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Abstract

Background: Integrating multiple sources of pharmacovigilance evidence has the potential to advance the science
of safety signal detection and evaluation. In this regard, there is a need for more research on how to integrate
multiple disparate evidence sources while making the evidence computable from a knowledge representation
perspective (i.e., semantic enrichment). Existing frameworks suggest well-promising outcomes for such integration
but employ a rather limited number of sources. In particular, none have been specifically designed to support both
regulatory and clinical use cases, nor have any been designed to add new resources and use cases through an
open architecture. This paper discusses the architecture and functionality of a system called Large-scale Adverse
Effects Related to Treatment Evidence Standardization (LAERTES) that aims to address these shortcomings.

Results: LAERTES provides a standardized, open, and scalable architecture for linking evidence sources relevant to
the association of drugs with health outcomes of interest (HOIs). Standard terminologies are used to represent
different entities. For example, drugs and HOIs are represented in RxNorm and Systematized Nomenclature of
Medicine – Clinical Terms respectively. At the time of this writing, six evidence sources have been loaded into the
LAERTES evidence base and are accessible through prototype evidence exploration user interface and a set of Web
application programming interface services. This system operates within a larger software stack provided by the
Observational Health Data Sciences and Informatics clinical research framework, including the relational Common
Data Model for observational patient data created by the Observational Medical Outcomes Partnership. Elements of
the Linked Data paradigm facilitate the systematic and scalable integration of relevant evidence sources.

Conclusions: The prototype LAERTES system provides useful functionality while creating opportunities for further
research. Future work will involve improving the method for normalizing drug and HOI concepts across the
integrated sources, aggregated evidence at different levels of a hierarchy of HOI concepts, and developing more
advanced user interface for drug-HOI investigations.
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Background
A recent report from the United States Department of
Health and Human Services noted that, while medications
help millions of people live longer and healthier lives, they
are also the cause of approximately 280,000 hospital admis-
sions each year and an estimated one-third of all hospital
adverse events [1]. The field of post-market drug safety sur-
veillance focuses on applying the most current methodo-
logical advances to help identify undesired effects of drugs
and biologics. One of the major opportunities and chal-
lenges to safety investigators is that there are many disparate
evidence sources from which a safety concern might either
be identified or evaluated. These may include spontaneous
reporting systems, electronic health records, the literature,
Web search logs, and social media. [2–7]. Safety concerns
can also be predicted from the knowledge about the chem-
ical structure and pharmacological properties of drugs [8].
Combining multiple sources of biomedical evidence has
been shown to have value for improving the precision of au-
tomated signal identification [9], and for identifying both
established [10] and new safety concerns [11].
Consistent with these results, there has been a recent

call for more research on “combinatorial signal detection”
that is defined as integrating multiple disparate evidence
sources while making the evidence computable from a
knowledge representation perspective (i.e., semantic en-
richment) [12]. Examples of such features include:

� The use of formal (i.e., logically defined and
computable) definitions for the meaning of entities
represented in the database such as drugs and HOIs.

� Formally defined relationships between the entities
represented in each integrated evidence source.

� Computational methods for inferring new
knowledge from evidence, for example using rule-
based or machine learning methods.

Existing frameworks that have integrated various
sources in a way that provide some of these features in-
clude ADEPedia [13, 14], MetaADEDB [15], CATTLE
[16], and Bio2RDF [17]. Fig. 1 shows the evidence sources
integrated into these systems. As the figure indicates,
there are several alternate sources that could be integrated
including VigiBase®, pharmacovigilance signals from mul-
tiple sources (or using alternative methods) [18], elec-
tronic health records signals from multiple sources (or
using alternative methods) [19], alternate approaches to
extracting safety concerns from unstructured text using
natural language processing [20], and various sources of
drug-drug interaction evidence [21].
With the exception of Bio2RDF, none of the aforemen-

tioned systems have an open architecture that would en-
able the integration at large-scale, systematically, while
facilitating the integration of new sources. Bio2rdf does
have an open architecture. The code for loading a data
source into Bio2RDF is open source enabling motivated
scientists to create a local version of Bio2RDF and then in-
tegrate a new source by writing code that translates the
sources data into a Resource Description Framework
(RDF) graph according to Bio2RDF conventions [22].
They can also edit the translation code for existing sources
to alter decisions that are made during the integration
process. This ability is important, because there are a var-
iety of decisions made on how these sources are integrated
that can influence downstream analyses. Table 1 shows
some of the decisions to be made with respect the general

Fig. 1 The information sources of existing knowledge-based systems for pharmacovigilance. Citations to the sources mentioned can be found in
the “Background” section. EHR: electronic health record, AE: adverse event, EU: European Union, FAERS: Food and Drug Administration Adverse
Event Reporting System, CTD: Comparative Toxicogenomics Database
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Extract, Translate, and Load (ETL) process for pharma-
covigilance (i.e., not specific only to Bio2RDF).
In a previous paper [23], we presented the vision of estab-

lishing an open-source community effort to develop a global
knowledge base of known associations between drugs and
HOIs: one that brings together and standardizes all available
information for all drugs and all HOIs from all electronic
sources pertinent to drug safety. To make this vision a reality,
a workgroup within the Observational Health Data Sciences
and Informatics (OHDSI) collaborative [24] was organized
for the purpose of developing a standardized knowledge base
for the effects of medical products, and an efficient proced-
ure for maintaining and expanding it. The main purpose of
the knowledge base is to make it simpler to access, retrieve,
and synthesize evidence so that users can develop an assess-
ment of causal relationships between a given drug and HOI
as accurate as current evidence provides.
This paper discusses the results of this workgroup

thus far. Specifically, the paper discusses the architec-
ture and functionality of a prototype system called
Large-scale Adverse Effects Related to Treatment Evidence
Standardization (LAERTES). LAERTES provides open and
scalable architecture for linking evidence sources relevant
to investigating the association of drugs with HOIs. The
remaining sections of this paper will discuss the motivating
user story, the system’s architecture, implementation
details, and the current beta release.

Implementation
Motivating user story and goal
Safety physicians and risk management analysts investigate
new adverse drug event reports and emerging drug safety
signals. A typical way to express the requirements imposed
on a software system by a specific user group is via the so-
called “user stories”. The user story which drove the devel-
opment of the LAERTES platform is defined as follows:
“As a safety physician or risk management analyst

monitoring the safety of a marketed drug, I want to do a
comprehensive search across known or emerging drug-
HOI evidence so I can thoroughly and expeditiously
triage emerging potential safety signals and assess their
potential impact.”
In order to do that, a number of tasks have to be car-

ried out including:

1) quickly determining if a specific adverse event has
been previously reported for a given drug;

2) gauging if a potential safety concern is at the clinical
drug (e.g. ‘simvastatin 20 mg oral tablet’), ingredient
(e.g., ‘simvastatin’), or class (e.g., ‘statins’) level;

3) assessing the credibility of the sources reporting the
association, and

4) deciding what priority an adverse event signal might
warrant for further investigation.

LAERTES system and data architecture
The LAERTES system architecture (Fig. 2) includes three
main components that operate within a larger software eco-
system provided by the OHDSI clinical research framework.
The three components are 1) a Resource Description
Framework (RDF) data store that represents all included
evidence sources as Open Annotation Data (OA) model
[25], 2) a relational data store that enables both summary
queries providing an overview of evidence across all in-
cluded sources, and drill down queries that examine import-
ant information on specific evidence items; and 3) a web
services layer that hides the details of how to query the RDF
and relational component so that client programs can more
easily benefit from their combined functionality. The next
few sub-sections discuss these components in more detail.

RDF data and the “drill down” use case
RDF is a standard developed through the World Wide
Web Consortium (W3C) that uses Uniform Resource
Identifiers (URIs) and a graph-based data model to repre-
sent any kind of connected data [26]. Since the introduc-
tion of RDF as a key component of the Semantic Web, the
standard has become widely used, especially in the bio-
medical sciences [27]. In comparison with the relational
data model, the underlying graph model of RDF makes
querying across heterogeneous data sets simple. The data
represented in RDF data are computable and semantically
non-ambiguous through the use of URIs and ontologies.
RDF “Linked Data” provides a convention to ensure that
all data items across multiple connected graphs are easily
accessible using standard web technology.
In LAERTES, a specific piece of evidence in favor or

against an association between a drug and an HOI from
any integrated data source is represented using the Open
Annotation Data (OA) model. OA is a standard for
representing human and computer annotations that is
gaining broad adoption among many publishing com-
munities. In LAERTES, every item of evidence about a
drug-HOI pair is represented as an OA resource present
in the RDF data store (Fig. 2). The reasons for this ap-
proach are to 1) use a single standard approach to repre-
senting evidence items regardless of the source and 2)
harness the aforementioned benefits of Linked Data.
Each OA resource provides the data about the source

of a specific evidence item (the “target”) and the seman-
tic tags used to identify the record as a relevant evidence
item (the “body” or “bodies”). The body of each OA has
resources for drug, drug group, and HOI concepts that
are represented using standard vocabularies (Medical
Subject Headings (MeSH), Medical Dictionary for Regu-
latory Activities (MedDRA), Systematized Nomenclature
of Medicine - Clinical Terms (SNOMED-CT), and
RxNorm). To enable integration with other data sources
in the OHDSI clinical research framework and facilitate
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Table 1 Decisions that are made during the process of integrating sources that can influence downstream pharmacovigilance
analyses

Data Type Feature Option for variability Performance questions

Product labels Product label outcome
mention

Named entity performance
(PPV and sensitivity)

Do improvements in entity recognition
performance improve system recall
and precision?

Section location (e.g., anywhere
vs specific sections)

Does identifying which sections are more
informative than others reduce noise?

Frequency information Threshold variation Does incorporation of ADE frequency improve
performance? What cut-off should be used?

Pharmacovigilance DBs (e.g.
FAERS, MedEffect, VigiBase)

Minimum detectable relative
risk

Threshold variation What is the appropriate cut-off for MDRR?
Is it HOI specific?

Database (s) chosen Does the database influence the value of
MDRR for this task?

Risk identification method Disproportionality metric What metric (e.g. PRR, EBGM, IC) leads to
the best performance? Is it HOI specific?

Number of cases in FAERS Threshold variation What is the appropriate cut-off for number
of case reports?

Drug Indication DB Indication listings in FDB Yes/no and when mentioned Does using on-label and off-label indication
knowledge improve performance?

Indexed literature Number of relevant
publications from the indexed
literature

Threshold variation Is there an appropriate cut-off for number
of publications? What is its variability relative
to specific HOIs and drugs?

Source of relevant
publications from the indexed
literature

Varying the combination of sources Should we be selective about the sources
used or chose all of them?

Drug and outcome mention
in relevant indexed literature

Named entity performance Do improvements in entity recognition
performance improve system recall
and precision?

Main MeSH terms vs supplemental What is the value of MeSH supplemental
terms relative to the primary index terms?

Scientific discourse tag of the location
of mention (e.g., intro, methods, results,
conclusions)

Does limiting identification of drug-HOI
co-mention to specifically tagged text
excerpts improve performance?

Publication type label (randomized trial,
case report, etc.)

Should the publication type of the
drug-HOI co-mention be tracked and
possibly weighted to improve performance?

Source of publication type label
(Embase, MeSH)

Is one publication type indexing system
better than the other for the question
answering task, or should they
be combined?

Topic of the source publication based
on latent semantic indexing

Does the use of tags assigned to text
sources by latent semantic indexing
improve system performance if used
as a feature?

Observational health data
(claims + EHR)

Minimum detectable relative
risk

Threshold variation What is the appropriate cut-off for MDRR?
Is it HOI specific?

Database (s) chosen Does the database influence the value of
MDRR for this task?

Risk identification method Analytic method What method (e.g. disproportionality
analysis, self-controlled case series, IC
temporal pattern discovery,
high-dimensional propensity score)
leads to the best performance?
Is it HOI specific?
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the reuse of the LAERTES platform in the context of the
OHDSI analytical tools, the source codes from the rele-
vant terminology are replaced with the equivalent con-
cept_id from the concept table which is part of the
Observational Medical Outcomes Partnership (OMOP)
Standard Vocabulary [28]. Fig. 3 shows an entity rela-
tionship diagram for the OA resources created for ad-
verse drug reactions extracted from US drug product
labeling. Graphs with the same basic structure (an an-
notation resource linked to a target and a body) are
created for other evidence sources but given a
different type and selectors that are appropriate to
the source. For example, an OA resource that repre-
sents a drug-HOI evidence from MEDLINE MeSH
tag assignment would be given the type ohdsi:Pub-
MedDrugHOIAnnotation and a selector with the
exact text of the title and abstract.

Relational data and the “summary” use case
As the system diagram in Fig. 2 shows, aggregated evidence
exists for LAERTES in a relational data store. Within the
data store, there are “linkouts” to OA resources (described
below). A web application programming interface (API) is
able to interact with both the relational data store as well as
the RDF linkouts. This interoperable representational state
transfer (REST) API can be leveraged for user interaction ei-
ther directly or via third-party applications.
The schema for the primary tables used in the relational

data store is shown in Fig. 4. The evidence_sources table
holds metadata on each data source that has been loaded
into LAERTES. The table drug_hoi_relationship is used to
hold the concept identifiers for the drug and HOI pairs used
in the drug_hoi_evidence table. Drug and HOI concepts in
this table have been converted from the source terminologies
(e.g., MeSH, MedDRA) to RxNorm and SNOMED-CT

Table 1 Decisions that are made during the process of integrating sources that can influence downstream pharmacovigilance
analyses (Continued)

Cohort selection Patient ethnicity, age, sex, co-
morbidities, concurrent medications

Does cohort selection using these
features affect model performance?
What is the appropriate size and
diversity of the cohort to reduce
noise and bias?

Drug exposure conditions Length of exposure, dosage Does selecting minimum exposure
duration criteria and/ or drug dosage
information improve performance?

Study replicability Number of locations for confirming
results

How many replicates of the study
should be performed at different
institutions?

Observation period Observation duration threshold Does setting minimum observation period
durations improve performance?

PPV: positive predictive value, OMOP: Observational Medical Outcomes Partnership, ADE: adverse drug event, MDRR: minimal detectable reporting ratio, HOI:
health outcome of interest, DB: database, FAERS: Food and Drug Administration Adverse Event Reporting System, EBGM: empirical Bayes geometric mean. IC:
information component, FDB: First Data Bank (commercial drug knowledge base), EHR: electronic health record

Fig. 2 The overall architecture of LAERTES within the OHDSI clinical research software environment. REST: representational state transfer, OHDSI:
Observational Health Data Sciences and Informatics, API: application programming interface, DBMS: database management system, CDM:
common data model, OA: Open Annotation Data, RDF: Resource Description Framework
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concepts using relationships present in the Standard Vocabu-
lary provided by the OHDSI clinical research framework
(“OMOP Vocabulary” in Fig. 4). Natural language processing
(NLP) is applied to sources that do not use a specific termin-
ology. For example, the validated NLP tool SPLICER [29] is

used to process United States product labeling from unstruc-
tured text to RxNorm drug and MedDRA HOI mentions. A
key point is that clinical datasets represented in the OHDSI
clinical research framework will use the standardized con-
cepts from RxNorm and SNOMED making it possible to

Fig. 3 An entity relationship diagram showing how data from US product labeling is represented as a semantically enriched Open Annotation
Data graph

Fig. 4 The data architecture of LAERTES. The system leverages the OMOP Vocabularies to describe drugs and health outcomes of interest via
standardized vocabulary concepts (concept table). LAERTES stores aggregated evidence in a summary table (drug_hoi_evidence) that provides a
“linkout” (evidence_linkout) to an Open Annotation Data representation of the source data. In the relational database, the linkout functions as a
foreign key to the adr_annotation table through a table (not shown) that maps the linkout to annotation identifiers (adr_annotation_uid). Client
programs can also use the linkout as a URL to retrieve JSON data from an RDF store that has a linked data version of the source open
annotation data
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create queries that join the merged evidence in LAERTES
with clinical data.
The drug_hoi_evidence table provides aggregate sum-

mary statistics for every drug-HOI pair from a given
source, noting, wherever possible, if the evidence sup-
ports or refutes an association. Aggregation across the
sources is possible because all drug and HOI concepts
are translated to RxNorm and SNOMED-CT, respect-
ively. The aggregation is based on a number of differ-
ent scores and coefficients. For example, a specific
drug-HOI association might have evidence from spon-
taneous reporting in the form of adverse event counts
as well as the results of disproportionality analyses
over the reporting database (i.e., proportional report-
ing rates and other signal statistics [30]). If so, the
drug_hoi_evidence table would hold a distinct record
for both statistics while indicating each record’s type
in the statistic_value field.

Evidence “linkouts” – the bridge between the summary
and “drill down” use cases
An important data element in the drug_hoi_evidence
table is the evidence_linkout column. This holds a URL
that functions as a foreign key to the adr_annotation
table through a table (not shown) that maps the linkout
to annotation identifiers. This enables analysts using the
relational database to examine an OA represention of
the source records used to create the summary data lo-
cated in drug_hoi_evidence. Client programs can also
use the linkout as a URL to retrieve JSON data from
the RDF store that has a linked source open annota-
tion data for the purpose of displaying this evidence.
An example will help clarify the functionality. First,
the following SPARQL script (executable on the pub-
lic OHDSI RDF store [31]) shows how to query for a
source document in the RDF store shown in the sys-
tem diagram (Fig. 2):

# The URI to the source document from
which the anonymous PubMed drug-HOI OA
# resource represented by ?s is returned
in the ?sourceDocument variable
PREFIX oa: <http://www.w3.org/ns/oa#>
PREFIX ohdsi: <http://purl.org/net/
ohdsi#>
SELECT ?sourceDocument
WHERE {

?s a ohdsi:PubMedDrugHOIAnnotation;

oa:hasTarget ?target.

?target oa:hasSource ?sourceDocument.
} LIMIT 10

This query can be used to retrieve the evidence item for the
specific drug-HOI pair “Simvastatin 20 MG Oral Tablet”
(identifier:1539411) and HOI “muscle weakness” (identifier:
36516876) from a specific source (in this case the a MEDLINE
record). The important changes are shown in bold font:

# The URI to the source document that
provides evidence for an association
between simvastatin
# and Rhabdomyolysis is returned in the
?sourceDocument variable
PREFIX oa: <http://www.w3.org/ns/oa#>
PREFIX ohdsi: <http://purl.org/net/
ohdsi#>
SELECT ?sourceDocument
WHERE {

?s a ohdsi:PubMedDrugHOIAnnotation;

oa:hasTarget ?target;

oa:hasBody ?body.

# “simvastatin”

?body ohdsi:ImedsDrug ohdsi: 1539403.

# “Rhabdomyolysis”

?body ohdsi:ImedsHoi ohdsi: 45619309.

?target oa:hasSource ?sourceDocument.
}

SPARQL queries like this one can be sent to an RDF
endpoint, in order to facilitate the reuse of the annota-
tions through produced other Linked Data applications.
Returning our focus to the relational data model (Fig. 4),
each of the entries in the evidence_linkout column holds
a URL that encodes the specific SPARQL query needed
to retrieve OA resources for a given drug, HOI, and evi-
dence source. Testing revealed that the needs and pref-
erences of various users required the ability to access the
open annotation data as either RDF or relational data (for
example, a pharmaceutical company’s IT infrastructure
might be more amenable to working with relational data
rather than RDF). At the same time, other users more
familiar with the interoperability and inference strengths of
RDF Linked Data will benefit from the RDF representation.
To accommodate this dual functionality, the exact same
encoded URLs are used as foreign keys to the adr_annota-
tion table through another table that maps the linkout to
annotation identifiers. The target and adr_body tables hold
a copy of the OA target and hasBody data (Fig. 3).
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Evidence “rollups”
One of the key features of the proposed platform is that
safety evidence may be linked to the drug at different
levels of granularity: at the clinical drug product level,
comprising the active ingredients, strength, formulation,
and brand name for the product, but may also be more
coarsely defined simply as evidence for a particular ac-
tive ingredient. For example, an adverse event might be
mentioned in the drug product label for only one clinical
drug containing a specific active ingredient. However, a
published case report might discuss an adverse event
that appears to be associated with all the drugs contain-
ing the active ingredient. LAERTES supports querying
the evidence at four different “rollup” levels: (1) by
RxNorm drug ingredient, (2) by RxNorm drug ingredi-
ent and SNOMED-CT HOI, (3) by RxNorm drug ingre-
dient and RxNorm clinical drug, and (4) by full detail
which was across the RxNorm drug ingredient, RxNorm
clinical drug, and SNOMED_CT HOI. These “rollup”
queries are supported by a table called laertes_summary
(Fig. 5). Data are aggregated from the evidence items
and inserted into this table during the evidence load
process using queries against the tables shown in Fig. 4.

Results
Technical implementation
At the time of this writing, six evidence sources have
been loaded into LAERTES representing three literature
sources, two drug product label sources, and one

spontaneous reporting source. Table 2 provides a brief
summary of each source, the methods used to normalize
drug and HOIs to RxNorm and SNOMED-CT respectively,
and the number of drug-HOI pairs that were available be-
fore and after mapping. The specific code used to perform
normalization is available from the project’s GitHub site
[32]. In general, custom Python scripts execute queries that
identify OHDSI concept identifiers for the source drug and
HOI concepts, and then use OHDSI Standard Vocabulary
mappings to translate from source concepts to RxNorm
and SNOMED-CT. Table 3 provides the overlap of distinct
drug-HOI pairs at the drug ingredient level across the three
broad categories of evidence (drug product labeling, pub-
lished literature, and spontaneous reporting).
Each evidence source was processed using a custom

Extract, Translate, and Load (ETL) module developed in
Python. All ETL modules follow a similar pattern involv-
ing 1) transforming the source data to an RDF OA graph
and 2) loading the graph into an RDF endpoint, and 3)
executing a query that generates statistics (e.g. count
data) and linkouts. Each linkout is URL-encoded and
then shortened using a custom implementation of the
HarryJerry Linx URL shortener [33]. Python scripts
merge the count and linkout data from each source into
data files that are loaded into the relational database. All
of the code used to create the current implementation is
available from the open source OHDSI/KnowlegeBase
project [32]. Evidence source updates currently occur
every 3 to 6 months and follow the same workflow.

Fig. 5 The drug “roll-up” table and example reports by order identifier
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Accessing and using data in LAERTES
Interested persons can currently access the data in
LAERTES in a few different ways. The RDF database is
hosted on a public-facing server [31] and the authors
can provide direct access to the relational database upon
request (e.g., via direct email or a request posted to for-
ums.ohdsi.org). A proof-of-concept user interface has

been developed [34] and is also hosted on a publicly
accessible server (Fig. 6) [35]. This simple user inter-
face allows users to query LAERTES using OMOP
concept identifiers or concept names for drug ingre-
dients, drug products, or HOIs. The system presents
a summary of query results in a simple tabular for-
mat. Links are provided so that users explore “drill

Table 2 Distinct drug-Health Outcome of Interest pairs by source

Source description Drug and HOI mapping method Distinct drug-HOI
pairs in source

Distinct drug-HOI
pairs in LAERTES (%)

Adverse drug reactions mined from US
drug product labels using a validated
natural language processing tool called
SPLICER [29]

Drugs were coded using RxNorm and
HOIs using MedDRA. The OMOP
Standard Vocabulary was used to map
MedDRA to SNOMED-CT.

272 436a 254 738 (93%)

Adverse drug events extracted from EU
Summary of Product Characteristics by
the PROTECT project

Drugs were mentioned by name and
HOIs using MedDRA codes. Drug
names were mapped to RxNorm using
a combination of simple string matching
and Bioportal ontology searches. Many
combination products and some
individual drugs were not mappable. All
mappings were manually reviewed for
accuracy.

26 989 24 537 (91%)

FDA Adverse Event Reporting System
counts and Proportional Reporting
Ratio from [45]

The OHDSI Usagi tool [46] was used to
map drug and HOI mentions to RxNorm
and MedDRA. The OMOP Standard
Vocabulary was used to map MedDRA
coded HOIs to SNOMED-CT. A paper
describing the database and mapping
method has been published [47].

3 766 382 2 753 078 (73%)

Abstracts from titles and abstracts
indexed in MEDLINE that describe
drug-HOI evidence according to
MeSH indexing [48]

Drug and HOI concepts were both coded
using MeSH. The OMOP Standard
Vocabulary was used to map from MeSH
drug concepts to RxNorm and MeSH HOI
concepts to SNOMED-CT.

79 119b 77 395 (97.8%)

Sentence spans from titles and
abstracts indexed in MEDLINE
that describe drug-HOI evidence
according to queries against the
Semantic Medline database

Drug and HOI concepts were both coded
using UMLS concept identifiers. The UMLS
Metathesaurus MRCONSO table was used
to map concepts to RxNorm, MeSH,
MedDRA, and SNOMED-CT. The OMOP
standard vocabulary was then used to map
drug concepts only available as MeSH to
RxNorm and HOI concepts only available as
MedDRA or MeSH concepts to SNOMED-CT.

5 023b 2 813 (56%)

Chemical disease associations
from the Comparative
Toxicogenomics Database

Drug and HOI concepts were both coded
using MeSH. The OMOP Standard Vocabulary
was used to map from MeSH drug concepts
to RxNorm and MeSH HOI concepts to
SNOMED-CT.

503 835 432 850 (86%)

aSPLICER drug-hoi pairs are at the clinical drug level. All other sources are at the ingredient level. bDoes not include drug-HOI evidence where the source refers to
the drug by its MeSH pharmacologic group name.
EU: European Union, FDA: Food and Drug Administration, HOI: Health outcome of Interest, OMOP: Observational Medical Outcomes Partnership, US: United States,
MedDRA: Medical Dictionary for Regulatory Activities, MeSH: Medical Subject Headings

Table 3 Overlap of distinct drug-HOI pairs at the drug ingredient level after mapping drugs to RxNorm and HOIs to SNOMED-CT

Literature (MEDLINE and CTD)
vs spontaneous reporting
(n = 3 049 743)

Product labeling (US and EU)
vs spontaneous reporting
(n = 2 702 577)

Literature (MEDLINE and CTD)
vs product labeling (US and EU)
(n = 566 379)

All three
(n = 3 057 406)

119 293 (3.9%) 87 279 (3.2%) 14 838 (2.6%) 14 295 (0.5%)

The counts and percentages shown contrast the sum of the union (shown in the heading) and intersection of the distinct drug-HOI pairs from both
sources mentioned.
CTD: Comparative Toxicogenomics Database, EU: European Union, US: United States
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down” information. This system uses some of the
several REST API calls that are documented on the
OHDSI Wiki [36].
Progress has been made on integrating the cross-

platform web services provided by the current version
of LAERTES with other applications in the OHDSI
clinical research framework. Specifically, the vocabu-
lary browsing component of the OHDSI ATLAS web
based tool [37] can use the LAERTES API to retrieve
the available evidence of drug-HOI associations that
it displays to users. Furthermore, a new extension to
ATLAS is under development that will enable search-
ing for drugs-HOI pairs with no evidence in any in-
cluded source. The outputs of this program are called
“negative controls” and can be used for investigating
drug-HOI associations using observational data to
“calibrate” the confidence intervals of statistical esti-
mates to address hidden biases within the observa-
tional dataset [38].

How LAERTES can support the user scenario
The current version of LAERTES is a prototype that can
support some of the requirements of the safety physician
and risk management analyst whose user story is men-
tioned at the beginning of this paper:

1) Quickly determining if a specific adverse event has
been previously been reported for a given drug:
LAERTES currently brings together three main
types of information where drug-HOI associations

are reported (spontaneous reports, labeling, and
published literature). The system’s open architecture
makes it possible to add additional sources such as
data from clinical trials. Because drugs and HOIs are
normalized from the source terminologies to RxNorm
and SNOMED-CT, a single query accomplishes the
task of identifying existing evidence from any of the
included sources. This is possible via SPARQL and
SQL queries as well as through the Web API.

2) Identifying if a potential safety concern is at the
clinical drug, ingredient or class level: LAERTES
allows searches specifically at the clinical drug or
ingredient levels while also providing evidence
“rollups” which aggregate evidence at the ingredient
level (see Section Evidence “Rollups”). However, there
currently is only one source integrated into LAERTES
that provides evidence at the clinical drug level (US
drug product labeling). This is not likely to be a
limitation since, in the OHDSI clinical research
framework, all clinical drug data is loaded into the
CDM drug_exposure table (not shown) and then also
represented at the ingredient level in the CDM
drug_era table (also, not shown).

3) Identifying the credibility of the sources reporting
the association: Both the relational and RDF
components of LAERTES explicitly note the source
of an evidence item and, if relevant, the particular
type of evidence. For example, an evidence item
from a literature source would be explicitly tagged
with the method used to identify the evidence

Fig. 6 Experimental user interface to the LAERTES evidence base
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(MeSH tags or natural language processing) and the
study type of the article from which the item was
found (clinical trial, case report, or other). Similarly,
drug-HOI evidence from product labeling is tagged
with the specific method used to identify it and the
section from which it was pulled. These tags are
intended to be useful for filtering or prioritizing evi-
dence based on a user’s perception of the relative
credibility of the sources or evidence type. However,
further research is necessary to test this assumption
and identify the requirements for other ways to help
users more rapidly assess evidence credibility.

4) Deciding what priority an adverse event signal might
warrant for further investigation: At present,
LAERTES provides only an experimental graphical
user interface (Fig. 6) but the workgroup is actively
working on a new user interface that will fully
support prioritizing an adverse event signal for
further investigation. The new user interface is being
designed to help users take full advantage of the new
possibilities created by bringing together the multiple
sources of drug-HOI evidence into the OHDSI clinical
research framework. As Listing 1 shows, LAERTES is
designed to work seamlessly with patient data that has
been loaded into the OMOP CDM. As a result, users
would be able to directly generate new drug-HOI
evidence from one or more clinical datasets (claims,
electronic health records, or registries) using OHDSI
population-level effect estimation methods [39]. These
methods, which are in development, promise rapid
large-scale exploration of a suspected drug-HOI
association using causal considerations which include
strength of association, consistency, temporality,
experiment, plausibility, coherence, biologic gradient,
specificity, and analogy [40].

Listing 1
An example of querying patient data on the OHDSI
CDM using drug HOI pairs present in the LAERTES
evidence base. The query counts the number of cases
present in the clinical dataset where a patient condi-
tion is recorded within 30 days of the start of a drug
(as indicated by data in the CDM drug_era table).
The results shown are a subset of the results that
were generated when the query was ran on a simu-
lated population available to the OHDSI research
community and the general public [41]. The results
provide summary information and Web links that
point to a summary of each source evidence item in
the LAERTES RDF store. These links could be used
by a third-party application to help the user further
“drill down” into the evidence that associated the
drug with the HOI.

– retrieve the count of distinct patients
exposed drug-HOI combination for which
there is
– evidence in LAERTES from MEDLINE or
European product labeling using RxNorm
drug identifier,
– SNOMED-CT drug identifier, evidence
type, evidence ‘linkout’, and
select rxnorm_drug, snomed_hoi,
evidence_type, evidence_linkout,
count(distinct person_id) pcount
from
(select sub1.person_id,
drug_hoi_relationship.rxnorm_drug,
sub1.drug_era_start_date,
sub1.drug_era_end_date,
drug_hoi_relationship.hoi,
drug_hoi_relationship.snomed_hoi,
sub1.condition_era_start_date,
drug_hoi_evidence.evidence_type,
drug_hoi_evidence.evidence_linkout
from
drug_hoi_evidence inner join
drug_hoi_relationship
on drug_hoi_evidence.drug_hoi_
relationship = drug_hoi_relationship.id
inner join
(select drug_era.person_id,
drug_era_start_date,
drug_era_end_date,
drug_concept_id,
condition_era_start_date,
condition_concept_id
from drug_era
inner join condition_era on drug_era.
person_id = condition_era.person_id
where condition_era.condition_era_start_
date > drug_era.drug_era_start_date
and condition_era.condition_era_
start_date - drug_era.drug_era_start_
date <= 30
) sub1
on sub1.drug_concept_id = drug_hoi_
relationship.drug and sub1.condition_
concept_id = drug_hoi_relationship.hoi
where evidence_type in
('MEDLINE_MeSH_CR','MEDLINE_MeSH_
ClinTrial','MEDLINE_SemMedDB_CR','
MEDLINE_SemMedDB_ClinTrial','
SPL_EU_SPC')
) sub2
group by rxnorm_drug, snomed_hoi,
evidence_type, evidence_linkout
order by pcount desc;

The Knowledge Base workgroup of the Observational Health Data Sciences and Informatics (OHDSI) collaborative
Journal of Biomedical Semantics  (2017) 8:11 

Page 11 of 15



– RESULTS

rxnorm_drug | snomed_hoi | evidence_type
| evidence_linkout | pcount
Acetaminophen| Edema| MEDLINE_SemMedDB_
CR| https://goo.gl/ikKucQ | 14
Lisinopril| Abdominal pain| MEDLINE_
MeSH_CR| https://goo.gl/49EvSE | 14
Albuterol| Atrial fibrillation| MEDLINE_
MeSH_CR| https://goo.gl/IVPdzx | 13
Chlorthalidone| Hyperlipidemia|
MEDLINE_MeSH_ClinTrial| https://goo.gl/
gMTfzk | 13
Metformin| Edema| MEDLINE_MeSH_
ClinTrial| https://goo.gl/kL3GIz | 13
Enalapril| Anemia| MEDLINE_MeSH_CR|
https://goo.gl/AB1Lue |13
Captopril| Anemia| MEDLINE_MeSH_CR|
https://goo.gl/Cfhkzt | 13

The system satisfies non-functional requirements
The new system is entirely open source so that any
interested researcher can download, run, modify,
and extend the code to fit their purposes. For ex-
ample, the system currently does not have a data
source that provides adverse event data from social
media sources. Such new evidence sources could be
integrated in the platform by developing additional
Python ETL modules [42]. The system also provides
systematic evidence to facilitate OHDSI’s methodo-
logical research efforts to enable the design, devel-
opment and evaluation of new analytical approaches
to observational research, and provides the basis for
estimating systematic error and performing empir-
ical calibration in all population-level estimation
routines [43].

Discussion
Drugs on the market need to be monitored for public
safety. A safety physician or risk management analyst
has to review all the available information for drug safety
issues, following what is currently a highly manual,
time-intensive, and error-prone process. Improvement of
the automation of bringing all the relevant evidence to-
gether in a consumable format will help such individuals
better achieve their goals. LAERTES provides an open
source framework that uses OHDSI technology to bring
together evidence from multiple sources in a way that
will enable the development of software to meet the user
goals mentioned at the beginning of this paper.
While the current version of LAERTES provides useful

functionality, it also leaves opportunities for further re-
search. In order to integrate the evidence sources, drug

and HOI concepts have to be converted into RxNorm
and SNOMED-CT concepts, respectively. Table 2 shows
that there are many cases where this conversion is in-
complete and some parts of the source data are not inte-
grated. Future work will examine ways to improve the
translation and mapping process.
Another opportunity for research is on how to appro-

priately aggregate evidence at different levels of a hier-
archy of HOI concepts. For example, we have observed
that some evidence sources map the concept myocardial
infarction (concept identifier 4329847) directly to the
SNOMED equivalent, whereas others map directly to a
more specific concept like acute myocardial infarction
(concept identifier 312327). The OMOP Vocabularies
can be used to address this issue using the hierarchy
provided. However, unlike drugs, it is not always clear
the appropriate level to rollup HOI concepts. Future
work will examine this issue in more detail and explore
the use of alternate definitions of concept similarity [44].

Limitations
Evidence sources that do not use standardized termin-
ologies have to be processed to map the source concept
names to SNOMED-CT and RxNorm concept codes.
Even for evidence sources that use controlled terminolo-
gies, there is often a conversion process required to inte-
grate them with all of the included LAERTES sources.
One limitation is that, because of the prototype nature
of the current version of LAERTES, we currently do not
have precise precision/recall metrics for each of the
methods we used (Table 2).
Another limitation is that some terminologies are

incompatible and result in imperfect mappings. In
cases where mapping is incomplete, some parts of the
source data will not be integrated. We mentioned
above the example of the MEDLINE source using
MeSH to code drugs at the ingredient level, while
drugs in US product labels are coded at the clinical
drug level. These cases can be addressed with the
drug rollup queries described above. Table 3 repre-
sents overlap between the general categories of
sources at the drug ingredient level using the drug
concept rollup strategy. However, unlike drugs, the
appropriate level to rollup HOI concepts is not al-
ways clear. Some examples seem straightforward such
as the myocardial infarction example mentioned
above which can be addressed using ancestor/descen-
dant relationships in the OMOP vocabulary. However,
it is less clear how to apply the strategy to the uni-
verse of HOI concepts because there exists many
different hierarchies depending on the disease and the
level of detail present in SNOMED. We did not
attempt to address this issue in the LAERTES
prototype.
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Conclusion
Post-marketing drug safety surveillance is an import-
ant, continuous, and demanding process. Accurate
and timely identification and verification of safety sig-
nals remains a major challenge. Drug–HOI evidence
exists in many sources, which are disjointed, and vari-
able in their representation of drugs and HOIs. The
current practice of reviewing drug-HOI evidence is a
highly manual time intensive process that is wrought
with opportunity for failure. Improvement of the
automation of bringing this information together in a
consumable format will greatly improve the pharma-
covigilance field. LAERTES provides a framework that
accepts data from multiple sources and leverages the
OMOP Vocabulary to translate those sources to one
terminology for drugs and one for conditions, while
also enabling integration with clinical data stored in
the OMOP CDM. In addition, LAERTES is open-
source facilitating domain experts’ participation in its
development. As the breadth of evidence available on
drug-HOI associationsis too wide for any individual
to be expert, an open-source model allows for niche
domain experts to contribute their knowledge improv-
ing the usefulness of LAERTES for the entire drug
safety community.
This paper started with a motivating safety physician

and risk management analyst user story to help guide
LAERTES use cases. LAERTES has already collated sev-
eral of the evidence sources individuals in this role
would traditionally use for investigating drug-HOI sig-
nals. The LAERTES workgroup believes that the frame-
work is in place to address the motivating example but
realizes there is more work to be done. The workgroup
fully expects and welcomes feedback from the commu-
nity; for example, on new data sources, improvements to
the Web API, and user interface design.
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