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Abstract

Background: Electronic Health Records (EHRs) contain a wealth of information useful for studying clinical
phenotype-genotype relationships. Severity is important for distinguishing among phenotypes; however other
severity indices classify patient-level severity (e.g., mild vs. acute dermatitis) rather than phenotype-level severity (e.g.,
acne vs. myocardial infarction). Phenotype-level severity is independent of the individual patient’s state and is relative
to other phenotypes. Further, phenotype-level severity does not change based on the individual patient. For example,
acne is mild at the phenotype-level and relative to other phenotypes. Therefore, a given patient may have a severe
form of acne (this is the patient-level severity), but this does not effect its overall designation as a mild phenotype at
the phenotype-level.

Methods: We present a method for classifying severity at the phenotype-level that uses the Systemized Nomenclature
of Medicine – Clinical Terms. Our method is called the Classification Approach for Extracting Severity Automatically
from Electronic Health Records (CAESAR). CAESAR combines multiple severity measures – number of comorbidities,
medications, procedures, cost, treatment time, and a proportional index term. CAESAR employs a random forest
algorithm and these severity measures to discriminate between severe and mild phenotypes.

Results: Using a random forest algorithm and these severity measures as input, CAESAR differentiates between
severe and mild phenotypes (sensitivity = 91.67, specificity = 77.78) when compared to a manually evaluated
reference standard (k = 0.716).

Conclusions: CAESAR enables researchers to measure phenotype severity from EHRs to identify phenotypes that
are important for comparative effectiveness research.

Keywords: Electronic Health Records, Phenotype, Health status indicators, Data mining, Outcome assessment
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Background
Recently, the Institute of Medicine has stressed the im-
portance of Comparative Effectiveness Research (CER)
in informing physician decision-making [1]. As a result,
many national and international organizations were formed
to study clinically meaningful Health Outcomes of Interest
(HOIs). This included the Observational Medical Out-
comes Partnership (OMOP), which standardized HOI
* Correspondence: mb3402@columbia.edu
1Department of Biomedical Informatics, Columbia University, New York, NY,
USA
2Observational Health Data Sciences and Informatics (OHDSI), Columbia
University, 622 West 168th Street, PH-20, New York, NY, USA
Full list of author information is available at the end of the article

© 2015 Boland et al.; licensee BioMed Central.
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
Dedication waiver (http://creativecommons.or
unless otherwise stated.
identification and extraction from electronic data sources
for fewer than 50 phenotypes [2]. The Electronic Medical
Records and Genomics Network (eMERGE) [3] also
classified some 20 phenotypes, which were used to
perform Phenome-Wide Association Studies (PheWAS)
[4]. However, a short list of phenotypes of interest re-
mains lacking in part because of complexity in defining
the term phenotype for use in Electronic Health Records
(EHRs) and genetics [5].
EHRs contain a wealth of information for studying

phenotypes including longitudinal health information
from millions of patients. Extracting phenotypes from
EHRs involves many EHR-specific complexities including
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data sparseness, low data quality [6], bias [7], and health-
care process effects [8].
Many machine-learning techniques that correlate EHR

phenotypes with genotypes encounter large false positive
rates [3]. Multiple hypothesis correction methods aim to
reduce the false positive rate. However, these methods
strongly penalize for a large phenotype selection space.
A method is needed that efficiently reduces the pheno-
type selection space to only include important pheno-
types. This would reduce the number of false positives
in our results and allow us to prioritize phenotypes for
CER and rank them by severity.
To extract phenotypes from EHRs, a specialized ontol-

ogy or terminology is needed that describes phenotypes,
their subtypes and the various relationships between
phenotypes. Several ontologies/terminologies have been
developed for studying human phenotypes including
the Human Phenotype Ontology (HPO) [9]. The HPO
contains phenotypes with at least some hereditary com-
ponent, e.g., Gaucher disease. However, EHRs contain
phenotypes that are recorded during the clinical encoun-
ter that are not necessarily hereditary. To capture a pa-
tient’s phenotype from EHRs, we will utilize an ontology
specifically designed for phenotype representation in
EHRs called the Systemized Nomenclature of Medicine –
Clinical Terms (SNOMED-CT) [10,11]. SNOMED-CT
captures phenotypes from EHRs, including injuries that
are not included in the HPO. Furthermore, SNOMED-CT
can be used to capture more clinical content then Inter-
national Classification of Diseases, version 9 (ICD-9) codes
[12], making SNOMED-CT ideal for phenotype classifica-
tion. Using SNOMED-CT enables development of a stan-
dardized approach that conforms to OMOP’s guidelines
promoting data reuse.
Robust methods are needed that address these

challenges and reuse existing standards to support data
sharing across institutions. This would propel our un-
derstanding of phenotypes and allow for robust CER to
improve clinical care. This would also help pave the way
for truly translational discoveries and allow genotype-
phenotype associations to be explored for clinically im-
portant phenotypes of interest [13].
An important component when studying phenotypes

is phenotype severity. Green et al. demonstrate that a
patient’s disease severity at hospital admission was
crucial [14] when analyzing phenotype severity at the
patient-level. We are interested in classifying phenotypes
as either severe or mild at the phenotype-level, which
differs from the vast literature on patient-specific sever-
ity. Classifying severity at the phenotype-level involves
distinguishing acne as a mild condition from myocardial
infarction as a severe condition. Contrastingly, patient-
level severity assesses whether a given patient has a mild
or severe form of a phenotype (e.g., acne). Importantly,
phenotype-level severity is independent of the individual
patient’s state and is relative to other phenotypes (e.g.,
acne vs. myocardial infarction). Further, phenotype-level
severity does not change based on the individual patient.
For example, acne is mild at the phenotype-level, which
is relative to other phenotypes. Therefore, a given pa-
tient may have a severe form of acne (i.e., patient-level
severity = severe), but the overall phenotype-level sever-
ity is mild because phenotype-level severity is relative to
other phenotypes and does not change based on an indi-
vidual patient’s patient-level severity.
Studying phenotype severity is complex. The plethora

of medical conditions is mirrored by an equally diverse
set of severity indices that run the full range of medical
condition complexity. For example, there is a severity
index specifically designed for nail psoriasis [15], insomnia
[16], addiction [17], and even fecal incontinence [18].
However, each of these indices focuses on classifying pa-
tients as being either a severe or mild case of a given con-
dition (e.g., psoriasis). They do not capture the difference
at the phenotype-level.
Other researchers developed methods to study patient-

specific phenotype severity at the organismal level. For
example, the Severity of Illness Index assesses patient
health using seven separate dimensions [19] consisting of:
1) the stage of the principal diagnosis at time of admission;
2) complications; 3) interactions (i.e., the number of pa-
tient comorbidities that are unrelated to the principal
diagnosis); 4) dependency (i.e., the amount of care re-
quired that is above the ordinary); 5) non-operating room
procedures (i.e., the type and number of procedures per-
formed); 6) rate of response to therapy; and 7) remission
of acute symptoms directly related to admission.
The Severity of Illness Index is useful for characterizing

patients as severe or mild types of a given disease pheno-
type. However, it does not measure severity at the
phenotype-level (e.g., acne vs. myocardial infarction),
which is required to reduce the phenotype selection space
to only the most severe phenotypes for CER.
In this paper, we describe the development and valid-

ation of a Classification Approach for Extracting Severity
Automatically from Electronic Health Records (CAESAR).
CAESAR incorporates the spirit of the Severity of Illness
Index, but measures phenotype-level severity rather than
patient-level severity. CAESAR was designed specifically
for use with EHR-derived phenotypes.

Methods
Measuring severity
We used five EHR-specific measures of condition severity
that are related to the 7 dimensions from Horn’s patient-
level severity index [19] because EHRs differ from research
databases [20]. Columbia University Medical Center’s
(CUMC) Institutional Review Board approved this study.
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Condition treatment time can be indicative of severity
and so it was included as a severity measure. Treatment
time is particularly indicative of severity for acute condi-
tions, e.g., fractures, wounds or burns, because minor
(less severe) fractures often heal more rapidly than major
fractures (more severe). However, treatment time is also
dependent on the chronicity of the disease [21], which is
separate from severity. Treatment time can also have
other effects when recorded in EHRs [22-24].
Because hospital duration time can be influenced by

many factors, e.g., patients’ other comorbidities, we de-
cided to analyze the condition treatment time. While
inter-dependent, hospital duration time is typically a
subset of the entire condition treatment time (which can
include multiple hospital visits).
Number of comorbidities is another useful measure for

assessing phenotype severity. A similar measure is found
in the Severity of Illness Index that measures the num-
ber of other conditions or problems that a given patient
Figure 1 Example showing differences between ehr manifestations of s
Phenotype-level differences between severe and mild phenotypes are shown
phenotypes if you only look at the number of procedures, comorbidities or p
alone to identify severity, it would be difficult. However, if cost is used as a pr
infarction is more severe than acne and also costs more). But if you use the tr
severity will result (acne takes longer to treat as a result of chronicity, and the
severity). This underscores the importance of using multiple measures togeth
has at the time of their principal diagnosis. Our EHR-
specific version looks at the number of distinct comor-
bidities per patient with a given phenotype and then
averages across all of the individuals in the database with
that phenotype. This average tells us the comorbidity
burden associated with a given phenotype. An example
is given in Figure 1 to illustrate how the number of
comorbidities, medications, and treatment time can dif-
fer by phenotype severity. Note that ‘acne’ is an atypical
mild phenotype as its treatment time is longer than
‘myocardial infarction’ while most mild phenotypes have
shorter treatment times. Importantly, chronicity also
affects treatment time, which can negate the effect that
severity has on treatment time (Figure 1).
Number of medications is another useful measure for

assessing severity. This measure is related to the previ-
ous measure (i.e., the number of comorbidities). How-
ever, it differs because some phenotypes have a large
number of medications, but also a small number of
evere (Myocardial Infarction or MI) and mild (Acne) phenotypes.
in Figure 1. Notice that there is very little difference between the two
rescribed medications. Therefore, if you use any of those three measures
oxy for severity then the correct classification would be made (myocardial
eatment length then an incorrect classification of the phenotype-level
refore longer treatment length is not equal to increased phenotype-level
er as a proxy for severity, which is the approach employed by CAESAR.
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comorbidities, e.g., burn injuries. Therefore, in many
cases these measures will be similar but in other import-
ant instances they will differ.
Number of procedures is also based on a measure from

the Severity of Illness Index. Because we are focused on
phenotype-level severity, we computed an average num-
ber of procedures associated with each phenotype. First,
we extracted the number of procedures performed per
phenotype and per patient. Then we computed the aver-
age across all patients in our database yielding the aver-
age number of procedures per phenotype.
Cost to treat phenotype is a commonly used metric for

assessing severity [25]. The Centers for Medicare and
Medicaid Services released the billable rate for each pro-
cedure code per minute [26]. They also released the
number of minutes each procedure typically requires.
Combining these data allows us to calculate the billable
amount for a given procedure [26]. The billable rates are
from 2004 and they are for each Healthcare Common
Procedure Coding System (HCPCS) code [26].
Since these data are only available for procedure codes

(HCPCS codes are procedure codes) we calculated the
total cost per patient using the procedures they were
given. We determined the cost per phenotype by taking
the average cost across all patients with that phenotype.

Measures of phenotype severity and E-PSI (Ehr-phenotype
severity index)
We first calculated the proportion of each measure. The
sum of the proportions (there are five proportions – one
for each measure) was divided by the total number of
proportions (i.e., five). This final value is E-PSI, an index
term based on all 5 measures given in Equation 1 where
x is a phenotype. Therefore, E-PSI is a proportional
index that incorporates treatment time, cost, number of
medications, procedures, and comorbidities.
Equation 1:
E-PSI (Phenotype x)

¼ xcost
max costð Þ þ

xtreatment length

max treatment lengthð Þ þ
xcomorbidities

max comorbiditiesð Þ
þ xmedications

max medicationsð Þ þ
xprocedures

max proceduresð Þ

For example the treatment time of ‘Hemoglobin SS
disease with crisis’ is 1406 days. We divide this by the
max treatment length of any phenotype, which is also
1406 days. This gives us the proportional treatment
length of the disease or 1.00. Likewise, proportions are
calculated for each of the five measures. The sum of the
proportions is divided by the total number of propor-
tions, or 5. This is E-PSI, the proportional index, for the
phenotype.
We used Independent Components Analysis (ICA)

[27] to visualize the relationship between E-PSI and each
phenotype severity measure. Computations were per-
formed in R (v.3.1.1).

Reference standard development and evaluation
Development of the Reference Standard involved using
the CUMC Clinical Data Warehouse that was trans-
formed to the Clinical Data Model (CDM) outlined by
the OMOP consortium [2]. All low prevalence phenotypes
were removed, leaving behind a set of 4,683 phenotypes
(prevalence of at least 0.0001). Because we are studying
phenotypes manifested during the clinical encounter, we
treat each distinct SNOMED-CT code as a unique
phenotype. This was done because each SNOMED-CT
code indicates a unique aspect of the patient state [28].
To compare results between “mild” and “severe” pheno-

types, we required a reference-standard set of SNOMED-
CT codes that were labeled as “mild” and “severe”. In
addition, the set must be un-biased towards a particular
clinical subfield (e.g., oncology or nephrology). Therefore,
we developed a reference-standard set of 516 phenotypes
(out of the 4,683 phenotype super-set) using a set of heu-
ristics. All malignant cancers and accidents were labeled
as “severe”; all ulcers were labeled as “mild”; all carcin-
omas in situ were labeled as “mild”; and most labor and
delivery-related phenotypes were labeled as “mild”. Since
the reference standard was created manually, the final
judgment was left to the ontology expert regarding label-
ing a given phenotype as “mild” or “severe”. However, the
ontology expert consulted with medical experts to reduce
ambiguity.
Evaluation of the Reference Standard required soliciting

volunteers to manually evaluate a subset of the reference
standard (N = 7). Half of the evaluators held a Medical
Degree (MD) (N = 3) and completed residency while the
other half were graduate students with informatics train-
ing (N = 3) and one post-doctoral scientist. We asked
each evaluator to assign phenotypes as either mild or se-
vere. We provided each evaluator with instructions for
distinguishing between mild and severe phenotypes. For
example, “severe conditions are conditions that are life-
threatening (e.g., stroke is immediately life-threatening) or
permanently disabling (congenital conditions are generally
considered severe unless they are easily corrected). Mild
conditions may still require treatment (e.g., benign neo-
plasms and cysts are generally considered mild and not
severe as they may not require surgery).” To ascertain the
confidence that each evaluator had in making their sever-
ity assessments, we asked evaluators to denote their confi-
dence in each severity assignment using a modified Likert
scale [29] with the following 3 choices: ‘very confident’,
‘somewhat confident’ and ‘not confident’. All evaluators
were provided with two coded examples and 100 ran-
domly extracted phenotypes (from the reference stand-
ard). This evaluation set of 100 phenotypes contained 50
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mild and 50 severe (labels from the reference-standard).
Pair-wise agreement between each evaluator and the
reference-standard was calculated using Cohen’s kappa
[30,31]. Inter-rater agreement among all evaluators
and the reference standard was calculated using Fleiss’s
kappa [32,33].
Evaluation of Measures at Capturing Severity involved

comparing results from “mild” and “severe” phenotypes
for each severity measure. Severity measures were not
normally distributed so non-parametric measures (i.e.,
quartiles) were used for comparisons.

Learning phenotype-level severity classes
Development of the random forest classifier
CAESAR involved the unsupervised learning of classes
by calculating a proximity matrix [34]. The scaled 1-
proximity for each data point (in this case a phenotype)
was plotted [34]. The reference standard result was then
overlaid on top to determine if there was any significant
clustering based on a phenotype’s class (in this case
severe or mild). Clusters of severe and mild phenotypes
can be used to set demarcation points for labeling a
phenotype.
Using the proximity matrix also allows for discrimin-

ation among levels of severity, in addition to the binary
classification of severe vs. mild. We used the random-
Forest package (v.4.6-10) in R (v.3.1.1) for calculations
[35] and we used 1000 trees in our model. The random
forest classifier, or CAESAR, takes all 5 severity mea-
sures and E-PSI (the proportional index term) as input
for the model.

Evaluation of the random forest classifier
CAESAR was evaluated using the 516-phenotype refer-
ence standard. Sensitivity and specificity were used to
assess CAESAR’s performance. The class errors for se-
vere and mild were measured using the randomForest
package [35] and compared against the out-of-bag
(OOB) error rate. The randomForest algorithm uses the
Gini index to measure node impurity for classification
trees. The Gini impurity measure sums the probability
of an item being chosen times the probability of misclas-
sifying that item. We can assess the importance of each
variable (i.e., the 5 measures and E-PSI) included in
CAESAR by looking at the mean decrease in Gini. Vari-
ables with larger decreases in Gini are more important
to include in CAESAR for accurate prediction.

Results
Assessment of phenotype severity
Severe phenotypes in general are more prevalent in
EHRs because in-patient records contain “sicker” indi-
viduals when compared to the general population, which
can introduce something called the Berkson bias [36].
However, in the general population mild phenotypes are
often more prevalent than severe phenotypes.
For condition/phenotype information we used data

from CUMC EHRs, which was initially recorded using
ICD-9 codes. These ICD-9 codes were mapped to
SNOMED-CT codes using the OMOP CDM v.4 [2]. For
this paper, we used all phenotypes (each phenotype be-
ing a unique SNOMED-CT code) with prevalence of at
least 0.0001 in our hospital database. This constituted
4,683 phenotypes. We then analyzed the distribution of
each of the five measures and E-PSI among the 4,683
phenotypes. Figure 2 shows the correlation matrix
among the 5 severity measures and E-PSI.
Strong correlations exist between both the number of

procedures and the number of medications (r = 0.88),
and the number of comorbidities (r = 0.89). This indi-
cates that there is a high degree of inter-relatedness be-
tween the number of procedures and the other severity
measures. Cost was calculated using HCPCS codes
alone, whereas the number of procedures measure in-
cludes both HCPCS and the ICD-9 procedure codes as
defined in the OMOP CDM. Because cost was calcu-
lated using only HCPCS codes, the correlation between
cost and the number of procedures was only 0.63. Also
phenotype measures were increased for more severe
phenotypes. This could be useful for distinguishing
among subtypes of a given phenotype based on severity.

E-PSI versus other severity measures
We performed ICA on a data frame containing each
of the five severity measures and E-PSI. The result is
shown in Figure 3 with phenotypes colored by increas-
ing E-PSI score and size denoting cost. Notice that
phenotype cost is not directly related to the E-PSI
score. Also phenotypes with higher E-PSI seem to be
more severe (Figure 3). For example, ‘complication of
transplanted heart’, a severe phenotype, had a high
E-PSI score (and high cost).
Phenotypes can be ranked differently depending on

the severity measure used. To illustrate this, we ranked
the phenotypes using E-PSI, cost, and treatment length
and extracted the top 10 given in Table 1. When ranked
by E-PSI and cost, transplant complication phenotypes
appeared (4/10 phenotypes), which are generally consid-
ered to be highly severe. However, the top 10 pheno-
types when ranked by treatment time were also highly
severe phenotypes, e.g., Human Immunodeficiency Virus
and sickle cell. An ideal approach, used in CAESAR,
combines multiple severity measures into one classifier.
‘Complication of transplanted heart’ appears in the top

10 phenotypes when ranked by all three-severity measures
(italicized in Table 1). This is particularly interesting
because this phenotype is both a complication phenotype
and transplant phenotype. By being a complication the
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phenotype is therefore a severe subtype of another pheno-
type, in this case a heart transplant (which is actually a
procedure). Heart transplants are only performed on sick
patients; therefore this phenotype is always a subtype of
another phenotype (e.g., coronary arteriosclerosis). Hence
‘complication of transplanted heart’ is a severe subtype of
multiple phenotypes (e.g., heart transplant, and the pre-
cursor phenotype that necessitated the heart transplant –
coronary arteriosclerosis).
Evaluation of severity measures
Development of the Reference Standard severe and mild
SNOMED-CT codes involved using a set of heuristics
with medical guidance. Phenotypes were considered severe
if they were life threatening (e.g., ‘stroke’) or permanently
disabling (e.g., ‘spina bifida’). In general, congenital pheno-
types were considered severe unless easily correctable.
Phenotypes were considered mild if they generaly require
routine or non-surgical (e.g., ‘throat soreness’) treatment.



Figure 3 Independent component analysis of phenotypes illustrates relationship between E-PSI and cost. Independent Component
Analysis was performed using all five severity measures and E-PSI. Phenotypes are colored by increasing E-PSI score (higher score denoted by light
blue, lower score denoted by dark navy). The size indicates cost (large size indicates high cost). Phenotypes with higher E-PSI seem to be more
severe; for example, ‘complication of transplanted heart’, a severe phenotype, had a high E-PSI score (and high cost). However, phenotype cost is
not directly related to the E-PSI score.
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Several heuristics were used: 1) all benign neoplasms
were labeled as mild; 2) all malignant neoplasms were la-
beled as severe; 3) all ulcers were labeled as mild; 4)
common symptoms and conditions that are generally of
a mild nature (e.g., ‘single live birth’, ‘throat soreness’,
‘vomiting’) were labeled as mild; 5) phenotypes that were
known to be severe (e.g., ‘myocardial infarction’, ‘stroke’,
‘cerebral palsy’) were labeled as severe. The ultimate
determination was left to the ontology expert for
Table 1 Top 10 phenotypes ranked by severity measure

E-PSI Cost

Complication of transplanted heart Complication of

Transplant follow-up Transplant follo

Posttransplantation lymphoproliferative syndrome Disorder of imm

Complication of transplanted lung Post-transplanta
syndrome

Complication of hemodialysis Anterior horn c

Disorder of immune function Endocrine/meta

Complication of renal dialysis Myocardial deg

Disorder of transplanted bone marrow APL - Acute pro

Arrested development following proteincalorie malnutrition Isolated (Fiedle

Serratia septicaemia Complication o
determining the final classification of severe and mild
phenotypes. The ontology expert consulted with medical
experts when deemed appropriate. The final reference
standard consisted of 516 SNOMED-CT phenotypes (of
the 4,683 phenotypes). In the reference standard, 372
phenotypes were labeled as mild and 144 were labeled as
severe.
Evaluation of the Reference Standard was performed

using volunteers from the Department of Biomedical
Treatment length

transplanted heart Hemoglobin SS disease with crisis

w-up Complication of transplanted heart

une function Hemoglobin SS disease without crisis

tion lymphoproliferative Exstrophy of bladder sequence

ell disease Factor IX deficiency

bolic screening Complication of transplanted kidney

eneration Type II diabetes mellitus - poor control

myelocytic leukaemia Sickle cell-hemoglobin C disease without crisis

r’s) myocarditis HIV - Human immunodeficiency virus infection

f transplanted lung Osteoarthritis
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Informatics at CUMC. Seven volunteers evaluated the
reference standard including three MDs with residency
training, three graduate students with informatics ex-
perience and one post-doc (non-MD). Compensation
was commensurate with experience (post-docs received
$15 and graduate students received $10 Starbucks gift
cards).
We excluded two evaluations from our analyses: one

because the evaluator had great difficulty with the med-
ical terminology, and the second because the evaluator
failed to use the drop-down menu provided as part of
the evaluation. We calculated the Fleiss kappa for inter-
rater agreement among the remaining 5 evaluations and
found evaluator agreement was high (k = 0.716). The in-
dividual results for agreement between each evaluator
and the reference standard were kappa equal to 0.66,
0.68, 0.70, 0.74, and 0.80. Overall, evaluator agreement
(k = 0.716) was sufficient for comparing two groups (i.e.,
mild and severe) and 100% agreement was observed be-
tween all five raters and the reference-standard for 77
phenotypes (of 100).
Evaluation of Measures at Capturing Severity was per-

formed by comparing the distributions of all 6 measures
between severe and mild phenotypes in our 516-phenotype
reference standard. Results are shown in Figure 4. Increases
were observed for severe phenotypes across all measures.
We performed the Wilcoxon Rank Sum Test to assess
significance of the differences between severe vs. mild
phenotypes shown in Figure 4. The p-values for each
comparison were <0.001.

Unsupervised learning of severity classes
Development of the random forest classifier
CAESAR used an unsupervised random forest algorithm
(randomForest package in R) that required E-PSI and all
5-severity measures as input. We ran CAESAR on all
4,683 phenotypes and then used the 516-phenotype
reference standard to measure the accuracy of the
classifier.

Evaluation of the random forest classifier
CAESAR achieved a sensitivity = 91.67 and specificity =
77.78 indicating that it was able to discriminate between
severe and mild phenotypes. CAESAR was able to detect
mild phenotypes better than severe phenotypes as shown
in Figure 5.
The Mean Decrease in Gini (MDG) measured the im-

portance of each severity measure in CAESAR. The
most important measure was the number of medications
(MDG = 54.83) followed by E-PSI (MDG = 40.40) and
the number of comorbidities (MDG = 30.92). Cost was
the least important measure (MDG = 24.35).
CAESAR used all 4,683 phenotypes plotted on the

scaled 1-proximity for each phenotype [34] shown in
Figure 6 with the reference standard overlaid on top.
Notice that phenotypes cluster by severity class (i.e.,
mild or severe) with a “mild” space (lower left) and a
“severe” space (lower right), and phenotypes of inter-
mediate severity in between.
However, three phenotypes are in the “mild” space

(lower left) of the random forest model (Figure 6). These
phenotypes are ‘allergy to peanuts’, ‘suicide-cut/stab’, and
‘motor vehicle traffic accident involving collision be-
tween motor vehicle and animal-drawn vehicle, driver of
motor vehicle injured’. These phenotypes are probably
misclassified because they are ambiguous (in the case of
the motor vehicle accident, and the suicide cut/stab) or
because the severity information may be contained in
unstructured EHR data elements (as could be the case
with allergies).
Using the proximity matrix also allows further dis-

crimination among severity levels beyond the binary
mild vs. severe classification. Phenotypes with am-
biguous severity classifications appear in the middle
of Figure 6. To identify highly severe phenotypes, we
can focus only on phenotypes contained in the lower
right hand portion of Figure 6. This reduces the
phenotype selection space from 4,683 to 1,395 pheno-
types (~70% reduction).
We are providing several CAESAR files for free down-

load online at http://caesar.tatonettilab.org. These in-
clude, the 516-phenotype reference-standard used to
evaluate CAESAR, the 100-phenotype evaluation set
given to the independent evaluators along with the in-
structions, and the 4,683 conditions with their E-PSI
scores and the first and second dimensions of the 1-
proximity matrix (shown in Figure 6). This last file also
contains two subset tables containing the automatically
classified “mild” and “severe” phenotypes and their scores.
Discussion
Using the patient-specific severity index as a backbone
[19], we identified five measures of EHR-specific pheno-
type severity that we used as input for CAESAR.
Phenotype-level severity differs from patient-level sever-
ity because it is an attribute of the phenotype itself and
can be used to rank phenotypes. Using CAESAR, we
were able to reduce our 4,683-phenotype set (starting
point) to 1,395 phenotypes with high severity and preva-
lence (at least 0.0001) reducing the phenotype selection
space by ~70%. Severe phenotypes are highly important
for CER because they generally correlate with lower sur-
vival outcomes, lost-productivity, and have an increased
cost burden. In fact, patients with severe heart failure
tend to have bad outcomes regardless of the treatment
they receive [37]. Therefore understanding the severity
of each condition is important before performing CER

http://caesar.tatonettilab.org
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and having a complete list of severe phenotypes would
be greatly beneficial.
Additionally, developing a classification algorithm that

is biased towards identifying more severe over mild phe-
notypes is optimal, as it would enable detection of pheno-
types that are crucial for public health purposes. Active
learning methods that favor detection of severe pheno-
types were proven successful in a subsequent study [38].
CAESAR uses an integrated severity measure ap-

proach, which is better than using any of the other
measures alone, e.g., cost, as each severity measure has
its own specific bias. It is well known that cosmetic pro-
cedures, which by definition treat mild phenotypes, are
high in cost. If cost is used as a proxy for severity it
could introduce many biases towards phenotypes that
require cosmetic procedures (e.g., crooked nose) that are
of little importance to public health. Also some cancers
are high in cost but low in mortality (and therefore
severity), a good example being non-melanoma skin
cancer [39]. Therefore, by including multiple severity
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measures in CAESAR we have developed a method that
is robust to these types of biases.
Another interesting finding was that cancer-screening

codes tend to be classified as severe phenotypes by CAE-
SAR even though they were generally considered as mild
in the reference standard. The probable cause for this is
that screening codes, e.g., ‘screening for malignant neo-
plasm of respiratory tract’, are generally only assigned by
physicians when cancer is one of the differential diagno-
ses. In this particular situation the screening code, while
not an indicator of the disease itself, is indicative of the
patient being in an abnormal state with some symptoms
of neoplastic presence. Although not diagnoses, screen-
ing codes are indicative of a particular manifestation of
the patient state, and therefore can be considered as
phenotypes. This finding is also an artifact of the EHR,
which records the patient state [8], which does not
always correlate with the “true” phenotype [5,28].
Importantly, CAESAR may be useful for distinguishing

among subtypes of a given phenotype if one of the char-
acteristics of a subtype involves severity. For example,
the severity of Gaucher disease subtypes are difficult to
capture at the patient-level [40]. This rare phenotype
would benefit greatly from study using EHRs where
more patient data exists. Using CAESAR may help in
capturing the phenotype-level severity aspect of this rare
phenotype, which would help propel the utility of using
EHRs to study rare phenotypes [41] by providing accur-
ate severity-based subtyping.
CAESAR is directly relevant to the efforts of the

Observational Health Data Sciences and Informatics
consortium (OHDSI), which is a continuation of OMOP.
OHDSI is an international network focused on observa-
tional studies using EHRs and other health record systems.
Their original motivation was to study post-market effects
of pharmaceutical drugs [42] based on their pharmaceutical
partnerships. To this end, a severity-based list of ranked
phenotypes would be beneficial for assessing the relative
importance of various post-marketing effects (e.g., nausea is
mild, arrhythmia is severe).
Other phenotyping efforts would also benefit from

CAESAR including the eMERGE network [3], which
seeks to carefully define phenotypes of interest for use in
PheWAS studies. So far they have classified 20 pheno-
types. Having a ranked list of phenotypes would help
eMERGE to rank prospective phenotypes, thereby allow-
ing them to select more severe phenotypes for further
algorithm development efforts.
There are several limitations to this work. The first is

that we used CUMC data when calculating four of the
severity measures. Because we used only one institution’s
data, we have an institution-specific bias. However, since



Figure 6 Classification result from CAESAR showing all 4,683 phenotypes (gray) with severe (red) and mild (pink) phenotype labels
from the reference standard. All 4,683 phenotypes plotted using CAESAR’s dimensions 1 and 2 of the scaled 1-proximity matrix. Severe phenotypes
are colored red, mild phenotypes are colored pink and phenotypes not in the reference standard are colored gray. Notice that most of the
severe phenotypes are in the lower right hand portion of the plot while the “mild” space is found in the lower left hand portion.
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CAESAR was designed using the OMOP CDM, it is
portable for use at other institutions that conform to the
OMOP CDM. The second limitation is that we did not
use clinical notes to assess severity. Some phenotypes,
e.g., ‘allergy to peanuts’, may be mentioned more often in
notes than in structured data elements. For such pheno-
types, CAESAR would under estimate their severity. The
third limitation is that we only used procedure codes
to determine phenotype cost. Therefore, phenotypes
that do not require procedures will appear as low cost
phenotypes even though they may have other costs, e.g.,
medications.
Future work involves investigating the inter-relatedness

of our severity measures and determining the temporal
factors that affect these dependencies. We also plan to in-
vestigate the inter-dependency of phenotypes (e.g., ‘blurred
vision’ is a symptom of ‘stroke’, but both are treated as
separate phenotypes) and determine the utility of our se-
verity measures for distinguishing between phenotypes
and their subtypes.
Another potentially interesting extension of our

work could involve utilizing the semantics of SNOMED,
specifically their phenotype/subtype relations, to explore
CAESAR’s severity results. Because we chose SNOMED
to represent each phenotype, we can leverage SNO-
MED’s semantics to further probe the relationship
between severity and disease. Perhaps some of the
phenotypes with ambiguous severity (middle of Figure 6)
occurred because their disease subtypes can be either
mild or severe (we can assess this using SNOMED’s
hierarchical structure). However, leveraging the seman-
tics of concepts for severity classification is a complex
area [43], which will likely require additional methods to
tackle. Hopefully these topics can be explored in future
by ourselves or others.

Conclusions
This paper presents CAESAR, a method for classifying
severity from EHRs. CAESAR takes several known mea-
sures of severity: cost, treatment time, number of co-
morbidities, medications, and procedures per phenotype,
and a proportional index term as input into a random
forest algorithm that classifies each phenotype as either
mild or severe. Using a reference standard that was
validated by medical experts (k = 0.716), we found that
CAESAR achieved a sensitivity of 91.67 and specificity
of 77.78 for severity detection. CAESAR reduced our
4,683-phenotype set (starting point) to 1,395 phenotypes
with high severity. By characterizing phenotype-level
severity using CAESAR, we can identify phenotypes
worthy of study from EHRs that are of particular im-
portance for CER and public health.
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