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Abstract

Background: We propose a method for automatic extraction of protein-specific residue
mentions from the biomedical literature. The method searches text for mentions of
amino acids at specific sequence positions and attempts to correctly associate each
mention with a protein also named in the text. The methods presented in this work will
enable improved protein functional site extraction from articles, ultimately supporting
protein function prediction. Our method made use of linguistic patterns for identifying
the amino acid residue mentions in text. Further, we applied an automated graph-based
method to learn syntactic patterns corresponding to protein-residue pairs mentioned in
the text. We finally present an approach to automated construction of relevant training
and test data using the distant supervision model.

Results: The performance of the method was assessed by extracting protein-residue
relations from a new automatically generated test set of sentences containing high
confidence examples found using distant supervision. It achieved a F-measure of 0.84
on automatically created silver corpus and 0.79 on a manually annotated gold data
set for this task, outperforming previous methods.

Conclusions: The primary contributions of this work are to (1) demonstrate the
effectiveness of distant supervision for automatic creation of training data for
protein-residue relation extraction, substantially reducing the effort and time involved
in manual annotation of a data set and (2) show that the graph-based relation
extraction approach we used generalizes well to the problem of protein-residue
association extraction. This work paves the way towards effective extraction of
protein functional residues from the literature.

Background
The rapid pace of genome sequencing adds urgency to efforts for determining the func-

tions of newly sequenced proteins. Analysis of protein sequences and structures can lead

to new predictions and discoveries of significant patterns, motifs and functionally impor-

tant sites. In the context of three-dimensional protein structures, the appearance of certain

amino acid residues at key structural positions has a central role in protein function, for
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instance enabling ligand or substrate binding. For proteins of therapeutic importance,

identifying these sites as potential targets is a key early step in drug design.

The biomedical literature is a rich resource for identifying functionally important sites.

There is a growing gap between the knowledge embedded in the literature and what has

been formalized in genomic databases [1] and we have observed that this is true specifi-

cally for functional site information [2]. Efforts to manually catalog functional sites men-

tioned in the literature are helping but will not fill this gap in the near future, considering

the growing pace of the biomedical literature. Hence the overarching goal of our work is

to identify such functional sites automatically from the biomedical literature.

We previously addressed this problem by developing automated methods for identifying

protein residue mentions in biomedical text, and associating these mentions with func-

tional sites [2,3]. In that work, we showed that detecting residue mentions has some inter-

esting characteristics as a text mining problem: not only do residue mentions exhibit

regularities that can facilitate their detection [4], but the independent validation of residue

mentions via physical data (the protein sequence) provides an important filtering effect. In

this work, we directly take advantage of the available physical information to enable the

development of a high-confidence text corpus for training a protein-residue relation

extraction system without the need for manual annotation.

Our previous methods [2,3] used curated links from publicly available protein structure

records in the Protein Data Bank (PDB) [5] to find relevant PubMed IDs. Residue men-

tions were extracted from the corresponding PubMed abstracts, and the curated links told

us the specific protein that most likely was associated with these residue mentions. In gen-

eral, however, such curated links between proteins and the literature are limited in num-

ber and as such the generalizability of the method is correspondingly limited. When such

links to the literature are unavailable, we must instead depend on analyzing the text itself

to establish a relationship between a specific protein and a specific residue. Therefore, in

this work we explore the application of text mining methods to extract valid protein-resi-

due pairs from abstracts of papers about protein structure. The approach we outline

stems from the observation that authors often make statements that explicitly relate a pro-

tein to one or more of its constituent residues within the boundary of a single sentence,

e.g., “The 162-amino acid PrxV contains Cys residues at positions 73 and 152.” (adapted

from PMID:10787409). We aim to capture the underlying linguistic structures that express

these semantic relationships.

A number of related works have been published with a focus on the extraction of

point mutations [6-11]. MEMA [9] and MuteXt [10] use word distance to select

among multiple protein-residue pairs extracted out of a text. Mutation-GraB [6]

addresses the ambiguity of protein-residue pairs using a weighted graph made up of

word bigrams in the text, retaining only the protein-residue pair connected by the

shortest path in the graph. MutationMiner [7,8,11] is another notable work that

extracts mutations and mutation impact statements from the literature, while also

mapping mutation coordinates to protein structures to enable visualization. In addition

to extracting mutation mentions from the literature, Witte and Baker [7] attempted to

ground the mutated residue mentioned in the text to a specific residue in the protein

sequence using regular expressions corresponding to residue motifs detected in the

literature. While this strategy of grounding could also be useful in our context, it is

less obviously applicable to single residue mentions.
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The aims of our study are most closely related to those of Nagel et al., 2009 [4]. That

work demonstrated that a predictive model for functional annotation of proteins from

the biomedical literature can be derived taking advantage of the information in publicly

available resources. In that work, the authors extracted protein-species-residue triples

from text using abstract level co-occurrence of the three entities, and validated the tri-

ples using reference data in the UniProt Knowledge base [12]. Functional annotation

was then addressed with an information-theoretic model that related words in texts to

functional categories. Existing UniProt annotations were used to establish both the

texts relevant to a protein, and the positive functional annotations of proteins used in

training the model.

We focus here solely on developing methods to establish reliable protein-residue

associations in situations where validating information may not be available, leaving

functional annotation for future work. The Nagel et al. method does not consider any

contextual syntactic dependencies between the protein and the residue, an important

feature we investigated in this work. We have utilized the gold standard corpus devel-

oped by Nagel et al. as an independent test set for the evaluation of our method.

Recently, dependency graphs obtained from full syntactic parsing of text, with their

ability to reveal long-range syntactic relations, have been shown to improve biological

relation extraction [13-15]. Liu et al. proposed a graph-based approach [16,17] to

tackle the event extraction tasks of BioNLP-ST 2009 [18] and BioNLP-ST 2011 [19]. In

that method, rules for detecting biological relations are first automatically learned by

identifying their key contextual dependencies from full syntactic parsing of annotated

texts, captured as a rule graph. New relations are then recognized by searching for a

subgraph isomorphic to a rule graph within the dependency graphs of complete sen-

tences in the input texts. This approach has also been successfully adopted to extract

protein-protein interactions in the biomedical literature [20], demonstrating its gener-

alization capability. In this work, we further explore the potential of this graph-based

approach in the novel context of protein-residue association extraction.

Results
We present the results of our text mining system on both the intermediate step of

entity detection and the ultimate task of extraction of protein-residue associations.

Each extracted protein-residue relation involves two entities - a protein and a residue.

Our representation of a residue annotation includes information about the wild-type

amino acid, sequence position, and a possible mutant amino acid type. For example, a

relation between the protein “URPTase” and the residue “Arg80” is captured as follows:

Protein: URPTase

Residue:

Wild Type Residue: Arg

Position: 80

Mutant Type Residue: Null

When we evaluate an extracted relation against a gold annotation we consider it to

be correct only if every constituent of the extracted relation, i.e., every element of the

representation, exactly matches that of the annotation.
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Below we present our results of the performance of entity (amino acid residue and

mutation) detection on three different data sets; one reviewed by our group and two

from external sources. These three resources are annotated manually and therefore we

refer to them as the gold corpora. In addition, we created a corpus annotated with pro-

tein-residue relations using automated methods, which we refer to as the silver corpus.

We describe these corpora in detail in the Data Sets section.

We did not evaluate the performance of protein name recognition directly on either

the gold or the silver corpora. For the gold corpora, we used provided manual annota-

tions of protein names for all downstream processing. In the silver corpus, we retained

only those sentences in which the entities detected in the abstracts have been physi-

cally validated against a PDB record, as will be described in detail in the Methods,

thereby effectively compensating for errors in the protein mention detection.

Evaluation of entity recognition: amino acids and mutations

We evaluated the performance of amino acid and mutation detection against three gold

corpora containing amino acid and/or mutation mention annotations. We first consider

performance on a corpus produced by Nagel et al., 2009 [4], summarized in Table 1. We

evaluated four different residue or mutation detection systems in total on the Nagel data

set. The system (System 1: -SLAA, +SLM; Row 1 in Table 1) which had only single letter

mutation (+SLM) patterns but no single letter amino acids, e.g., “H235”, (-SLAA)

achieved the best performance of 88.92% precision, 98.09% recall and 93.28% F-measure

for the extraction of amino acid residue and mutation mentions on the Nagel data set.

Nagel et al. reported higher performance (92% precision, 98% recall and 95% F-measure)

on the same data set. We also studied the effect of including and excluding the regular

expressions for extracting the single letter amino acid residue and mutation mentions

on the performance of the residue/mutation detection (Systems 2-4, Table 1). While

excluding the single letter mutation patterns significantly affected recall (both System 2

and 3), inclusion of single letter amino acid patterns significantly decreased the precision

on the Nagel data set.

Error analysis revealed that some of the errors in residue/mutation detection are due

to the difference in the notion of what we consider a valid residue mention as compared

to the annotation of the Nagel corpus. For example, while the Nagel corpus annotation

considers “His43-Asp88-Ser182” to be a single residue, our system detects them as three

individual residue mentions. This results in three precision errors and one recall error.

In order to bring the annotation in line with our guidelines, we re-annotated such

instances in the Nagel corpus and re-evaluated them using the modified annotation set

(“Modified Nagel”). A significant increase in performance demonstrates the impact of

Table 1 Evaluation of performance of residue and mutation extraction on the Nagel
corpus (original annotations)

Evaluation Scheme Precision (%) Recall (%) F-Measure (%)

System1: -SLAA, +SLM 88.92 98.09 93.28

System 2: +SLAA,-SLM 71.86 79.01 75.27

System 3: -SLAA,-SLM 94.78 76.33 84.56

System 4: +SLAA,+SLM 74.42 98.85 84.91

Nagel et al.’s reported numbers 92.00 98.00 95.00

SLAA - Single letter Amino acid patterns; SLM - Single Letter Mutation patterns; + for inclusion of patterns; - for
exclusion of patterns
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this modification (Precision: 91.64%, Recall: 98.50%; F-measure: 94.95%). As summarized

in Table 2, the new results are competitive with the figures reported by Nagel et al.,

2009 [4].

Table 3 summarizes our performance on the task of mutation extraction against

the Mutation Finder [21] corpus. We achieved a performance comparable to their

reported evaluation on their development (Precision : 96.81%; Recall: 82.9% ; F-mea-

sure : 89.32%) and test corpora (Precision: 95.61%; Recall: 81.59%; F-measure:

88.04%). Caporaso et al. 2007 [21] reported a precision of 98.40%, recall of 81.90%

and F-measure of 89.40% on their test corpus. Although the MutationFinder system

(http://mutationfinder.sourceforge.net/) outperforms our system on this data set, it

does not meet our requirement to recognize individual amino acids and so we can-

not substitute their system for ours.

To assess how well our patterns that identify residues and mutations generalize to full

text articles, we evaluated the performance against a new gold standard set of 50 full-

text articles, which we dub the LEAP-FS corpus for the system it was built to support

[2]. This corpus was manually annotated according to our guidelines. The system

achieved a precision, recall, and F-measure of 85.23%, 87.93% and 86.56% respectively.

An appreciable drop in the precision in identifying the amino acid residues and the

mutations in the LEAP-FS corpus is predominantly due to the inclusion of patterns to

capture single letter amino acid residues as seen in Table 3. As noted in the Data Set

section of this paper 16% of the amino acid residue annotations in the LEAP-FS corpus

include single letter amino acid abbreviations. If we do not include patterns to extract

single letter amino acids, the system would have low recall. Another source for precision

errors is due to the identification of residues or mutations mentioned in non-primary

sections of the paper (e.g., Title and References sections). Correct treatment of informa-

tion in such sections is pointed out by Cohen et al. 2010 [22] to be a challenge in proces-

sing full-text articles.

Some of the errors that were common, irrespective of the document type (abstract or

journal article), can be attributed to regular expressions that were intended to capture

single letter point mutations such as “S235A”, but instead misidentified gene names

such as “A8R”, “A23R” and cell lines such as “R2C” as mutations. Including the regular

expressions for extracting both single letter amino acid residues and single letter muta-

tions resulted in very low precision (74%) while recall was 99% and F-measure 84%.

Disabling these regular expressions increased precision (95%) with a sharp decline in

recall (76%) and an overall drop in F-measure to 85% which shows that single letter

mutation mentions contribute significantly to recall. We continue to work to refine

our entity recognition strategies.

Table 2 Evaluation of performance of residue and mutation extraction on the Nagel
corpus (Modified per our annotation guidelines)

Evaluation Scheme Precision (%) Recall (%) F-Measure (%)

System1: -SLAA, +SLM 91.64 98.50 94.95

System 2: +SLAA,-SLM 74.38 79.17 76.70

System 3: -SLAA,-SLM 96.23 77.27 85.71

System 4: +SLAA,+SLM 77.41 98.88 86.84

SLAA - Single letter Amino acid patterns; SLM - Single Letter Mutation patterns; + for inclusion of patterns; - for
exclusion of patterns
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Evaluation of protein-residue relation extraction

Our relation extraction methods are described in detail in the Methods section. In

brief, we employed a system that learns rules, in terms of syntactic patterns, for

extracting specific relations. The method requires appropriately structured training

data. Since we reserve the small number of examples of protein-residue relations in

the Nagel corpus for testing, we pursued a method for automatically constructing reli-

able training, development, and test data. Again, the construction of this so-called

“silver” corpus is described in detail in the Methods.

The silver corpus consists of sentences that contain at least one protein mention and

either an amino acid or mutation with a physically validated relationship to the men-

tioned protein. During training, both the protein and the validated associated residue

mentions are made available to the pattern learning algorithm. During testing, only the

protein mentions are pre-identified. The relation detection method we used addresses

extraction of the protein-residue associations from individual sentences and therefore

only relations expressed within a given sentence are targeted.

We were able to automatically build rules that capture the underlying syntactic

relationships for 1,741 physically validated high confidence protein residue relations.

After removing duplicate rules, we obtained 1,311 rules to relate proteins and resi-

dues in the text. We utilized a performance-based rule ranking method to evaluate

each rule. We then matched each rule to sentences in the development set using the

subgraph matching approach proposed in [16]. Rules that produce at least one rela-

tion prediction were further ranked by PRC(ri), the precision of each rule ri, com-

puted via Equation 1.

PRC(ri) =
# Correctly predicted associations by ri

# predicted associations by ri
(1)

Based on a previous investigation [17], rules with higher PRC(ri) values tend to pro-

duce fewer false positives. We therefore retained the rules with a PRC(ri) higher than

0.25. For rules that do not make any predictions on the development data, we retain

them in the hope that they may contribute to the relation extraction from the testing

data. Without affecting the recall much, this process helped to improve the precision

of the relations extracted from the development data.

Table 4 shows the results of the protein-residue relation extraction on the development

and test portions of the silver corpus based on two matching criteria, a stricter criterion

E+P+A, and a relaxed criterion E+P*+A*. The stricter matching criterion (E+P+A)

Table 3

a. Evaluation of performance of mutation extraction on MutationFinder corpus

Corpus System Precision (%) Recall (%) F-Measure (%)

Development Our system 96.82 82.91 89.32

Test Our system 95.61 81.59 88.04

MutationFinder 98.40 81.90 89.40

b. Evaluation of performance of residue and mutation extraction on LEAP-FS corpus

Corpus Precision (%) Recall (%) F-Measure (%)

LEAP-FS 85.23 87.93 86.56
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requires that edge directions and labels of all edges (E) be identical, all tokens (A) and

their associated POS tags (P) be identical for the edges and the nodes of a rule and a sen-

tence to match with each other. The relaxed criterion (E+P*+A*) requires only that the

lemmatized form of tokens and the relaxed POS tags be same. The relaxation of POS tags

means that for nouns, the plural form is allowed to match with the singular form, and

proper nouns are allowed to match with regular nouns; for verbs, past tense, present tense

and base present form are allowed to match with each other. The drop in the precision

offsets the marginal gain in the recall due to this relaxation of the matching criteria, lead-

ing to a small increase in the overall F measure.

We further implemented two simple co-occurrence-based methods to serve as base-

lines to compare with the graph-based approach. The methods extract all possible pro-

tein-residue relations, in the first method from within each training sentence and in

the second method from a complete PubMed abstract. Where multiple protein or resi-

due mentions occur within a single sentence or abstract, all pairwise combinations

were extracted. Table 4 also lists the results for this sentence-level co-occurrence base-

line on the silver corpus.

We observe that although the precision achieved by the graph-based approach signif-

icantly outperforms the baseline method, about 20% of the protein-residue associations

are missed. We attribute this to the fact that these relations are described in grammati-

cal structures that are not covered by the existing rules induced from the training sen-

tences. This lack of coverage can be attributed to two factors: to the presence of novel

syntactic structures in the test set that were unseen in the training set, or to the rela-

tion being expressed in a syntactic construct that the method cannot capture. For the

latter case, such constructs tend to be complex, involving a long dependency path

from the protein to its associated residue in the sentence. Relations that consist of

these structures are not recognized, as no matched rules will be returned under the

framework of the current exact subgraph matching.

Table 4 Evaluation of subgraph matching and co-occurrence baseline approach for
protein-residue relation extraction on silver corpus.

Corpus Corpus Precision
(%)

Recall
(%)

F-Mes
(%)

Development
Corpus

E+P+A 80.26 77.05 78.62

E+P*+A* 79.10 78.10 78.60

E+P+A+Rule ranking 81.20 76.42 78.74

E+P*+A*+Rule ranking 79.35 77.68 78.51

Sentence co-occurrence
baseline

59.45 100 75.28

Test Corpus E+P+A 84.07 79.43 81.69

E+P*+A* 82.72 80.10 81.39

E+P+A+Rule ranking 86.83 78.26 82.32

E+P*+A*+Rule ranking 83.60 78.43 80.93

Sentence co-occurrence baseline 62.42 100 76.86

Approximate subgraph matching (ASM) with distance
threshold 0.6

81.96 86.62 84.22

E+P+A - Match edge labels, Parts of speech, All tokens; E+P+A* - Match only Edge labels and Parts of speech.
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In order to further explore the generalization potential of extracted rules, we addi-

tionally applied an approximate subgraph matching (ASM) algorithm proposed in [23]

to this relation exaction problem for comparison to the exact subgraph matching

method. This penalty-based approximate subgraph matching measures the distance

between dependency graphs of a rule and a sentence by the weighted summation of

three components: subgraph strutural distance, dependency label distance and depen-

dency directionality distance. Since the algorithm respects the elements of a rule, and

allows only variations in the sentence graph, e.g., nodes or edges of the sentence

graph to be skipped with penalty, the matching process corresponds to a search for a

subgraph within the sentence graph that is approximately isomorphic to the rule

graph. A distance threshold is used in the algorithm to regulate the relation extraction

performance. Compared to the restrictive exact subgraph matching approach, the

ASM allows partial matching by giving the corresponding penalty and using distance

threshold to determine the degree of similarity between an event rule graph and a sen-

tence graph. The protein-residue associations extracted by this extended algorithm

naturally subsume the results from the exact subgraph matching.

The standard experimental setting for performing the ASM algorithm is to learn and

optimize the distance threshold from the training or development data, and then apply

the resulting threshold to the test set and report the relation extraction performance.

In this work, however, the application of ASM is a proof-of-concept experiment to

demonstrate that the algorithm is capable of retrieving more potential protein-residue

associations encoded by longer-range dependencies and various syntactic relationships

in sentences, which cannot be captured by the exact matching approach, while still

maintaining the extraction precision at the high level.

Therefore, we conducted this approximate matching experiment only on the test por-

tion of the silver corpus, and investigated the effect of tuning the distance threshold to the

overall performance of the protein-residue association task on this data set. While this

does mean that the results we present must overestimate the performance that would be

achieved on unseen text, it allows a direct comparison to the test results of the exact sub-

graph matching method.

We have experimented with a series of distance thresholds ranging from 0 to 1 with

an interval of 0.2. While the threshold 0 corresponds to the exact subgraph matching

with the matching criteria “E+P*+A*+Rule Ranking” (row 4 in the Test corpus section

of Table 4), the distance threshold 1.0 represents the maximal degree of approximate

matching allowed for this work. The results shown in Figure 1 illustrate that the F-

measure is the highest at the threshold 0.6, and the precision drops significantly when

a bigger threshold 1.0 is used. The approximate matching algorithm was able to

increase the recall by 6.5% over the best recall on the Test corpus achieved with exact

subgraph matching, shown in Table 4, while still retaining the precision at the 82%

level, leading to a significant 3% increase in F measure.

Table 5 shows three different evaluations against the hand-annotated gold set of Nagel

et al. 2009 [4]; the two co-occurrence baselines and the exact subgraph matching

approach. For evaluating the performance on extracting protein-residue relations on this

data set, we considered only the 197 protein-residue relations involving a residue at a spec-

fic position, ignoring bare residue mentions, in accordance with our residue annotation

guidelines.
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Discussion
Pattern learning

The performance of the dependency graph-based approach is consistent on both the

silver and gold corpora. The strictest matching criteria achieved a good performance

on both the development and test sets. While relaxing the token matching constraints

did not have significant impact on the overall F-measure, trading increased recall for

lower precision, the performance-based rule ranking contributed to a marginal increase

in the F-measure. The rule ranking significantly boosted precision, but sacrificed some

recall. Furthermore, without sacrificing precision, the approximate subgraph matching

approach significantly improved recall, showing an encouraging potential for relation

extraction applications.

The graph-based approach to protein-residue relation extraction considerably outper-

formed the sentence-level co-occurrence baseline on both the development and test

set. While the sentence based co-occurrence method achieved 100% recall, as is

expected based on how the silver corpus was constructed (using only sentences with

an overt protein and amino acid mention), its precision was under 60%. In contrast,

the exact subgraph matching approach has a more balanced performance, achieving a

highest precision of 86% and a highest recall of 78%.

Figure 1 Effect of distance threshold on the performance of protein-residue relation extraction on
the test portion of silver corpus in approximate subgraph matching.

Table 5 Evaluation of protein residue relation extraction on Nagel corpus

Method Precision (%) Recall (%) F-Measure (%)

Abstract level co-occurence 57.10 100 72.69

Sentence level co-occurence 63.50 84.77 72.61

Subgraph matching 85.09 69.54 76.54

Subgraph matching
(Modifed annotations)

90.38 71.57 79.89
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The results in Table 4 provide evidence of one interesting property of our graph

rule-based method, through the increased performance on the test set as compared to

the development set. While evaluating the development corpus, only event rules

derived from the training data were included in the rule set. While evaluating the test

corpus, event rules derived from both training and development data were included in

the rule set. Unlike traditional machine learning-based methods in which parameters

are heavily tuned to the development corpus, the graph rule-based method shows an

advantage when using the distant supervision framework, as rules/patterns learned

from co-mentions of pairs of entities known to interact are not prone to over-fitting to

a training corpus. Similar to the performance reported in [16,17], therefore, the

method is more generalizable across different datasets, leading to a comparable perfor-

mance on the test corpus to that of the development corpus. The higher association

extraction performance on the test corpus indicates a difference in the underlying data

distribution between the two corpora, also supported by the somewhat increased per-

formance of the co-occurrence baseline on the test data as compared to the develop-

ment data, as well as the potential contribution of event rules induced from the

development corpus.

Pattern learning: error analysis

The higher precision of the graph-based method indicates that there was substantial ambi-

guity within the sentences of the corpus that can be resolved using syntactic relations. The

lower precision of the baseline method derives from it postulating relations among a pro-

tein and an amino acid that do not correspond to a physically valid association. It can be

inferred from our results that physically valid protein-residue relations are expressed in

syntactic constructs that clearly relate the two constituent parts. For instance, consider the

sentence “In previous studies we found that the primary reason for selectivity is that

Asp597 in nNOS, which is Asn368 in eNOS, provides greater electrostatic stabilization in

the inhibitor complex.” (PMID 16285725). The co-occurrence method would identify 4

relations, nNOS-Asp597, eNOS-Asn368, nNOS-Asn368, and eNOS-Asp597. Only the first

two of these are correct, leading to two false positives. The graph-based approach, in con-

trast, only identifies the 2 correct relations, based on a rule capturing the pattern “Residue

in Protein“.

Error analysis further revealed that a long-distance path between the protein and residue

mentions, where the relationship description extends beyond clausal boundaries, is one of

the major factors contributing to the lower recall of the graph-based method. Consider

the following sentence “The crystal structure of recombinant ag85C from M. tuberculosis,

refined to a resolution of 1.5 A, reveals an alpha/beta-hydrolase polypeptide fold, and a

catalytic triad formed by Ser 124, Glu 228 and His 260“. While the sentence or abstract

level co-occurrence would capture three protein-residue relation pairs (ag85C-Ser124,

ag85C-Glu228, and ag85C-His260) from the sentence, there is no rule that captures such

long-distance relations, leading to recall errors. However, this recall problem can be signif-

icantly ameliorated with approximate subgraph matching, as we have demonstrated.

Relaxing the criteria of strict match for all tokens in the rule contributed to a drop in

precision on the test set from 84% to 82% (E+P+A vs. E+P*+A*) and from 86% to 83% in

the rule ranking scenario (E+P+A+Rule Ranking vs. E+P*+A*+Rule Ranking), as shown

in Table 4. Errors due to syntactic parsing may also contribute to precision errors.

Ravikumar et al. Journal of Biomedical Semantics 2012, 3(Suppl 3):S2
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Discussion of results on the gold corpus

Our evaluation results on the independently annotated Nagel gold corpus (Table 5)

show that although the exact subgraph matching approach achieved a high precision -

similar to that on the silver corpus - it had a lower recall than on the silver corpus.

While the recall of the co-occurrence baseline methods on the gold standard is high at

both the abstract (100%) and sentence (76%) level, the precision of both baseline

approaches was very low, resulting in a lower overall F-score than the sub-graph

matching results. The approximate matching approach achieved not only a higher

recall but retained a very high precision.

In the Nagel gold corpus, there were a significant number (18%) of protein-residue

relations that span multiple sentences, placing an upper bound on the recall of any

sentence-bound method and therefore contributing to the lower recall of our sentence-

based approach. The impact of this can be seen clearly by comparing the recall of the

abstract co-occurrence baseline with the recall of the sentence co-occurrence baseline

in Table 5. Examination of these cases, found in 11 abstracts, indicates that often the

relevant protein is introduced early on in the abstract and implicitly referenced in sub-

sequent sentences. There are in some of these cases multiple intervening sentences

between the protein mention and the residue mention. For instance, in PMID

7608980, the protein abrin-a is introduced in the first sentence of the abstract, while

its residue, Tyr74, is discussed in the sixth sentence. This indicates that a simple win-

dow-based constraint on abstract co-occurrence would be inadequate to improve recall

without also impacting precision. Quite sophisticated coreference resolution would be

required to handle these cases; for instance, in the sentence “The positions of invariant

active site residues remain the same, except the position of Tyr74” there is no explicit

reference to a protein, even indirectly (e.g., via a pronoun such as “it”, or via a refer-

ence such as “the protein”).

Error analysis of results on the gold data set revealed certain errors in mutation

detection due to partial extraction of the wild type residues with positions while miss-

ing the mutant residue. For example, consider the phrase “Mutation of Tyr-196 in gly-

cogenin-2 to a Phe residue abolished ...” (PMID 9857012) in which we extract Tyr-196

as amino acid and fail to detect the Tyr196-Phe mutation. Hence we extract only the

wild-type residue-protein pair (Tyr196/glycogenin-2), and fail to detect the wildtype

residue with mutant and protein pair (Tyr196-Phe/glycogenin-2) pair. This could argu-

ably be considered correct for our purposes as the protein-wild-type residue relational

pair is the one which is biologically significant, but it does not exactly match the

annotation.

There are other similar errors. For example from the phrase “Both ATP binding

[Vps4p-(K179A)] ...” (Nagel corpus, PMID 12953057), we extracted a relation between

the protein “Vps4p” and “K179A” which seemed to be correct. On manual inspection

we found that errors were due to the mismatch in the residue slot. The Nagel annota-

tion for the protein-residue relation specifies “Vps4p” to be the protein and the full

phrase “Vps4p-(K179A)” in the residue slot. On the other hand, our extraction fills the

residue slot with the mutation information alone ("K179A”). This annotation is in fact

not even consistent with the annotation of most other protein-residue relations in the

Nagel corpus. If we correct for these mismatches, precision, recall and F-measure

increase to 90.38%, 71.57% and 79.88%, respectively. Our overall performance indicates

Ravikumar et al. Journal of Biomedical Semantics 2012, 3(Suppl 3):S2
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that the subgraph pattern learning approach with very high precision and good recall is

more reliable than the co-occurrence baseline approaches, and is suitable for this infor-

mation extraction task.

Our approach generates some false positives in which the relationship extracted involves

the incorrect protein when there is more than one protein mentioned in the sentence. For

instance, the correct relations for this sentence from PMID 11108838, “Using a functional

assay based on inhibition of leptin mediated reporter induction, and using phosphopeptide

affinity chromatography we show binding of SOCS3 to the highly conserved phosphory-

lated Tyr-985 and Tyr-1077 motifs within the mouse leptin receptor” are between leptin

and each tyrosine. Our system instead proposes a relation between SOCS3 and each tyro-

sine. This sentence proved difficult for the parser; the prepositional phrase “within the

mouse leptin receptor” was attached too high, to the verb “using” and as such the correct

relation would have been difficult to identify via the syntactic analysis. Hence the example

also represents two false negatives for our method.

We have identified some omissions in the Nagel et al. annotation. For instance, in

the sentence, “Our results indicated that human LAB was primarily phosphorylated on

three membrane-distal tyrosines, Tyr(136), Tyr(193), and Tyr(233)” from PMID

14722116, the relations between LAB and the three residues in that sentence appear to

be valid protein-residue pairs, but are not annotated by Nagel et al. Rather the gold

annotation includes only a relation from LAB to a more generic phrase “Tyr to Phe”

from another sentence in the abstract. As we have not exhaustively reviewed the Nagel

et al. annotation we used as our gold, we cannot determine the full impact of such

errors on the performance of the various systems we tested.

Silver corpus construction

A notable contribution of our approach is to take advantage of the information in the

existing repositories through distant supervision to create positive training instances for

the pattern learning system. Although we are able to create high confidence protein rela-

tionship statements without manual effort, our approach has some limitations. There is a

potential loss of true positive relationship statements, since (a) relationships may not be

expressed exclusively within a single sentence, but rather using co-reference or simply by

establishing a focus protein for the paper as a whole, and (b) the physical validation we

utilize may miss some valid relationships due to variations in sequences, e.g., numbering

differences in the PDB. This will result in loss of potential training patterns, which may in

turn cause a decrease in recall.

Conclusions
Through this work we have demonstrated that the application of a subgraph matching-

based relation extraction approach generalizes well to the problem of extracting protein-

residue associations. It achieves much better performance than baseline co-occurrence

methods. The task itself has broader significance for protein function prediction and sub-

sequent drug discovery, given the context of our ongoing research of into integrating evi-

dence extracted from the biomedical literature into a protein function prediction system

[2,3].

Furthermore, we have shown that the creation of an annotated data set through dis-

tant supervision is highly effective for quickly building high quality training instances.

Ravikumar et al. Journal of Biomedical Semantics 2012, 3(Suppl 3):S2
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The patterns induced from such training data not only achieve high performance on

the automatically created test data but also perform well on an independent, manually

annotated gold corpus. The results encourage us to explore the use of distant supervi-

sion for other information extraction tasks in biology of higher complexity. Automatic

creation of training data as shown in this study will significantly reduce the manual

effort in creating gold corpora without much compromise on the overall performance

of information extraction.

Data sets
We used multiple manually annotated data sets (Nagel, MutationFinder and LEAP-FS cor-

pora) for evaluating the performance of our entity detection and protein-residue relations

in addition to the silver corpus we constructed. While we introduce the statistics of the sil-

ver corpus in Table 6, we briefly review the Nagel corpus, the Mutation Finder corpus and

the LEAP-FS corpus consisting of annotations over full-text articles. All three of the cor-

pora are available at http://bionlp-corpora.sourceforge.net/proteinresidue/. We used the

version 0.2 of our corpora for the current study.

Nagel corpus

Nagel et al. 2009 [4] built a corpus of 100 PubMed abstracts with annotations for pro-

tein residues and mutations. It also includes annotations for organism-protein-residue

triplet annotations. The corpus has 262 amino acid residue/mutation annotations and

232 protein-residue relations in total. Among those 232 annotations, 35 of the residue

mentions were not site-specific, that is they did not include a specific position/location

for the residue. This left 197 relations involving a protein mention and position-located

residue mention. These 197 pairs were considered as the final gold standard set of

relation pairs in our evaluation on this corpus.

MutationFinder corpus

Caporaso et al. 2007 [21] created two independent gold standard data sets: one for

developing their patterns to extract mutations (Development corpus) and the other to

evaluate their performance of mutation extraction (Test corpus). Their development

corpus consists of 305 abstracts with 605 point mutation mentions and their test cor-

pus consists of 508 abstracts with 910 mutation mentions.

LEAP-FS corpus

While the silver corpus and the Nagel corpus utilize PubMed abstracts, we manually

annotated 50 full text articles for amino acid residues and mutation mentions in them

Table 6 Protein residue relation statistics of silver corpus

Parameter Number

Total number of abstracts 18,045

Total number of sentences 138,790

Total sentences with protein names 41,722

Total sentences with at least one amino acid or mutation 13,729

Sentences with co-mentions of protein-amino acid (or) mutation 5,256

Sentences with validated protein-residue relations 2,516

Physically validated protein-residue relations 2,814

Total abstracts with validated protein-residue relation 1,728
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which we call LEAP-FS corpus. These full text articles were selected from among

18,045 PubMed IDs derived from the primary references of the PDB entries used in

the LEAP-FS experiments [2] and described in detail in the “Collection of PubMed

abstracts” in the Methods section. Annotation of the LEAP-FS corpus (50 full text arti-

cles) was performed in Knowtator [24], a plugin for the Protégé framework [25]. While

the Protégé framework supports defining an ontology for the annotation, the Knowta-

tor plugin supports the association of annotation classes in the ontology to text

sources. Our ontology for annotating the amino acid residue and mutations was simple

and consists of three main classes: Amino Acid Residue, Mutation and Sequence. The

amino acid residue class consists of two slots, one for the residue, and the other for

the position. The amino acid slot is always normalized to three letter amino acid code.

For instance, a textual occurrence of an amino acid residue “Histidine-129” will anno-

tated as “His” in the amino acid residue slot, while the “129” will be filled in the posi-

tion slot. The mutation class consists of three major slots: wild type residue, mutant

residue and the position of the site. For a mutation “S230G” occurrence in the text the

wild type slot will be filled as “Ser”, the mutant residue slot will be filled as “Gly” and

the position slot as “230”. The start and the end position of the text span pertaining to

each annotation is recorded so that we can easily traceback the location of the annota-

tion in the text.

The LEAP-FS corpus contains 3120 annotations in total, out of which 2831 were

amino acid residues and 289 were mutations. A notable aspect of this corpus is that

out of the 2831 amino acid annotations, the three letter amino acid residue mentions

(e.g., His-161 (or) Asp280) and single letter amino acid residue mentions (e.g., D450)

constitute 80% and 16% of the residue mentions, respectively, while the full amino acid

residue names (e.g., arginine-21) and linguistic expressions (proline at position 127)

constitute only the remaining 4%. The corpus has been annotated by a single annotator

but is currently being annotated by a second annotator to support eventual calculation

of inter-anntator agreement.

Methods
System architecture

Figure 2 illustrates the overall architecture of our approach to building an informa-

tion extraction system for protein-residue relations. The pipeline starts with the col-

lection of primary references from the PDB (18,045 abstracts). Each abstract is split

into sentences and then protein names, amino acid residues and mutations are

recognized and annotated. All possible protein-residue pairs occurring within each

sentence are physically validated. The abstracts containing sentences with physically

validated relations form the silver corpus (1728 abstracts). These abstracts are

divided into three sets - training, development and test corpora. The dependency

representation of all abstracts in the silver corpus are obtained using the Stanford

Parser [26]. The syntactic patterns to extract the protein-residue association are

induced from the training corpus and further refined against the development set.

The rules from the training and the development set are run against the test portion

of the silver corpus and evaluated for performance of protein-residue relation extrac-

tion. The rules are also evaluated against an independent, manually annotated gold

corpus. More details are provided below.
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The premise of our work is that there is a set of frequently occurring rules, or lin-

guistic patterns, that match a majority of protein-residue relations. We suggest that a

rule characterizes the typical contextual structure of the relation. As described, we

explored a graph-based approach [16,17] based on the syntactic dependency parse

graph of annotated sentences to automatically learn linguistic rules for extracting pro-

tein-residue pair relations from abstracts.
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Silver corpus construction

We created a “silver standard” corpus that contains high-confidence protein-residue

relationships, substantiated by a physical match of that specific residue to that specific

protein. We use this silver corpus for both inferring our rules to extract protein-resi-

due association and testing our extraction accuracy. This strategy for creating anno-

tated data uses the distant learning paradigm where external knowledge drives relation

extraction learning [27,28]. Biological knowledge bases have been shown to be effective

sources of knowledge for weakly supervised information extraction methods [29,30],

and our work provides additional confirmation of the effectiveness of this approach.

Here, we use the PDB as our external biological knowledge source.

To create the silver corpus, we acquired PubMed citations for each PDB entry. A

dictionary of protein names was compiled from the BioThesaurus database [31] for all

entries in the PDB. Amino acid and mutations were tagged in the PubMed abstracts

using regular expressions while the protein names were identified through dictionary

look-up [32] . In the following sections we describe our methodology for construction

of the silver corpus in more detail.

Collection of PubMed abstracts

To enable the acquisition of the linguistic constructs corresponding to expressions of

a protein-residue relationship, we first compiled a corpus of relevant abstracts from

MEDLINE. We started with a set of 37,980 PDB entries linked to the 106,411 SCOP

domains in the dataset we used in our prior work [2,33,34]. To obtain relevant

abstracts, we extracted PubMed IDs for the primary references from the PDB entries.

As described in [2], the final corpus consisted of 18,045 abstracts representing the

primary references for 30,816 PDB entries. Due to the use of the PDB-PMID rela-

tion, each abstract in our corpus was therefore known to be relevant to a specific

protein.

Pre-processing

All abstract text in the corpus was split into sentences using the LingPipe sentence

detector [35], tokenized using PennBioTokenizer and annotated with part of speech

tags using the GENIA tagger [36].

Detection of amino acids, mutation and protein names in the text

Our approach to identify residue mentions and mutations in abstracts and full text

articles is similar to earlier work [4,7-9,11,21,37], with additional patterns to handle

other linguistic variations. Table 7 provides the details of our pattern definitions and

some of the regular expressions along with the examples. These patterns are designed

to identify both the amino acid and the particular position where it occurs in the pro-

tein sequence. For example the pattern “His0[1-9]+” would match “His154” in the text

which corresponds to an histidine residue at position 154 in the protein sequence. Our

ability to extract point mutations from the text ranges from simple regular expressions

such as “S232A”, “Cys265Arg”, and “Ser-37® Ala”, “Ser59-Histidine” to linguistically

enriched expressions such as “serine 32 mutated to alanine”, “serines at positions 32

and 73”, and “mutation of cysteine 467 in p53 to ala”. Our patterns handle Unicode

characters used in such mentions, particularly in full text articles.
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We used dictionary lookup with fuzzy matching [32] to recognize protein names in

the abstracts. The dictionary of protein names was compiled from the BioThesaurus

database [31] a system designed to map a comprehensive collection of protein and

gene names to UniProt Knowledgebase (UniProtKB) [12] protein entries. Uniprot

accession number is used as an intermediate link to map the PDB [5] entries to the

one in the BioThesaurus. Step 1 shown in Figure 3 illustrates the details of how the

protein name that occurs in the text are detected.

Physical validation of text residues

Figure 3 illustrates the details of the physical validation of amino acid residues or

mutations extracted out of the text. The process of validating residues mentioned in

the text to the PDB database, which we refer to as physical validation, comprises the

following steps, repeated here from [2] for completeness.

• The text occurrences for each abstract are grouped by site number to determine

if amino acid mentions for that site are consistent - i.e., there is a single primary

and, where present, a single mutation amino acid for the site.

• A list of text residues was generated by mapping each consistent site in Step 1 to

PDB entries using the PubMed ID of the primary reference.

• The text residues are matched against physical residues in a corresponding PDB

entry. This is done by exactly matching the text residue site number with a PDB

Table 7 Pattern definitions and regular expressions to detect amino acid residues and
mutations in the text

Pattern
name

Pattern Meaning Expressions

RES-S Single letter amino
acid code

[ARNDCQEGHILKMFPSTWYVOUBZX]

RES-T Three letter amino acid
code

([aA]la|ALA|[aA]rg|ARG| [aA]sn|ASN|[aA]sp|ASP| [cC]y|CYS|[gG]ln|GLN|
[gG]lu|GLU|[gG]ly|GLY| [hH]is|HIS|[iI]le|ILE| [lL]eu|LEU|[lL]ys|LYS| [mM]et|
MET|[pP]he|PHE| [pP]ro|PRO|[sS]er|SER| [tT]hr|THR|[tT]rp|TRP| [tT]yr|TYR|

[vV]al|VAL| [pP]yl|PYL|[sS]ec|SEC)

RES-F Full amino acid names ([aA]lanine|[aA]rginine| [aA]sparagine| [aA]spart(ate|ic acid)| [cC]ysteine|
[gG]lutamine| [gG]lutam(ate|ic acid)| [gG]lycine|[hH]istidine| [iI]

soleucine|[lL]eucine| [lL]ysine|[mM]ethionine| [pP]henylalanine|[pP]
roline| [sS]erine|[tT]hreonine| [tT]ryptophan|[tT]yrosine| [vV]aline|[pP]

yrrolysine| [aA]spartic acid |[aA]sparagine|[gG]lutamic acid|[gG]
lutamine)

POS Residue Position 0[1-9]{1,5}

WTRES Wild type residue (RES-S|RES-T|RES-F)

MUTRES Mutant residue (RES-S|RES-T|RES-F)

UNIARR Unicode character for
arrows

\\u2192,\\u21D2

UNIDASH Unicode character for
dash

\\u2013

GRAMMAR Grammatical
expressions

residues? at positions?|for| position|residues? (in|on|at) |substitutions?
at|always exists as|at positions?|mutated to|substituted by

POSCOORD Co-ordination of
residue position

POS(,\\s?POS)* (and|or) POS
[e.g., 75, 76 and 78, 82 and 95]

AMINOCOORD Co-ordination of
amino acid residues

(RES-T|RES-F)(,\\s?RES-T|RES-F)* (and|or) (RES-T|RES-F)
[e.g., Alanine and Valine]

WORD ANY WORD

PREP Prepositions in, at, on, within, of

Pattern names are shown in THIS FONT and can be themselves used within other regular expressions.
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residue number and then either the wild type or mutated text residue amino acid

name with the PDB amino acid. If a text residue matches residues in more than

one mmCIF entity in a PDB entry, it is labeled as an ambiguous match. Text resi-

dues with an unambiguous match are retained, while residues that do not match or

have an ambiguous match are eliminated from further analysis.

The requirement of a physical match between a residue mentioned in an abstract

and a residue of an abstract-associated protein has the effect of filtering out extraneous

residue mentions; we effectively filter out false positives of the text extraction method

if the text occurrences cannot be linked to any physical residue.

Selection of sentences containing protein-residue relations

To facilitate both training and testing of our method, we require annotated examples

of high confidence protein-residue relationships. In the current work our focus is only

on extracting the protein-residue pairs that occur within a single sentence.

Dictionary based approach
Dictionary created from PDB, Uniprot and Biothesaurus

Mapping PDB entries to Uniprot and Biothesaurus
PDB Id  --> Uniprot Id  --> Biothesaurus

 .....  the conformation of Arg80 in the UPRTase UMP-CTP complex leaves no 
room for binding of the substrate PRPP (PMID: 15654744)

 .....  the conformation of Arg80 in the UPRTase UMP-CTP complex leaves no 
room for binding of the substrate PRPP (PMID: 15654744)

 .....  the conformation of Arg80 in the UPRTase UMP-CTP complex leaves no 
room for binding of the substrate PRPP (PMID: 15654744)

e ee 
RPP (PMID
e UPRTaseeTT

PDB ID : 1xtv  --> Arg80 at position 80

Figure 3 Physical validation of protein residue relation.
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To enable the creation of a set of sentences that contains high-confidence relationship

statements, we selected all sentences containing both a protein name in our PDB-specific

protein name dictionary, as well as an amino acid mention as our initial pool of sentences.

We further filtered this initial pool to only those sentences containing a physically vali-

dated relationship: i.e., sentences that contain a protein-residue co-occurrence substan-

tiated by a physical match of that specific residue to the mentioned protein, and where the

sentence comes from an abstract explicitly associated with that protein in its PDB record.

Consider the following sentence from the PMID: 15654744 “CTP binding affects the con-

formation of Arg80, and the Arg80 conformation in the UPRTase-UMP-CTP complex

leaves no room for binding of the substrate PRPP.” The protein name dictionary look up

detects “UPRTase“ as protein and the regular expression detects Arg80 as the residue.

This protein-residue pair relation is validated via the PDB entry “1xtv“, with PMID

15654744 given as the primary citation. The data in Table 6 show that a substantial num-

ber of co-localized protein-residue pairs were filtered in the physical validation step.

Preparation of data set

The 1,728 abstracts (last row in Table 6) that contained physically validated high confi-

dence protein-residue relationships were randomly divided into training, development

and test sub-corpora using a random number generator. While 80% of the abstracts

were used for training (1106 abstracts) and development (276 abstracts) the remaining

20% were reserved for testing (346 abstracts). The silver corpus had 2814 (last but one

row in Table 6) physically validated relations out of which the training set and the

development set contain 1,741 and 475 physically validated relationships respectively,

the test set contains 598 physically validated protein-amino acid/mutation relations.

The file format of all the data sets in the silver corpus was prepared as per the guide-

lines defined in the BioNLP shared task 2011 [38]. In our current work each protein-

residue relation is treated as an event to be consistent with the shared task.

Extraction of protein-residue relations

We learn the protein-residue relation rules from the silver corpus labeled training sen-

tences (972 abstracts) using a graph-based rule induction method [16,17]. We briefly

describe the algorithm here; for more details see [16,17]. We start with the dependency

graph produced by the Stanford parser [26,39] for each training sentence, which captures

the syntactic dependency relations among all words in the sentence. Edge directions are

removed, transforming the directed graph into an undirected graph, where a path must

exist between any two nodes since the graph is always connected. For each relation in the

training set, the shortest dependency path in the undirected graph connecting the protein

to the amino acid or mutation node is selected. The union of all shortest dependency

paths is then computed, and the original directed dependency representation of the path

union is retrieved and used as the graph representation of the event. Through this process,

each gold event is transformed into the form of a biological event rule, which contains the

event type, event participants and the corresponding graph representation.

The shortest path between the two entities (protein and amino acid/mutation) is often

assumed to contain the most valuable information about their mutual relationship

[40-44]. The dependency graph representation used in this work is “collapsed dependen-

cies with propagation of conjunct dependencies” (section 4.3 of [45]). Compared to other
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representation styles provided by the Stanford parser, this representation approximates

more closely the semantic relations in sentences by collapsing the dependencies involving

prepositions, and propagating conjunction dependencies. Consequently, it helps to sim-

plify the event rules for detecting Protein-Residue associations. However, this representa-

tion does not guarantee a tree structure, and may form a cyclic graph. Therefore, where

there exists more than one shortest path between nodes, all of the paths are considered to

avoid bias.

Figure 4 illustrates the rule induction process from an example sentence in the silver

annotation. While the left hand side of the rule describes the protein-residue relation,

the right hand side represents the dependency graph of the rule.

Subsequently we attempt to match the event rules to each test sentence to extract

relevant events. Since the event rules and the sentences all possess a dependency

graph, the matching process is casted as a subgraph matching problem [16], which cor-

responds to the search for a subgraph within the graph of a test sentence that is iso-

morphic to an event rule graph.

According to the GENIA corpus, on average there are about 24 words in one biome-

dical sentence, which correspond to the nodes in the dependency graph. Consequently,

the input graphs of sentences and event rules are not large graphs. Therefore, we

applied a simpler subgraph matching algorithm using a backtracking approach, devel-

oped by Liu et al. [16,17], to our matching process between rules and sentences.

When matching between graphs, different combinations of matching features can be

applied, resulting in different matching criteria. The features include edge features (E)

which are edge label and edge direction, and node features which are POS tags (P),

and all tokens (A), ranging from the least specific matching criteria, E and P, to the

much stricter criterion including A (E+P+A in Table 4). In addition, this subgraph

matching algorithm inherently allows for the incorporation of existing knowledge such

as ontological resources into the matching process between nodes or edges, to further

improve the precision of the overall graph matching.

The algorithm proceeds until a subgraph isomorphic to the rule graph is found in

the sentence graph. For each sentence, the algorithm returns all the matched rules

together with the corresponding injective mappings from rule nodes to sentence

tokens. Protein-residue relations are then extracted by identifying the specific protein

and the amino acid/mutation in each sentence that correspond to the relationship spe-

cified in the matched rules.

Figure 4 also presents a simple example of the association extraction process by

matching an event rule to a sentence. The matching criteria in the example require

that edges be matched if they share a same direction and possess identical edge labels

while nodes be matched if they belong to the same biological entity type.

The backtracking ability of the subgraph matching algorithm allows the relation

extraction process to recover from initial wrong matches and continue to proceed

until the correct protein-residue association is identified. In practice, it only takes the

algorithm a couple of seconds to return the results. Hence, this algorithm is efficiently

solving the subgraph matching problem in this work. More details and the complexity

of the algorithm are presented in [16,17].

The graph-based approach used in this work has several advantages over some tradi-

tional machine learning methods. 1) It relies only on the positive instances and does
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not require negative examples for training. 2) Pattern induction through distant super-

vision where the relation between the protein and the residue mentions is known to

exist in publicly available databases further reduces the risk of data over-fitting. 3)

Unlike statistical methods, the approach produces a human-interpretable model, which

allows more straightforward error analysis.

Acknowledgements
We would like to thank the members of the Center for Computational Pharmacology for their discussions related to
this work. We gratefully acknowledge the support of the NLM Informatics Training grant 5T15LM009451 to HL and
NIH grants 5R01LM01020-02 and 3R01LM010120-02S1 to PI KV for this work. KV is additionally supported by NICTA

Test Sentence: This purine base binding plane is sandwiched between the 
side-chains of Ile66 ( Val66 in hsCK2alpha ) and Met163,

Subgraph Matching Process: (matching shown by dotted line)

Injective Mapping:

Association Rule                         Match in Sentence
AMINOACID-17/NNP                     AMINOACID-23/NNP (Val66)
prep_in                                           prep_in
PROTEIN-19/NNP                         PROTEIN-25/NNP (hsCK2alpha)

<prep_in>AMMINNOOACID-177/NNNNP PRRROOTEIIN-191 /NNNP

<prep_in>AMMINNOAOACID-2323/NNNPN
(V( al66)VV

PRRROOTEIIN-N-252 /NNNNP
((hsCK2K2aalpha))

Association Rule graph

Sentence graph

......

Original Sentence: The present studies demonstrate the presence of a native 
fragment containing 14 residues from Ile16 to Trp29 in alpha-chymotrypsin that 
binds ...

Tokenized & Entity Tagged Sentence: The present studies demonstrate the 
presence of a native fragment containing 14 residues from Ile16 to AMINOACID in 
PROTEIN that binds ...

Dependency Graph of Partial Sentence: 

Protein-Residue Association Rule: (highlighted in the above graph) 
Protein: PROTEIN-19/NNP,  AMINOACID: AMINOACID-17/NNP  <== 
prep_in(PROTEIN-19/NNP, AMINOACID-17/NNP)

fragment-10/NN

containing-11/VBG

residues-13/NNPS AMINOACID-17/NNP

<partmod>

<prep_to><dobj>

PRRROTEIIN-119/NNNP

<prep_in>

Figure 4 Rule induction and protein-residue relation extraction.

Ravikumar et al. Journal of Biomedical Semantics 2012, 3(Suppl 3):S2
http://www.jbiomedsem.com/content/3/S3/S2

Page 21 of 23



Victoria Research Lab. NICTA is funded by the Australian Government as represented by the Department of
Broadband, Communications and the Digital Economy and the Australian Research Council through the ICT Centre of
Excellence program. MEW acknowledges the support of the U.S. Department of Energy through the LANL/LDRD
Program through grant 20110435DR. JDC and MEW received additional support from LANL/LDRD grant 20060700DR.
This article has been published as part of Journal of Biomedical Semantics Volume 3 Supplement 3, 2012: Machine
Learning for Biomedical Literature Analysis and Text Retrieval in the International Conference for Machine Learning
and Applications 2011. The full contents of the supplement are available online at http://www.jbiomedsem.com/
supplements/3/S3.

Author details
1University of Colorado School of Medicine, Aurora, CO 80045, USA. 2Los Alamos National Laboratory, Los Alamos, NM
87545, USA. 3National ICT Australia Victoria Research Lab, Melbourne, Australia.

Authors’ contributions
KER and KV designed all the experiments described in this paper. KV designed the distant learning strategy. KER
prepared the data sets, conducted the experiments and evaluated the performance of the system. KER also manually
annotated the LEAP-FS corpus described in the paper. HL adapted his graph-based relation extraction system to the
protein-residue association problem, provided his approximate subgraph matching algorithm, and assisted with
performance analysis of those methods. JDC and MEW designed the physical validation algorithms and provided the
data used to generate the silver corpus. KER, HL, and KV wrote the manuscript.

Competing interests
The authors declare that they have no competing interests.

Published: 5 October 2012

References
1. Baumgartner WA, Cohen KB, Fox LM, Acquaah-Mensah G, Hunter L: Manual curation is not sufficient for annotation

of genomic databases. Bioinformatics 2007, 23(13):i41-i48.
2. Verspoor K, Cohn JD, Ravikumar KE, Wall ME: Text Mining Improves Prediction of Protein Functional Sites. PLos One .
3. Verspoor KM, Cohn JD, Ravikumar KE, Wall ME: Integration of Structure Analysis and Text Mining for Improved

Protein Functional Site Prediction. Proceedings of Intelligent Systems in Molecular Biology Vienna 2011.
4. Nagel K, Jimeno-Yepes A, Rebholz-Schuhmann D: Annotation of protein residues based on a literature analysis:

cross-validation against UniProtKb. BMC Bioinformatics 2009, 10(Suppl 8):S4.
5. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat T, Weissig H, Shindyalov IN, Bourne PE: The protein data bank.

Nucleic Acids Research 2000, 28(1):235.
6. Lee LC, Horn F, Cohen FE: Automatic extraction of protein point mutations using a graph bigram association. PLoS

computational biology 2007, 3(2):e16.
7. Witte R, Baker CJO: Towards a systematic evaluation of protein mutation extraction systems. Journal of

Bioinformatics and Computational Biology 2007, 5(6):1339-1360.
8. Baker CJO, Witte R: Mutation Miner - Textual Annotation of Protein Structures. 5th CERMM Annual Symposium: 2005;

Concordia University, Montreél, Queébec, Canada 29.
9. Rebholz Schuhmann D, Marcel S, Albert S, Tolle R, Casari G, Kirsch H: Automatic extraction of mutations from Medline

and cross validation with OMIM. Nucleic Acids Research 2004, 32(1):135.
10. Horn F, Lau AL, Cohen FE: Automated extraction of mutation data from the literature: application of MuteXt to G

protein-coupled receptors and nuclear hormone receptors. Bioinformatics 2004, 20(4):557.
11. Baker CJO, Witte R: Mutation Mining–A Prospector’s Tale. Journal of Information Systems Frontiers 2006, 8(1):47-57.
12. Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M: UniProt:

the universal protein knowledgebase. Nucleic Acids Research 2004, 32(suppl 1):D115.
13. Buyko E, Hahn U: Evaluating the impact of alternative dependency graph encodings on solving event extraction

tasks. Empirical Methods in Natural Language Processing Association for Computational Linguistics; 2010, 982-992.
14. Clegg AB, Adrian J: Benchmarking natural-language parsers for biological applications using dependency graphs.

BMC Bioinformatics 2007, 8(24).
15. Miyao Y, Sagae K, Saetre R, Matsuzaki T, Tsujii Ji: Evaluating contributions of natural language parsers to protein-

protein interaction extraction. Bioinformatics 2009, 25(3):394-400.
16. Liu H, Keselj V, Blouin C: Biological event extraction using subgraph matching. Proceedings of the 4th International

Symposium on Semantic Mining in BioMedicine (SMBM) 2010.
17. Liu H, Komandur R, Verspoor K: From Graphs to Events: A Subgraph Matching Approach for Information Eextraction

from Biomedical Text. Association for Computational Linguistics 164-172.
18. Kim J-D, Ohta T, Pyysalo S, Kano Y, Tsujii Ji: Overview of BioNLP’09 shared task on event extraction. Proceedings of

Natural Language Processing in Biomedicine (BioNLP) NAACL 2009 workshop: shared task 2009.
19. Kim J-D, Pyysalo S, Ohta T, Bossy R, Tsujii Ji: Overview of the BioNLP Shared Task 2011. BioNLP Shared Task 2011

Workshop 2011.
20. Thomas P, Pietschmann S, Solt I, Tikk D, Leser U: Not all links are equal: Exploiting Dependency Types for the

Extraction of Protein-Protein Interactions from Text. The BioNLP 2011 Workshop; Portland, Oregon, USA Association for
Computational Linguistics; 2011, 1-9.

21. Caporaso JG, Baumgartner WA Jr, Randolph DA, Cohen KB, Hunter L: MutationFinder: A high-performance system for
extracting point mutation mentions from text. Bioinformatics 2007, 23:1862-1865.

22. Cohen KB, Johnson H, Verspoor K, Roeder C, Hunter L: The structural and content aspects of abstracts versus bodies
of full text journal articles are different. BMC bioinformatics 2010, 11(1):492.

Ravikumar et al. Journal of Biomedical Semantics 2012, 3(Suppl 3):S2
http://www.jbiomedsem.com/content/3/S3/S2

Page 22 of 23

http://www.jbiomedsem.com/supplements/3/S3
http://www.jbiomedsem.com/supplements/3/S3
http://www.ncbi.nlm.nih.gov/pubmed/17646325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17646325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19958514?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19958514?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10592235?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17274683?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18172932?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14704350?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14704350?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14990452?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14990452?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14681372?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14681372?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19073593?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19073593?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17495998?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17495998?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20920264?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20920264?dopt=Abstract


23. Liu H, Verspoor K: Exploring an Approximate Subgraph Matching Approach for Biomedical Event Extraction. The
Ninth Annual Rocky Mountain Bioinformatics Conference 2011.

24. Ogren PV: Knowtator: A Protégé plug-in for annotated corpus construction. Proceedings of the 2006 Conference of the
North American Chapter of the Association for Computational Linguistics on Human Language Technology Association for
Computational Linguistics; 2006, 273-275.

25. The Protégé Ontology Editor and Knowledge Acquisition System. [http://protege.stanford.edu/].
26. De Marneffe MC, Manning CD: The Stanford typed dependencies representation. Proceedings of the COLING’08

Workshop on CrossFramework and Cross-Domain Parser Evaluation Association for Computational Linguistics; 2008, 1-8.
27. Nguyen TVT, Moschitti A: End-to-end relation extraction using distant supervision from external semantic

repositories. Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies Association for Computational Linguistics; 2011, 277-282.

28. Hoffmann R, Zhang C, Ling X, Zettlemoyer L, Weld DS: Knowledge-based weak supervision for information
extraction of overlapping relations. Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics Association for Computational Linguistics; 2011, 541-550.

29. Craven M, Kumlien J: Constructing biological knowledge bases by extracting information from text sources.
Proceedings of the Seventh International Conference on Intelligent Systems for Molecular Biology Heidelberg, Germany;
1999, 77-86.

30. Morgan AA, Hirschman L, Colosimo M, Yeh AS, Colombe JB: Gene name identification and normalization using a
model organism database. Journal of Biomedical Informatics 2004, 37(6):396-410.

31. Liu H, Hu Z-Z, Zhang J, Wu C: BioThesaurus: a web-based thesaurus of protein and gene names. Bioinformatics 2005,
22(1):103-105.

32. Verspoor K, Roeder C, Johnson HL, Cohen KB, Baumgartner WA Jr, Hunter LE: Exploring species-based strategies for
gene normalization. IEEE IEEE/ACM Transactions on Computational Biology and Bioinformatics 2010, 462-471.

33. Cohn JD, Ming D, Wall ME: Prediction of Functional Sites in SCOP Domains using Dynamics Perturbation Analysis.
Nature Preceedings 2008.

34. Ming D, Cohn J, Wall M: Fast dynamics perturbation analysis for prediction of protein functional sites. BMC
Structural Biology 2008, 8(1):5.

35. Baldwin B, Carpenter B: LingPipe. Available from World Wide Web; [http://alias-i.com/lingpipe].
36. Tsuruoka Y, Tateishi Y, Kim JD, Ohta T, McNaught J, Ananiadou S, Tsujii J: Developing a robust part-of-speech tagger

for biomedical text. Advances in informatics 2005, 382-392.
37. Caporaso JG, Deshpande N, Fink JL, Bourne PE, Cohen KB, Hunter L: Intrinsic evaluation of text mining tools may not

predict performance on realistic tasks. Pacific Symposium on Biocomputing NIH Public Access; 2008, 640-651.
38. Kim JD, Pyysalo S, Ohta T, Bossy R, Nguyen N: Overview of bionlp shared task 2011. Proceedings of BioNLP Shared Task

2011 Workshop: 24 June, 2011 2011; Portland, Oregon, USA Association for Computational Linguistics;1-6.
39. De Marneffe MC, MacCartney B, Manning CD: Generating typed dependency parses from phrase structure parses.

International Conference on Language Resources and Evaluation (LREC) Genoa, Italy; 2006.
40. Buyko E, Faessler E, Wermter J, Hahn U: Event extraction from trimmed dependency graphs. Proceedings of the

Workshop on BioNLP 2009: 2009; Boulder, Colorado Association for Computational Linguistics;19-27.
41. Bjorne J, Heimonen J, Ginter F, Airola A, Pahikkala T, Salakoski T: Extracting complex biological events with rich

graph-based feature sets. Proceedings of the Workshop on BioNLP: Shared Task: June 2009 2009; Boulder, Colorado
Association for Computational Linguistics;10-18.

42. Kilicoglu H, Bergler S: Syntactic dependency based heuristics for biological event extraction. Proceedings of the
Workshop on BioNLP: Shared Task 2009, 119-127.

43. Thomas P, Pietschmann S, Solt I, Tikk D, Leser U: Not all links are equal: exploiting dependency types for the
extraction of protein-protein interactions from text. Proceedings of the 2011 Workshop on Biomedical Natural
Language Processing, ACL-HLT 2011: June 23-24, 2011, Portland, Oregon, USA Association for Computational Linguistics;
2011, 1-9.

44. Rinaldi F, Schneider G, Kaljurand K, Clematide S, Vachon T, Romacker M: Ontogene in biocreative ii. 5. IEEE IEEE/ACM
Transactions on Computational Biology and Bioinformatics 2010, 7:472-480.

45. de Marneffe M-C, Manning CD: Stanford typed dependencies manual. Stanford University; 2008.

doi:10.1186/2041-1480-3-S3-S2
Cite this article as: Ravikumar et al.: Literature mining of protein-residue associations with graph rules learned
through distant supervision. Journal of Biomedical Semantics 2012 3(Suppl 3):S2.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Ravikumar et al. Journal of Biomedical Semantics 2012, 3(Suppl 3):S2
http://www.jbiomedsem.com/content/3/S3/S2

Page 23 of 23

http://protege.stanford.edu/
http://www.ncbi.nlm.nih.gov/pubmed/19623491?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15542014?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15542014?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16267085?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18234095?dopt=Abstract
http://alias-i.com/lingpipe

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Evaluation of entity recognition: amino acids and mutations
	Evaluation of protein-residue relation extraction

	Discussion
	Pattern learning
	Pattern learning: error analysis
	Discussion of results on the gold corpus
	Silver corpus construction

	Conclusions
	Data sets
	Nagel corpus
	MutationFinder corpus
	LEAP-FS corpus

	Methods
	System architecture
	Silver corpus construction
	Collection of PubMed abstracts
	Pre-processing
	Detection of amino acids, mutation and protein names in the text
	Physical validation of text residues
	Selection of sentences containing protein-residue relations
	Preparation of data set
	Extraction of protein-residue relations

	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

