell Cycle Ontology (CCO) or from the Protein

Knowledgebase (UniProtKB:P04626), and ‘tyrosine kinase inhibitor’ (CHEBI:38637)

from Chemical Entities of Biological Interest (ChEBI [41]). Concerning the clinical

management of patients, the information from a drug bank should also be considered

in the description of a phenotype, allowing a specification of how, for instance, HER2

positive breast cancer behaves in response to the ‘Herceptin’ (DB00072) treatment.

(E.g. http://www.drugbank.ca/drugs/DB00072; Herceptin in the Drug Bank database

has not yet been organised in an ontology, but the references to the related ontologies

are provided.)

The presented variety of ontologies properly illustrates the very definition of ontol-

ogy as a specification of a conceptualisation that represents a selected aspect of the

world for a particular purpose, as given by Gruber [42]. Accordingly,

[. . .]When the knowledge of a domain is represented in a declarative formalism,

the set of objects that can be represented is called the universe of discourse. This

set of objects, and the describable relationships among them, are reflected in the

representational vocabulary with which a knowledge-based program represents

knowledge. [. . .] In such an ontology, definitions associate the names of entities in

the universe of discourse (e.g., classes, relations, functions, or other objects) with
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human-readable text describing what the names mean, and formal axioms that

constrain the interpretation and well-formed use of these terms. ([42], p. 908-909)

Each of the above mentioned ontologies (e.g. FMA, PATO, GO, ChEBI etc.) is

designed for a particular purpose. Therefore, the represented concepts are selected and

related among each other in a way that best fits the aims of the particular ontology.

While some of the concepts from diverse ontologies can be mutually aligned, in other

cases it is likely that the concepts will stay represented only in one domain (universe

of discourse) and not in the others. An introduction of new concepts (e.g. introduction

of GO and OBI concepts to FMA) would unnecessarily increase complexity and most

likely it would result in numerous redundancies and inconsistencies. Therefore, a com-

bination of various modules from domain ontologies, as proposed in e.g. [5,18,43],

seems as the most viable solution when a particular task, such as the representation of

breast cancer phenotypes has to be achieved. In our paper, we tackle just a segment of

the problem as to how certain modules of FMA can be used in the representation of a

breast cancer phenotype. Before we propose our model, we analyse how the diversity

of domain interests influences the ontology design. The analysis of the epistemic

groups involved in the ontology building emphasises a plurality of epistemic needs

among the groups that our proposal attempts to deal with.

Representing the plurality of domain interests
In the previous section, we presented a few examples of how sub-domain interests

influence the representation of breast cancer phenotypes. Moreover, we demonstrated

that specific perspectives on how phenotypes should be represented results in a prolif-

eration of representations in biomedical practice. To reconcile how this variety of

representations can be interoperable, we hold that instead of favouring a particular

one, those different representations actually can be embraced as an array of perspec-

tives, each of which may produce useful insights into the problem, and which thus

have a systematic connection at a higher level of abstraction. In order to pursue our

analysis of interoperability across sub-domain representations, in this section we ana-

lyse the epistemic groups that are using various representational means, while being

involved in knowledge base building. A better understanding of the epistemic agents

who are building representations will give an insight into how collaborative efforts

evolve from implicit and less formal to explicit formal representations of knowledge.

The collaborative interests

The organisation of huge amounts of heterogeneous data produced and analysed by

various methodologies and diverse types of reasoning necessitates collaboration across

scientific domains. An emerging issue of knowledge integration concerns the two

apparently counteracting forces: disciplinary division that drives specialisation of

knowledge on one hand, and inter-disciplinary collaboration on the other. Disciplinary

specialisation allows a detailed analysis of specific problems within a research group,

focusing on, for example, a particular protein that modifies gene expression, eventually

resulting in the development of cancer. However, when knowledge acquired within a

research group has to be integrated into the big picture of complex carcinogenic

events, collaboration beyond the particular research domain is unavoidable.
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Collaboration among clinicians, molecular biologist, and bioinformaticians will show to

be crucial for the application of molecular knowledge in clinics. Moreover, computer

scientists and ontology engineers play an important role in providing the formal and

technical means for knowledge integration.

A big promise of the integrative endeavour in contemporary science is that dispersed

pieces of knowledge produced within one domain and not yet related to knowledge

from some other domain, when being connected, can actually drive new inferences,

produce new knowledge and a better understanding of a disease [44]. This old idea

that knowledge can be expanded by connecting dispersed pieces of information gained

particular importance with the development of information systems such as databases,

semantic web technologies, and ontology tools which are mapping and representing

concepts and sets of data across fields. Such information technologies allow data sto-

rage, a potential interconnection, and manipulation with a huge amount of heteroge-

neous types of data which goes beyond cognitive abilities of any particular expert. As

knowledge organised in databases and ontologies represents the concepts in a compu-

ter readable form, the use of implemented reasoners enables an automated inference

about represented information, e.g. for DLs FaCT++, Pellet, RacerPro, HermiT, etc.

(see http://www.cs.man.ac.uk/~sattler/reasoners.html) and first-order and other logics

see e.g. http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/CoFI/

hets/index_e.htm. So, in the case of cancer management, an integration of a patient’s

clinical data with information about the PD, patient’s molecular profile, family history,

presence of other diseases, life style habits etc. can help clinicians to assess the most

appropriate, patient specific treatment. Likewise, when connected, various PD repre-

sentations can enhance the understanding of the disease and improve clinical utility of

the acquired knowledge.

The epistemic groups

Information technologies and formal tools such as ontologies for knowledge represen-

tation (KR) aim at formally representing heterogeneous knowledge domains and differ-

ent types of domain specific representations [5,43]. Concurrently, clinicians and

molecular oncologists are trying to organise and apply the overwhelming and diverse

knowledge about cancer biology. Can these interests of different disciplines meet in a

constructive union, while preserving the domain specific representations and reasoning

capabilities?

In this section, we outline some of the requirements for achieving such a level of

interoperability. We begin by giving a comparative analysis of the distribution and

character of knowledge involved in the integration of heterogeneous types of knowl-

edge represented in knowledge bases (KBs). In particular, we distinguish where, how,

and by whom knowledge is represented by characterising six epistemic groups, and by

discussing how membership to a group impacts the representation as well as knowl-

edge base types. Note that these groups exhibit rich interdependencies and partially

overlap.

1. The characterisation of the epistemic groups starts with the societal demands for

problem solving, such as, for example, the need for personalised breast cancer ther-

apy [45,46]. The demands may be represented in the form of standards, platforms
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and funding policies [46,47]. In a democratic society, knowledge on this level can

be represented as common or shared knowledge available to the members of

society; knowledge can be distributed through various channels or common-sense

KBs.

2. The second epistemic group to be discussed is at the level of an individual scien-

tist whose ‘knowledge base’ is a collection of relevant background knowledge, here

to be understood as cognitive representations placed in the mind, arguably, in the

form of conceptual maps (see [48]). As far as the conceptualisation of a problem

has not been communicated in an inter-subjectively accessible way, e.g. by means

of language, the related representations stay private to the mind of a particular

epistemic agent. Thereby, the representation of a cognitive conceptualisation is

implicit [49]. Likewise, whilst an individual may assign a referent (an object, a

term) to such an implicit representation, the semantics of the relation between the

referent and the related cognitive content stays implicit, i.e. accessible only to the

individual mind.

3. As the third epistemic group, we specify the scientific communities, each of

which is composed of the specific disciplinary domain scientists (clinicians, molecu-

lar biologists, bioinformaticians etc.). This epistemic group establishes knowledge

within a scientific community as a received view, having the form of explicit and

inter-subjective representations expressed in the respective scientific languages, cir-

culated through publications. Like in group (1), knowledge can be distributed in

various ways. Contrary to the implicit conceptualisations (group 2), a community

establishes shared conceptualisations that are made explicit by means of language.

A shared conceptualisation within a community, thanks to the shared terminology

and the context of its use, enables distinctions between domain specific terms and

their relations as an agreed upon meaning to represent domain knowledge. How-

ever, these shared representations are still local and specific to particular commu-

nities. Like in (2), the semantics of the terms and the mapping relations among

them stay implicit. Namely, it is left to the interpreters of language to assign mean-

ing to terms by a cognitive process which assigns referents and relations to the

represented terms.

4. The fourth group comprises scientific communities formed around a particular

problem (e.g. breast cancer). As the group contains multidisciplinary teams focused

on a particular problem, knowledge will need to be coordinated in such a way that

the used scientific terms and reference classes will conform with knowledge within

diverse domains. For instance, the biomedical terms might be structured into net-

works of terms that represent how these terms are interrelated in the domain

knowledge. Thus, collaboration here results in merging knowledge from different

domains. The representation of the merged knowledge coming from different per-

spectives on the same problem might be a ‘unified semantic map’ (see group (2))

that serves as a semi-formal conceptual model and an intermediate step towards

the KB and the formal ontology to be employed in KR (see e.g. [50]). Note that, as

presented above, group (4) is heterogeneous in itself because it is composed of

experts from various scientific fields (group 3), thereby producing a variety of

breast cancer related representations. We will consider closer the domain heteroge-

neity in the following sections.
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5. The fifth is the communities of logicians and ontologists who are formalising

ontologies according to the needs and specificities of a particular field. Domain

knowledge and the merged domain knowledge will be expressed as ontologies writ-

ten in various formal languages (e.g. refining foundational ontologies such as

DOLCE [39], BFO (see http://www.ifomis.org/bfo/), or GFO (see http://www.onto-

med.de/ontologies/gfo/) etc. formalised in OBO, OWL, or first-order logic, etc.) As

a shared conceptualisation gets enriched with formal specifications that have well-

defined formal semantics [51], the semantics of the represented domain is explicit.

Accordingly, related KBs will contain explicitly represented knowledge.

6. The sixth group involves computer scientists, programmers and engineers, who

are designing databases and applying formal ontologies as well as various reasoning

tools to large data sets. Technically, a representation built on top of a database

involves types and mapping relations structuring the data, and can be considered as

meta-data. Here, the representation integrates the types and mappings with

instances (data). Epistemic accuracy of the mappings depends on how well the

mappings correspond to the scientific knowledge and the empirical findings of the

represented domain (e.g. breast cancer). In contrast to groups (2) and (3), knowl-

edge in a KB is not scattered over various representational spaces or layers, but

integrated into one. As the ontology mapping terms to instances provides the

representational reference within a KB, both semantics and representation are

explicit.

In Table 1, we show the epistemic agents as they are organised into the 6 groups,

and illustrate to what extent they are involved in ontology and KB building. The hier-

archical grouping of the agents is just an approximation, according to the representa-

tional means and the level of explicitness employed to represent knowledge. Of course,

a real time process of knowledge organisation and distribution is much more complex

than what this table can summarise. However, the table sketches some basic distinc-

tions distributed across the specific representational domains. The epistemic groups

are ordered according to the degree to which knowledge representations are made

explicit, ranging from implicit and less formal to the most explicit formal representa-

tion of knowledge. Collaboration among the domain experts is presented as crucial for

knowledge integration. A group of experts with a common interest is collaborating in

establishing a shared conceptualisation [52] (group 4), which gets formalised (groups 5

and 6) according to the established standards that help them label and describe the

domain of interest in an interoperable way [53]. Knowledge levels, groups, or layers

have of course been discussed previously in the AI literature. For instance, Newell

introduced an agent-based distinction between the ‘knowledge level’ and the ‘symbol

level’ in [54], and [49,55,56] analysed layers in formal ontology design. In more detail,

Brachman, in 1979, introduced a classification of the primitives used in KR systems at

the time [55], distinguishing the following four levels: (i) ‘Implementational’, (ii) ‘Logi-

cal’, (iii) ‘Conceptual’, and (iv) ‘Linguistic’. Guarino [49,56] added to these four layers

yet another layer, namely the ‘Epistemological Layer’ for the primitives, situated

between the ‘Logical’ and the ‘Conceptual’ layers. Our approach differs in that it mainly

aims at distinguishing human agents as individuals and groups focused around particu-

lar epistemic interests, whilst analysing the corresponding impact on representation
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types. A more detailed analysis of the relationship to previous ‘layering approaches’ is

left for future work.

Ontology engineering and epistemic groups

Regarding the perspectivism in ontology representation, the distinction of the epistemic

groups captures some basic similarities and differences among agents who aim at con-

ceptualising and representing a problem. Namely, consider the following snippets from

Gruber’s definition [42, p. 908-909] of ontology (given above) as:

• ‘simplified view of the world that we wish to represent for some purpose’: an

ontology as a technical artefact is not intended to cover the world in its entirety,

but only chosen aspects of the world, on specific levels of abstraction, and for

given purposes–largely independent of particular metaphysical positions such as

realism and antirealism; here, group (4) will typically informally specify the relevant

domain knowledge (e.g. a conceptual map of breast cancer phenotypes that inte-

grates structural and functional features of a protein involved in carcinogenesis),

whilst group (5) is in charge of establishing an agreement on how to formally

codify this knowledge.

• ‘committed to some conceptualisation’: ontologies presuppose various decisions con-

cerning ontological commitments. These originate partly in common sense knowledge

Table 1 Organising knowledge: the epistemic agents and representational means

Epistemic
group

Representation type Knowledge (base) type

I Society Demands
Problem (e.g. patient, disease)

Solution (e.g. diagnosis, prognosis, therapy)
standards and funding policies

Common knowledge

II Individual
Scientists

Cognitive conceptualisation
Implicit representation in mind

Implicit semantics

Background knowledge of an
individual scientist

III Communities
(clinical,

biomedical,
bioinformatical

etc.)

Biomedical claims
expressed in the scientific language - publications

Explicit representation of domain knowledge
Implicit semantics

Background knowledge of
a scientific community

Terms as units of biomedical claims
Explicit representation of the terms - definition

Implicit semantics

Distributed domain knowledge
Various networks of
biomedical terms

IV Community
(breast cancer)

Model for an ontology
Explicit representation of a unifying conceptual

model
expressed in the scientific terms as a shared

conceptualisation
Semi-explicit semantics

Sub-domain knowledge
problem related

(merging domains)

V Computer
scientists
Logics

Ontology
Explicit formal representation of shared

conceptualisation
expressed in a formal language - formal ontology

Explicit semantics

Formalised knowledge

VI Computer
scientists

Engineering

Mapping ontology onto data records (metadata)
Merged ontology model and information model -

applied ontology
Explicit representation and semantics

AI
Knowledge Base

(KB)

Data (Instances) structured within database
architecture
Data models
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(group (1)), precisifications given by members of group (2), and agreements as they are

established in groups (3) and (4). Finally, the formal implementation of the ontological

commitments is again left for groups (5) and (6), merging collaborative interests of

(1)-(6).

• ‘ “what exists” is that which can be represented’: ontological commitments are

dependent on the expressive capabilities of selected representational formalisms.

The choice of an adequate formal language can only be established as an interplay

between logician (group (5)), computer scientist (group (6)), and the domain

experts of (3) and (4).

• ‘representational vocabulary’ and ‘human-readable text’: there is a ‘tension’

between the logical vocabulary used, and the natural language concepts and terms

it is meant to capture, and, in the case of e.g. breast cancer, various forms of scien-

tific representations such as graphs, mathematical equations, images, 3D models

etc. Reconciling this tension requires deep interaction between the various groups

of domain experts and formal logicians and computer scientists.

• ‘an ontology is the statement of a logical theory’: on a technical level, an ontology

is seen as equivalent to a logical theory, written in a certain formalism. Clearly, this

task is for group (5), respecting the requirements of group (6).

The above remarks apply to a variety of formal languages used in ontology engineering.

Indeed, heterogeneity of formal languages is particularly important in the life sciences,

where size of ontologies and needed expressivity vary dramatically. For example, whereas

weak (i.e. sub-Boolean) DLs suffice for the NCI thesaurus (containing about 45.000 con-

cepts) which is intended to become the reference terminology for cancer research [57],

other medical ontologies such as GALEN (see http://www.opengalen.org/) require the full

expressivity of the OWL language (a decidable fragment of first-order logic), while founda-

tional ontologies typically require at least full first-order logic (see [43]). Alternatively, new

and more expressive languages to model complex biological processes have also been

proposed [58].

An example of a heterogeneous combination of formalisms is discussed in [59],

where it is shown that in order to adequately represent the spatial structure of mole-

cules as they are described in chemical ontologies such as ChEBI [41], ontology lan-

guages need to be combined with formalisms such as monadic second-order logic.

We next illustrate how such diversity and heterogeneity is reflected in and how it

originates from different group interests in the case of breast cancer phenotypes

representations.

A plurality of mappings and reasoning: the case of ‘HER2’

In biomedical ontologies, metadata in the form of tags, annotation, or more generally

documentation, is of particular importance. Indeed, many biomedical ontologies have

an extremely shallow logical structure, namely consist only of taxonomies, or even just

of sets of concepts, however accompanied with a rich set of metadata. It is clear that

the separation of the epistemic groups introduced above has a direct impact on the

kinds of annotations and metadata that can be expected to be generated. For instance,

the particular scientific communities (groups (2) and (3)) need not associate identical

sets of concepts as related to a term in use. When the Human Epidermal growth factor
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Receptor 2 (HER2, also known as ErbB2) is used as a tumour marker in the commu-

nity of clinical oncologists, ‘HER2’ is related to the diagnostic terms. E.g. over-expres-

sion of HER2 supports diagnosis of HER2 breast cancer, which is described as an

aggressive tumour with a poor clinical outcome and a low likelihood of a long term sur-

vival. On the other hand, among the group of molecular biologists ‘HER2’ is mostly

used to characterise molecular processes such as the HER2 related protein-protein

interactions that trigger the carcinogenic events. Of course, ‘HER2’ can serve as a link

between the two domains. However, as interests diverge among and within disciplines

concerning ways of describing a phenotype, distinguishing similarities and difference

makers will vary among knowledge domains. So, HER2 will not be the same difference

maker for a clinician and for a biologist. The main difference that will be relevant for a

clinician will be a difference in the patients survival associated with the expression of

HER2 [60]. The biologist who focuses on the cellular signalling pathways looks for, for

example, a differential expression of the ErbB2 gene while comparing the phenotypes

of two types of cell lines [61]. Consequentially, a justification of asserted similarities

and generalisations asks for a different kind of evidence in diverse domains. Clinical

evidence is acquired through survival analysis and clinical trials while biologists provide

evidence through diverse experimental and explanatory methodologies [62]. Accord-

ingly, the reasoning of the groups (2)-(4) influences the related mappings and justifica-

tions implemented by groups (5) and (6).

A relation between a term and its reference class gets its justification within domain

knowledge as an adequate mapping relationship. The justification is expressed through

claims that support the mapping relations. Regarding the previous example, ‘HER2’

will be mapped onto a ‘bad prognosis’ within clinical knowledge (see Figure 1, Domain

1), and the mapping will be justified by the statistical data retrieved from survival ana-

lyses. Likewise, biological knowledge provides an alternative mapping relation and a

related justification for a mapping between ‘HER2’ and ‘tumour aggressiveness’, e.g.

protein interaction pathways that result in cell proliferation and tumour aggressiveness

Figure 1 Knowledge granularity.
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(see Figure 1, Domain 2), captured, for instance, in GO, UniProt, and KEGG (see

http://www.genome.jp/kegg/).

A detailed analysis of the mappings within and between knowledge domains asks for

a multidisciplinary approach involving a community-based process of knowledge pro-

duction [63,64]. A group of experts with a common interest is collaborating in estab-

lishing a shared conceptualisation [52] (groups 4 and 5), which gets formalised (group

5) and implemented (group 6) according to the established standards that help them

label and describe the domain of interest in an interoperable way [53,65].

Below we will consider the example of HER2-positive phenotypes from a mereologi-

cal perspective and also discuss the issue of normal vs. abnormal phenotype from a

formal modelling perspective.

A plurality of knowledge representations
Having presented and discussed the plurality of biomedical reasoning and related

representations, this section focuses on plurality as it pertains to formal knowledge

representation. A variety of languages is used for formalising ontologies. Some of

these, such as RDF (mostly used for data), OBO and certain UML class diagrams

(namely those avoiding qualified associations (amounting to identification constraints),

n-ary relations (for n > 2) and stereotyping), can be seen more or less as fragments

and notational variants of OWL (or first-order logic), while others, like F-logic and

Common Logic (CL), clearly go beyond the expressiveness of OWL. To address the

modelling problems that result from using concurrently this variety of languages,

[66,67] lay the foundation for a distributed ontology language DOL, which is intended

to allow users to use their own preferred ontology formalism whilst becoming intero-

perable with other formalisms, which we sketch next.

The distributed ontology language DOL

OWL is a popular language for ontologies. Yet, the restriction to a decidable descrip-

tion logic often hinders ontology designers from expressing knowledge that cannot (or

can only in quite complicated ways) be expressed in a description logic. A practice to

deal with this problem is to intersperse OWL ontologies with first-order axioms, e.g.

in the case of biomedical ontologies where mereological relations such as parthood are

of great importance, though only partly definable in OWL. (Note that in the following,

we adopt the completely formal position that an ontology is nothing but a formal the-

ory in a given ontology language, and that an ontology language is any logical language

that is considered suitable for ontology design by some community.)

However, these remain informal annotations to inform the human designer, rather

than first-class citizens of the ontology with formal semantics and impact on reasoning.

One goal of the DOL language is to equip such heterogeneous ontologies with a pre-

cise semantics and proof theory.

DOL faces the logical diversity not by proposing yet another ontology language that

would subsume all the others, but by accepting this pluralism in ontology languages

and by formulating means (on a sound and formal semantic basis) to compare and

integrate ontologies that are written in different formalisms. This view is a bit different

from that of unifying languages such as OWL and Common Logic (CL), which are

meant to be “universal” formalisms (for a certain domain/application field), into which
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everything else can be mapped and represented. While such “universal” formalisms are

clearly important and helpful for reducing the diversity of formalisms, it is still a mat-

ter of fact that no single formalism will be the Esperanto that is used by everybody. It

is therefore important to both accept the existing diversity of formalisms and to pro-

vide means of organising their coexistence in a way that enables formal interoperability

among ontologies.

At the heart of the DOL approach lies a graph of ontology languages and transla-

tions between them, displayed in Figure 2. (Compare [5] for the general theoretical

background, and [67] for the proposed formal semantics. DOL is currently under stan-

dardisation as Working Draft ISO/WD 17347 in ISO/TC 37/SC 3 ‘Systems to manage

terminology, knowledge and content’. See also http://ontolog.cim3.net/cgi-bin/wiki.pl?

OntoIOp) This graph (here reduced to the languages discussed in this paper, the full

graph and a discussion of the translations is presented in [66]) will enable users to

• relate ontologies that are written in different formalisms. E.g. prove that some

OWL version of a biomedical ontology is logically entailed by its (reference) first-

order version;

• re-use ontology modules even if they have been formulated in a different

formalism;

• re-use ontology tools like theorem provers and module extractors along transla-

tions between formalisms.

Some of the DOL language features are as follows:

Usability

DOL allows for writing down ontologies and ontology links as implicitly as possible

and as explicitly as needed; DOL allows for rich annotation and documentation of

ontologies.

Figure 2 The logic translation graph for basic ontology languages.

Sojic and Kutz Journal of Biomedical Semantics 2012, 3(Suppl 2):S3
http://www.jbiomedsem.com/content/3/S2/S3

Page 16 of 31

http://ontolog.cim3.net/cgi-bin/wiki.pl?OntoIOp
http://ontolog.cim3.net/cgi-bin/wiki.pl?OntoIOp


Syntax and expressivity

DOL has user- and machine-readable serializations and allows for expressing links

between ontologies and for expressing heterogeneous ontologies.

Semantics

DOL has a well-defined formal, logic-based semantics; DOL is a logic-agnostic meta-

language in the sense that its meta constructs are independent of the logical languages

used in DOL modules expressed in various ontology languages.

Implementability/extensibility

DOL is intended to be generally applicable, open, and extensible; DOL should work

with any existing or future ontology language (e.g. OWL, CL, F-logic, UML class dia-

grams, RDFS, and OBO).

DOL intends to cover all state-of-the-art basic ontology languages, and to provide a

meta level on top of these. This meta level allows for the representation of logically

heterogeneous ontologies in the sense that DOL ontologies may comprise of modules

written in ontology languages with different underlying logics. Moreover, the DOL

meta level constructs allow for logical links between ontologies such as relative inter-

pretations or conservative extensions, mappings between ontologies (and their terms),

merging operations, as well as non-monotonic extensions. The proposed meta-

language intends to be an extensible framework for ontology languages, which means

that any ontology language and any logic whose conformance with DOL has been

established can be used with DOL. In particular, DOL establishes the conformance of

a number of widely used ontology languages and logics as part of the standard; these

include (ordered by increasing complexity) propositional logic (Prop), OWL [68] (with

its profiles EL, RL and QL [69]), standard first-order logic with equality (FOL =) and

Common Logic (CL) [70], as well as translations between these ontology languages,

displayed in Figure 2.

Note, in particular, that among these ontology languages, Common Logic is the most

expressive one, and is therefore a target language for translations from all the other

languages. Thus, when reasoning about heterogeneous distributed ontologies, one can

prima facie translate all participating ontologies to Common Logic. However, note the

difference to translating all ontologies to Common Logic in the first place: when, e.g.,

an OWL ontology has been translated to Common Logic, it is no longer easily amen-

able to decidable or even tractable reasoning procedures that OWL tools support.

Therefore, DOL leaves all ontologies in their original formalisation to take advantage

of the optimised automated reasoners for that particular language, and DOL tools

should only translate them on demand. In summary, the functionality of the DOL fra-

mework may be captured by the following informal “equation":

DOL = meta(Prop, EL,QL,OWL, FOL=, CL, . . .

Prop → OWL, Prop → FOL, EL → OWL,OWL → FOL, FOL → CL, . . .)

where the meta(·) operation introduces the above mentioned meta-level constructs

on top of the basic ontology languages using the built-in logic translations. A prototy-

pical implementation of the DOL language is provided by the Hets system [71]. We

next illustrate some of the DOL features by constructing a heterogeneous ontology for

mereology.
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(Fragments of) mereology in biomedical ontologies

Certain phenotypic features can be described in terms of mereology. Indeed, as dis-

cussed in [72], part-whole relations are ubiquitous in biomedical ontologies. In fact,

they typically employ both a taxonomic structure (is-a hierarchy) and a partonomic

structure (part-of hierarchy).

Rather than repeating here the full syntax and semantics of the DOL language, we

look in some detail at the example of specifying mereology for ontologies of different

expressivity using different, heterogeneous formalisms, thereby illustrating some of the

DOL features. While mereological relations such as parthood are frequently used in

ontologies, many of these ontologies are formalised in languages that are not fully cap-

able of defining the mereological notions. For example, mereological relations are often

used in large biomedical ontologies which are implemented in the EL profile of OWL

for efficiency. Similarly, Rector and Brandt [73] discuss what logical expressivity might

be considered appropriate for the SNOMED ontology, and recommend to use the full

OWL language to remedy various modelling problems found in SNOMED. However,

even using the full expressivity of OWL is not sufficient for defining mereological rela-

tions, and more complete definitions require first-order or even second-order logic [5].

We now sketch a heterogeneous specification of mereology, introduced previously in

different form in [5], using the DOL language.

Propositional

It starts with a Prop formalisation of the taxonomy of the categories over which

DOLCE[39] defines mereological relations. We use syntax similar to OWL’s Manche-

ster syntax [74], which should be self-explanatory.

distributed - ontology Mereology

logic log : Propositional

ontology Taxonomy = %% DOLCE’ s basic taxonomic information about mereology

props PT %{ Particular} %, PD %{ Perdurant }%, T %{ TimeInterval }%,

S %{ SpaceRegion} %, AR %{ AbstractRegion }%

. S ⋁ T ⋁ AR ⋁ PD ® PT %% PT is the top concept

. S ⋀ T ® ⊥ %% PD, S , T, AR are pairwise disjoint

. T ⋀ AR ® ⊥ %% remaining ‘disjointness axioms’ left out here . . .

Although Prop is rarely regarded as an ontology language, this logic is quite popular

for formal modelling since consistency and logical consequence can be quite efficiently

decided using SAT solvers. In particular, for early detection of modelling errors in an

ontology design (especially when using a large number of classes), initial consistency

checks and satisfiability of classes can be delegated to a SAT solver for debugging.

Description logic EL and interpretations

We next specify a similar ontology in the EL profile of OWL (alternatively we could

import the Prop ontology, see below), however adding a basic theory of ‘parthood’ by

declaring it a as a transitive relation.

logic log : EL %% syntax: OWL Manchester serialization/EL profile [69]

ontology EL Parthood = %% Parthood in OWL EL

Class : Particular Category SubClassOf: PT %% other class declarations omitted
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DisjointUnionOf: S, T, AR, PD %% pairwise disjointness more compact

ObjectProperty : is Part Of Characteristics: Transitive

As this ontology declares classes for all categories that are declared as propositional

variables in the Prop ontology satisfying the same disjointness and subsumption rela-

tionships, the EL ontology interprets the Prop ontology (we here assume a Prop®OWL

ontology language translation, compare [67]). Here, ‘interpretation’ is to be understood

in the sense of model theory, i.e. the set of translated sentences of the source ontology

have to logically follow from the target ontology. This is written in DOL and added to

the distributed ontology as follows:

interpretation TaxonomyToELParthood : Taxonomy with translation

PropToOWL to ELParthood

Figure 3 illustrates the ‘interpretation’ construct in more detail. Note that we cannot

in general directly translate propositional formulae to the OWL-EL fragment as EL,

being a sub-Boolean logic, does not have full Boolean negation. Therefore, both the

propositional theory and the EL theory will be implicitly translated to OWL, and the

induced homogeneous interpretation will then verify whether or not the translated pro-

positional formulae are logically entailed by the translated EL formulae.

Description logics: OWL-DL and beyond

We move on to add a module in the OWL-DL language. We import the EL parthood

ontology and introduce additional parthood properties (such as asymmetry) which

clearly go beyond the expressivity of Prop or EL.

logic log : OWL %% syntax : OWL Manchester serialization [74]

ontology ProperParthood = ELParthood then

ObjectProperty : is ProperPartOf Characteristics : Asymmetric

SubPropertyOf : isPartOf %% Transitive + Asymmetric not allowed in OWL

Class : Atom EquivalentTo : inverse isProperPartOf only owl : Nothing

%% an atom has no proper parts

OWL still has quite good automatic reasoning support, but therefore also has its lim-

its: OWL is not capable of defining e.g. the antisymmetry of the isPartOf relation.

Overcoming such restrictions, we give 3 more extensions. Firstly in an expressive DL

exceeding OWL expressivity, secondly in standard first-order logic FOL, and thirdly in

Figure 3 Interpreting a taxonomy expressed in propositional logic in an EL ontology.
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Common Logic CL. First, the DL ‘ExpDL’ allows stronger definitions of several mereo-

logical notions by using the OWL language, but by violating some of OWL’s syntactic

restrictions, thus exceeding its expressivity (for a technical analysis see [75]). Note that

the ‘ExpDL’ logic is not officially part of the DOL language, and here only presented

for illustrative purposes; however, it can obviously be translated to FOL.

logic log : ExpDL %% Parthood in DL exceeding OWL expressivity

ontology Parthood = ProperParthood then %% Parthood in OWL DL, as far as

expressible

ObjectProperty: is ProperPartOf Characteristics : Transitive

%% Transitive + Asymmetric not allowed in OWL

SubPropertyOf : isPartOf

SubPropertyChain : ispartof o isProperPartOf

%% together with imported axioms violates OWL restrictions [75]

Although already quite expressive, the logic ‘ExpDL’ still has no explicit existential

quantification available, which makes it impossible to define notions such as overlap.

This can however be easily done in first-order logic.

logic log : FOL %% standard ‘textbook’ FOL

ontology FOLParthood = Parthood then

∀ x,y : × . Ov (x,y) ↔ ∃ z : × . (isPartOf(z,x) ⋀ isPartOf (z,y))

%% definition of overlap

Common logic CL

Finally, the CL ontology, which imports and extends the OWL and FOL ontologies

(which are implicitly translated using the default FOL®CL and OWL®CL transla-

tions), gives a full specification of the mereology of ‘classical extensional parthood’ (see

[39]). CL extends FOL with second-order style modelling, of which we use the possibi-

lity to quantify over predicates here. This allows us to concisely express the restriction

of the variables x, y, and z to the same taxonomic category (perdurants, abstract

regions, etc.), and it allows us to define a notion of second-order fusion [76].

logic log : CommonLogic %% syntax : CLIF dialect of Common Logic [70,

Annex A]

ontology ClassicalExtensionalParthood =

FOLParthood then { %% import OWL/FOL ontology from above , translate it to CL

. ( for all (X) (if (or (= × S) (= × T) (= × AR) (= × PD) )

( for all (x y z) (if (and (X x) (X y) (X z) )

( and %% now list all the axioms

( iff ( isAtomicPart Of × y) (and (isPartOf × y) (Atom x) ) )

( iff (sum z × y)

( for all (w) (iff (overlaps w z) (and (overlaps w x) (overlaps w y ) ) ) ) )

( exists ( s ) ( sum s × y ) ) %% existence of the sum ) ) ) ) )

. ( for all ( Set a ) ( iff ( fusion Set a ) %% definition of fusion

( for all (b) ( iff ( overlaps b a )

( exists ( c ) (and ( Set c ) ( overlaps c a ) ) ) ) ) ) )

}
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Reusing fragments of mereology in biomedical ontologies

Figure 4 serves two purposes: it illustrates graphically the structure of the heteroge-

neous specification sketched above, and it shows how the different modules can be re-

used for ontologies of varying complexity and expressivity. Here, the lightweight EL

ontology is extended to an OWL ontology that more fully axiomatises both Parthood

and ProperParthood. This branches into two further extensions, namely a FOL ontol-

ogy on the left, and an expressive DL ontology on the right that exceeds OWL expres-

sivity (and which can be interpreted in the FOL ontology). Both may be extended to

the CL specification. The lightweight EL axiomatisation might be imported (modulo

renaming the classes over which we wish to specify e.g. parthood) in corresponding

lightweight EL biomedical ontologies. For more expressive biomedical ontologies, both

the OWL or the FOL specification may be important, depending on whether or not

decidable reasoning is essential for the application of the ontology. FOL expressivity is

of course often found in foundational ontologies, as are second-order features. How-

ever, even expressive theories of mereology are not sufficient for describing more com-

plex issues in e.g. human anatomy on different levels of granularity, including holes or

other topological notions, compare [77] for a discussion.

Note that apart from the constructs employed in the above mereology specification,

namely the modular construction of ontologies using parts written in different formal-

isms (by importing along a logic translation) and the notion of interpretation, DOL

comprises several other heterogeneous modelling features that are important for mod-

elling purposes in biomedical ontologies, most notably mapping and merging of ontolo-

gies, as well as non-monotonic extensions which are discussed in more detail in the

next section. The mapping facility allows to declaratively add the results of matching

tools to an ontology specification, so called alignments (see [78] for an overview of

matching research). Alignments are sets of correspondences, i.e. triples 〈s, t, a〉, where

the term s from ontology X is considered synonymous with term t from ontology Y,

adding a confidence value of a Î [0,1]. In general, not only synonymy between terms

may be considered as the ‘linking relation’, but also subsumption, parthood, or other

relations. For instance, BioPortal (see http://bioportal.bioontology.org/) reports that the

term ‘Breast’ from the NCI Thesaurus is mapped to the term ‘mammary gland’ from

Figure 4 Biomedical ontologies of different expressivity, importing different subtheories of the full
mereology specification.
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the Mouse adult gross anatomy ontology. For dealing with compositions of alignments

in large biomedical ontologies, compare [35]. The Ontology Alignment Evaluation

Initiative (OAEI) held at ESWC 2012 (see http://oaei.ontologymatching.org/) com-

prised two competitions evaluating the performance of ontology matching technologies

for biomedical ontologies, one matching the Adult Mouse Anatomy (2744 classes) and

the NCI The-saurus (3304 classes) describing the human anatomy, and one matching

the Foundational Model of Anatomy (FMA) and the National Cancer Institute The-

saurus (NCI).

The combine operation in DOL, on the other hand, will use the specification of

mappings identifying/differentiating terms from two distinct ontologies, and will return

a new ontology that combines the axioms of both whilst respecting the identifications

(see [79] for details as well as a discussion of the meaning shift that occurs when com-

posing alignments). Such mappings of terms may, of course, be extracted from the

results of corresponding matching tools, i.e. the obtained alignments. More use cases

for the DOL language can be found in [80].

HER2 phenotypes, mereology, and the non-monotonicity of normality
In this section, we discuss some aspects of the ‘mereology of HER2’, and the issue of

‘normal’ and ‘abnormal’ breast phenotypes. The Human Epidermal growth factor

Receptor 2 (HER2) is an intramembrane protein that belongs to the family of epidermal

growth factor receptors. HER2 positive breast cancer (HER2+ BC) has been recognised

as a very aggressive form of cancer (see above), characterised by amplification and

overexpression of the ErbB2 (HER2) gene as well as the genes of the ErbB2 amplicon.

Accordingly, the HER2 protein, coded by the ErbB2 gene, is present in a high concen-

tration within the cell. The related cell phenotype is characterised through various

detection methods, e.g. immunohistochemistry (IHC), as showing a high concentration

of the intramembrane receptor HER2, while the cancer tissue phenotype has been

described as ‘poorly differentiated’ and associated with a poor prognosis. As the predic-

tive power of HER2 has been demonstrated in clinical practice, HER2 has acquired

additional descriptions such as tumour marker [81,82] and a drug target. ‘Poor differ-

entiation’ of the examined tissue sample is still one of the main histopathological cri-

teria for cancer assessment. However, as we focus here on the HER+ breast cancer, the

feature that marks the disease is ‘HER2 overexpression’.

HER2 protein in normal and abnormal phenotypes

In our model (Figure 5), we describe a parthood relation in the context of a breast can-

cer subtype, where ‘HER2’ represents the intramembrane protein and a difference

maker for the typical HER2+ breast cancer phenotypes. Each of the phenotype seg-

ments (i.e. the cell membrane, the cell, the tissue and the organ) acquires ‘cancer phe-

notype’ features due to overexpression of HER2.

Through a fine-grained representation of protein-protein interaction networks it can

be captured how HER2 overexpression relates to carcinogenic processes, such as can-

cer cell growth, proliferation, migration, and adhesion that eventually result in a poorly

differentiated tissue and an aggressive cancer phenotype. In our model, we abstract

from the details of molecular processes, while using ‘HER2’ as a phenotype marker

across the mereological segments.
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In terms of the Phene ontology [18], our model of HER2+ breast cancer includes

object-phene structural classes of the cancer affected mammary gland (HER2+ breast

cancer). Apparently, the relevant quality of the phenotype is overexpression of the

HER2 protein. A detection system by a method such as immunohistochemistry (IHC)

stains a tissue sample with a colour dye (see DAB in Figure 6). The produced image

represents HER2 overexpression as ‘brown colour’ of the membrane.

Of course, the colour does not inhere in the HER2 protein. Rather, it marks the pre-

sence of the protein within the membrane. Thus, the quality of ‘brown’ membrane

within the HER2+ breast tissue sample actually represents quantity of the HER2 pro-

teins marked by the dye. As the quantity in this case describes the amount of proteins,

we treat ‘overexpression’ in terms of detected HER2 proteins. The IHC method itself

does not provide the number of HER2 proteins, but it just detects HER+cells in a tis-

sue sample. However, it does not impact our model as quantitative proteomics and

certain IHC image processing, in principle, can detect the amount of a protein (see e.g.

[83,84]). For the same reason, our formal model, which considers IHC scores, assigns

the ‘cancer’ feature to a phenotype on a tissue level. The detected number of HER2+

cell membranes corresponds to the number of HER2+ cells. A tissue sample having

more than 30% of HER2+ cells acquires ‘HER2+ cancer’ phenotype [85], which is then

also assigned to the mammary gland. Such an approach allows us to describe ‘overex-

pression’ as mereology of the HER2+ phenotype.

Concept minimisation: normal vs. abnormal phenotypes

We have sketched in Figure 5 just a fragment of HER2 related breast cancer pheno-

types. And indeed, note that the classification of organ parts etc. into normal vs.

abnormal, as shown in Figure 5, is not a classical dichotomy as suggested by these

terms. Indeed, attaching the property of abnormality to e.g. a particular tissue depends

non-monotonically on the presence of information concerning overexpression of

HER2. That is to say, unless such information is explicitly known, per default tissue

Figure 5 HER2 as a difference maker: normal vs. abnormal breast phenotype.
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will be considered normal. Therefore, adding information to the formal modelling

(more instances of HER2 are part of some tissue) results in retracting the property of

‘normality’.

Modelling this formally is not straightforward in standard ontology languages such as

OWL or FOL. Or rather, it can only be simulated by explicitly listing exceptions. How-

ever, it can be done elegantly by using non-monotonic formalisms such as default rules

[86], autoepistemic logic [87], or circumscription [88]. These formalisms were all

devised in the early 80ies to overcome exactly such shortcomings of classical first-

order logic in modelling exceptions and common sense rules.

Indeed, the necessity of supporting non-monotonic rules and abductive reasoning for

ontology design has been noted many times (see e.g. [89-91]). In connection with bio-

medical ontologies, and phenotype ontologies in particular, Hoehndorf et al. [91] dis-

cuss the problem of combining an ontology for anatomy such as the Foundational

Model of Anatomy (FMA) [92], which encodes a canonical view on its subject matter,

with a phenotype ontology such as the Mammalian Phenotype Ontology [93], in which

phenotype description often directly contradict the canonical definitions. A simple

example is given by defining the anatomy of a mouse, which, canonically, always has as

part a tail, whereas a ‘mouse without a tail’ is surely a reasonable description of a

phenotype.

Unlike the approach of [91], using the DOL language allows to declaratively specify

the non-monotonic extension of an ontology (or a combination of several ontologies)

in one ontology specification. In the context of DOL, a multi-logic modelling environ-

ment, the non-monotonic framework of choice to be initially supported is circumscrip-

tion, invented by John McCarthy in 1980. The reason for this choice, on a technical

level, is simple enough to explain: the basic idea on which circumscription is based is

the minimisation of (the extension of) concepts or relations (terms for short), assuming

the extensions of some terms are fixed, whilst the extension of certain other terms may

Figure 6 HER2 protein detection by immunohistochemistry (IHC).
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freely vary. To give formal semantics to this idea, all that is needed is the possibility to

define a pre-order on models, which can be done in a logic-independent way.

Since we could here not sketch the semantics of non-monotonic extensions of DOL

in sufficient detail, we only sketch how the HER2 modelling illustrated above in Figure

5 can be captured in a formal specification.

Formal specification of a HER2 ontology

The HER2 ontology demonstrates how demands of the epistemic groups influence

each other on a formal level. According to the St Gallen International Expert Consen-

sus recommendation [85], the threshold for the determination of HER2 positivity by

the IHC method is an intense membrane staining of >30% of the tumour cells. How-

ever, percentages can not directly be modelled in OWL (and for the purposes of this

paper we refrain from using more expressive logics). Since percentage of staining is

scored by pathologists and clinical oncologists, according to the panel of experts

recommendations [94], into one of the classes 0, 1+, 2+, 3+, we here use a qualitative

abstraction. I.e. we explicitly introduce the IHC HER2 Score as an enumerated

concept.

The main idea now is to minimise the extension of the ‘abnormal’ concepts. I.e.

unless there is evidence for overexpression of HER2 in, e.g., a tissue, it will be classified

as ‘normal’. The following specification sketches this idea.

distributed-ontology HER2

logic log :OWL

ontology HER2 = ProperParthood then

Class : IHC_HER2_Score

DisjointUnionOf HER2_Negative , HER2_Borderline , HER2_Positive

Class : HER2_Negative EquivalentTo {0 , 1+}

Class : HER2_Borderline EquivalentTo {2+}

Class : HER2_Positive EquivalentTo {3+}

Class : HER2 SubClassOf Proteins

Class : Cell DisjointUnionOf : Normal_Cell , HER2+_Cell

Class : Tissue DisjointUnionOf : Normal_Tissue , HER2+_Tissue

And hasHER2Score Exactly 1 IHC_Her2_Score

%% we assume all tissue to be IHC measured

%% other disjointness axioms left out here . . .

Class : Cell_Membrane SubClassOf

isProperPartOf Exactly 1 Cell

Class : HER2+_Tissue EquivalentTo Tissue And hasHER2Score Some

HER2_Positive

%% determination of HER2 positivity of membrane by the IHC method

Class : HER2+_Cell SubClassOf inverse isProperPartOf Some HER2+_Cell_Membrane

Individual : X

Types : Tissue And hasHER2Score Some {3+}

Individual : Y

Types : Tissue

DifferentFrom X

minimise HER2+_Cell_Membrane , HER2+_Cell , HER2+_Tissue
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vary Normal_Cancer_Cell_Membrane , Normal_Cancer_Cell , Normal_Cancer-

Tissue

then %implies

Individual : X

Types : HER2+_Tissue

Individual : Y

Types : Normal_Tissue

And hasHER2Score Some ( HER2_Negative Or HER2_Borderline )

%% Y is normal tissue (non-HER2 positive) without evidence to the contrary

This ontology in particular assumes that any tissue is assigned an IHC HER2 Score,

i.e. any particular tissue, if it were measured, would be assigned a specific value from

IHC_HER2_Score. Here, the non-monotonicity comes into play. The minimisation of,

e.g., the concept HER2+_Tissue means that any individual, here Y, which does not

explicitly meet the defining criteria of HER2+_Tissue will be classified as belonging to

its negation, i.e. being a Normal_Tissue. Without circumscription, no such new infor-

mation could be derived (note that the statements following %implies are marked as

following logically from the above ontology specification). Indeed, consider Figure 7

showing the class hierarchy of the HER2 ontology as implemented in OWL without

circumscription. Whilst it does already infer that individual × must belong to the class

HER2+_Tissue, it does not infer any information about individual Y.

Unrestricted use of circumscription easily yields undecidable reasoning when applied

to even rather weak DLs. Whilst [89] discusses several such undecidability results and

fragments of OWL for which it is decidable, there is also interesting restrictions that

keep reasoning decidable even over full OWL [95].

Implementation and future plans

We have discussed the importance of non-monotonic modelling for bio-medical ontol-

ogies, and have sketched a non-monotonic HER2 modelling, combining the theories of

parthood and circumscription of concepts to minimise the ‘abnormal’ cancer-related

concepts. The Hets system [71], which provides a prototypical implementation of

DOL, is currently being extended to also support non-monotonic inference based on

circumscription. The HER2 ontology is a work in progress, and we intend to include

further criteria to describe ‘abnormal’ phenotypes, while reusing various OBO Foundry

ontologies such as e.g. the Units of measurement ontology (see http://obofoundry.org/

cgi-bin/detail.cgi?id=unit), and the Phene ontology [18] classes and relations. In parti-

cular, we aim at performing an experimental verification of the usefulness of the

model. Existing ontology repositories such as BioPortal lack the ability to host hetero-

geneous ontologies such as the HER2 ontology just sketched. We therefore host the

HER2 ontology at OntoHub (see http://ontohub.org/), a new ontology repository cur-

rently under active development that will support DOL ontologies and their features in

their full generality. Users of OntoHub can upload, browse, search and annotate basic

ontologies in various languages via a web frontend. OntoHub accesses the Heteroge-

neous Tool Set Hets via a RESTful web service interface for having the structure of

ontologies analyzed. Hets already supports a large number of basic ontology languages

and logics, and is capable of describing the structural outline of an ontology from the

perspective of DOL, which is not committed to one particular logic (see [80] for more
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information on OntoHub). Beyond basic ontologies, OntoHub supports linking ontolo-

gies across ontology languages, and creating distributed ontologies as sets of basic

ontologies and links among them. An important difference to the mapping facilities of

e.g. BioPortal is that links in OntoHub have formal semantics, and therefore enable

new reasoning and interoperability scenarios between ontologies.

Concluding remarks
We tackled the problem of phenotype representation from various perspectives. As our

main interest is in merging knowledge from different domains, we addressed some of

the ‘domain knowledge problems’ of [96] through inspecting a number of examples

from molecular oncology and clinical practice. In particular, we demonstrated that a

breast cancer phenotype ontology needs to deal with a plurality of biomedical repre-

sentations as well as onto-logical formalisms.

In order to clarify how domain specific representations can be integrated on a formal

level, we distinguished six epistemic groups involved in the construction of a knowl-

edge base. The criteria used for the classification of the different groups were the

representational means and the degree of representational and semantic explicitness.

The introduced distinctions illustrate how an intertwined collaborative effort leads

experts from diverse domains to establish a formalised and explicit knowledge repre-

sentation. We stressed the need for a more detailed characterisation of domain specific

epistemic interests, including a deeper understanding of the characterised groups (1)-

(6), in order to provide a more sustainable integration of knowledge about breast can-

cer, increasing interoperability of represented information and, therefore, applicability

of acquired clinical and biological knowledge. A closer understanding of the domain

needs would also further support decisions about which formalisms best suit a domain.

Thus, instead of favouring a unifying approach to knowledge integration, our analysis

rather shows that heterogeneous representations, which originate from different episte-

mic needs, also ask for a representational pluralism. A pluralism of perspectives on a

problem, as exemplified in breast cancer phenotype ontology, can integrate fruitful

insights from various domains, and e.g. enable the application of molecular knowledge

into clinical practice.

Concerning formal representations, dealing with the heterogeneities of phenotypes,

we propose to endorse a framework that allows to organise the various (domain) repre-

sentations into an interlinked modular structure, respecting the plurality of formalisms,

expressivities and aims, as they are found across diverse scientific communities. In par-

ticular, we have described a modelling of defeasible inference based on circumscription

Figure 7 The inferred class hierarchy of the HER2 ontology as displayed in Protégé.
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that allows to model the normal/abnormal distinction in phenotypes in a transparent

way.

We have proposed the DOL language to address some of the interoperability needs

in ontology design, and, indeed, we believe that no attempt at an integration of knowl-

edge can be epistemically sustainable unless it embraces the plurality of formal

languages and tools, methodologies and perspectives, as they result from the heteroge-

neity of domain interests. DOL is intended to support just such a pluralistic integration

of domain interests on a formal level, namely Open Biomedical Pluralism.
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