
Osumi-Sutherland et al. Journal of Biomedical Semantics (2017) 8:18
DOI 10.1186/s13326-017-0126-0

SOFTWARE Open Access

Dead simple OWL design patterns
David Osumi-Sutherland1* , Melanie Courtot1, James P. Balhoff2 and Christopher Mungall3

Abstract

Background: Bio-ontologies typically require multiple axes of classification to support the needs of their users.
Development of such ontologies can only be made scalable and sustainable by the use of inference to automate
classification via consistent patterns of axiomatization. Many bio-ontologies originating in OBO or OWL follow this
approach. These patterns need to be documented in a form that requires minimal expertise to understand and edit
and that can be validated and applied using any of the various programmatic approaches to working with OWL
ontologies.

Results: Here we describe a system, Dead Simple OWL Design Patterns (DOS-DPs), which fulfills these requirements,
illustrating the system with examples from the Gene Ontology.

Conclusions: The rapid adoption of DOS-DPs by multiple ontology development projects illustrates both the ease-of
use and the pressing need for the simple design pattern system we have developed.

Keywords: OWL, OBO, Design pattern

Background
Biologists classify biological entities in many different
ways. A single neuron may be classified by structure
(pseudo-bipolar), electrophysiology (spiking), neurotrans-
mitter (glutamatergic), sensorymodality (secondary olfac-
tory neuron), location(s) within the brain (antennal lobe
projection neuron,mushroom body extrinsic neuron), etc.
A transport process occurring in a cell may be classi-
fied by the type of chemical transported, where transport
starts and ends, and by what membranes are crossed.
Bio-ontologies provide a widely used method for doc-
umenting such classifications and the relationships that
apply between members of classes, such as partonomy.
These classifications and relationships are central to the
successful use of bio-ontologies in helping biologists make
sense of the ever increasing volumes of data they work
with. They are critical to the use of the Gene Ontology
(GO) [1] and its associated annotations in interpreting
genomic data via its application in enrichment analysis [2].
They are critical to the functioning of Virtual Fly Brain in
grouping and querying neuroanatomical data [3].

*Correspondence: davidos@ebi.ac.uk
1European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome
Campus, CB10 1SD Cambridge, UK
Full list of author information is available at the end of the article

To be successful in this role, bio-ontologies need to
capture all of the many forms of classification that are
important to biologists; but maintaining this manually
becomes impractical as ontologies grow. Without formal-
ization, the reasons for existing classifications are often
opaque. The larger an ontology, the harder it is for human
editors to find all valid classifications when adding a term,
or to work out how to re-arrange the hierarchy when new
intermediate classes are added.
The alternative to manually asserting classification is

to use OWL inference to automate it. OWL equivalence
axioms can be used to specify necessary and sufficient
conditions for class membership. Standard reasoning soft-
ware can then build a class hierarchy by finding classes
that fulfill these conditions.
Many bio-ontologies now follow this approach,

including the Uber Anatomy Ontology (Uberon) [4], the
GO [5], the Ontology of Biomedical Investigations (OBI)
[6], the Drosophila Anatomy Ontology (DAO) [7], the
Cell Ontology (CL) [8] and the Ontology of Biological
Attributes (Ontology of Biological Attributes (OBA) [9].
In the GO, over 52% of the classification is automated.
Much of this classification leverages the structure of
imported ontologies; for example, classification of trans-
port processes in the GO relies on a classification of
chemicals provided by the chemical ontology ChEBI [10]

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13326-017-0126-0&domain=pdf
http://orcid.org/0000-0002-7073-9172
mailto: davidos@ebi.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Osumi-Sutherland et al. Journal of Biomedical Semantics (2017) 8:18 Page 2 of 7

and on object property axioms specified in the OBO
relations ontology.
A critical requirement for ongoing development of these

ontologies is the specification of design patterns to guide
the consistent OWL axiomatization required for auto-
mated classification. In many of these ontologies, classes
are annotated with textual descriptions that follow stan-
dard patterns which also need to be documented. Where
formal, machine-readable design patterns are sufficiently
detailed, they can be used to quickly generate new classes,
update old ones when a pattern changes, and automati-
cally generate user-facing documentation.

OWL design pattern systems
There is an extensive literature on ontology design pat-
terns in OWL [11, 12]. Much of this is based on an
approach known as Content Ontology Design Patterns
(CODPs; see [12]) for an overview). CODPs are small,
autonomous ontologies that specify multiple classes and
properties. CODPs are typically re-used by one of two
methods. Either the pattern is imported and new sub-
classes and sub-properties of pattern entities are instanti-
ated in the target ontology, or it is used as a template, with
entities in the pattern being given new identifiers in the
namespace of the target ontology.
The GO and several other ontologies including CL and

OBA already use standard patterns to generate new class
terms via the TermGenie tool [13]. In GO, around 80% of
new class terms are added via this route. This tool allows
new terms to be added by specifying a desgin pattern
and a set of fillers for variable slots. Unlike CODPs, these
design patterns are not autonomous: they import classes
and object properties from various ontologies. Thismeans
that their semantics are dependent on those of the ontolo-
gies they import from. This is by design: the patterns
are intended to leverage classification and axiomatiza-
tion from external ontologies to drive classification in the
target ontology.
Design patterns in TermGenie are specified directly in

Javascript. This specification is opaque to most human
editors and is not easily reusable outside the context of
TermGenie. The other major mechanisms for specifying
design patterns for programmatic use are the languages
Tawny OWL [14] and Ontology PreProcessing Language
(OPPL) [15]. These are very powerful tools for gener-
ating and manipulating ontologies, but are not easy for
ontology editors without strong technical backgrounds
to write. They are also tied to specific languages and
implementations, limiting their use.
Many editors of bio-ontologies are biologists with

limited computational expertise beyond a basic under-
standing of some subset of OWL (typically limited to the
subset of OWL that can be encoded in OBO 1.4 [16]),
which they interact with via Manchester Syntax rendering

and graphs in graphical editing tools such such as Pro-
tégé [17]. A simple, lightweight standard for specifying
design patterns is needed in order to make their devel-
opment and use accessible to these editors. This standard
should be readable and editable by anyone with a basic
knowledge of OWL. It must also be easy to use pro-
grammatically without the need for custom parsers – i.e.
it should follow some existing data exchange standard
that can be consumed by any modern programming lan-
guage. Based on these requirements, we have defined
a lightweight, YAML Ain’t Markup Language (YAML)-
based syntax for specifying design patterns, called Dead
Simple OWL Design Patterns, or DOS-DPs (inversion of
two letters is an homage to the Web Ontology Language,
OWL, on which it is based).

Implementation
We have developed a formal specification of DOS-DPs
using JSON-schema [18] draft 4 for use in validation and
documentation. This is available from the DOS-DP repos-
itory [19], which also lists recommendations for additional
validation steps. Description fields in the schema doc-
ument intended usage. Where appropriate, the schema
document also includes fields that document mappings
to relevant OWL entities. We use the Python jsonschema
package to validate the schema and test it against exam-
ple patterns. Table 1 contains a summary of schema field
types and how they are used.

Approach
DOS-DPs are designed to be easy to read, edit and parse.
We chose YAML because it is relatively easy to read and
write compared to other common data exchange formats
such as JSON and XML, and can be consumed by a wide
range of programming languages. In order to take advan-
tage of JSON-Schema for specification and validation,
DOS-DPs are restricted to the JSON compatible subset of
YAML [20].
Each design pattern can have an arbitrary number of

variables. For ease of reading, writing and parsing, vari-
able interpolation uses printf, a standard part of most
modern programming languages.
OWL is expressed using Manchester Syntax [21], the

most human-readable and editable of the OWL syntaxes,
and the one most editors with a basic knowledge of
OWL are likely to have encountered. For ease of read-
ing and editing, quoted, human-readable identifiers are
used for OWL entities throughout the pattern. These are
assumed to be sufficient to uniquely identify any OWL
entity within a pattern. Dictionaries are used to map read-
able identifiers to compact URIs (CURIEs) – prefixed
short form identifiers. A JSON-LD context is used to map
these to full IRIs. The entity IRIs recorded in this way
can be used to check reference ontologies to find the

Osumi-Sutherland et al. Journal of Biomedical Semantics (2017) 8:18 Page 3 of 7

Table 1 DOSDP JSON schema fields

Field type Used to Mandatory subfields Optional subfields Used in

Printf_owl Specify a logical OWL axiom
using printf to substitute
variable values

axiom_type, text, vars annotations logical axioms

Printf_annotation Specify an annotation using
printf to substitute variable
values

annotationProperty, text,
vars

annotations annotations

List annotation Specify a list of annotation
property axioms of a single
type using a list of values
specified by a data list
variable

annotationProperty, value - annotations

Printf_owl_convenience Specify a logical OWL axiom
of a prespecified type, using
printf to substitute variable
values.

text, vars annotations equivalentTo, subClassOf,
disjointWith, GCI

Printf annotation obo Specify an annotation
axiom of a prespecified
type using a list of values
specified by a data list
variable

text, vars annotations, xrefs def, name, comment,

List_annotation_obo Specify a list of annotation
property axioms of a
single type, pre-specified
type. using a list of values
specified by a data list
variable

value - xrefs, exact_synonyms, . . .

Field type: Name of schema field type (JSON schema definition). Used to: Description of field usage. Used in: Schema Fields in which this field type is used

current validity and status of all entities referenced in
a pattern.
While the full specification of DOS-DPs is intended to

be generic and expressive, a major aim is to hide com-
plexity from editors wherever possible. To this end, we
define convenience fields that are suitable for use in com-
mon, simple design patterns. We also allow extensions
that import and extend the core JSON schema and that
specify default values for high level fields. For example, we
define an extension to support the OBO standard. This
defines convenience fields for expressing OBO standard
annotations and specifies a default annotation property
for readable identifiers and an OBO standard base URI
pattern.
Figure 1 shows an example design pattern for gener-

ating classes of transport across a membrane defined by
cargo type and membrane type. Figure 1a shows a pattern
following the OBO extension. Figure 1b shows the same
pattern expressed using the more verbose DOSDP core-
specification. Figure 2 shows an example class generated
using this pattern.

Details
Patternmetadata
Each pattern is identified by an IRI. The short form
of this IRI is recorded in a pattern_name field, and,
by convention, is used for the file name. Each pattern

optionally includes an extension specification, indicat-
ing the extension to be used in interpreting the pattern
document. In 1a this is set to OBO.

Dictionaries
In both versions of the pattern, the fields classes and
relations serve as dictionaries for the OWL classes and
object properties respectively used in the pattern, map-
ping human readable identifiers (keys) to short_form
identifiers (values). The core pattern specifies an anno-
tation property to use as a source of readable identifiers
via the readable_identifier field. This is not required in
the OBO extension version, as the extension specifies a
default value of rdfs:label for this. The full pattern
also contains an additional dictionary of OWL annotation
properties. These are not required in the OBO extension,
which specifies dedicated fields for annotation properties
used in the OBO standard. The core DOSDP specification
also defines a dictionary field for OWL data properties.

Input fields
All patterns contain one or more variable specification
fields. These are simple objects in which the keys are vari-
able names and the values specify variable range. The
vars field specifies variables that range over OWL classes,
specified as Manchester syntax expressions. For example,
the value of the cargo variable in Fig. 1 is specified by

Osumi-Sutherland et al. Journal of Biomedical Semantics (2017) 8:18 Page 4 of 7

Fig. 1 DOS-DP for defining classes of transmembrane import (based
on an example from the GO.) Panel A shows the DOS-DP using the
OBO extension. Panel B shows the same pattern expressed using the
core specification (classes, relations and vars fields omitted from panel
B for brevity). In Panel A, annotations are specified using dedicated
fields (def, name, xrefs). The mapping from these to OWL
annotation properties is specified in the OBO extension schema. This
mapping is made explicit in Panel B, using an annotation_property
dictionary and the annotationProperty field in axiom specifications
under annotations. Throughout both versions of the pattern, paired
fields text and vars specify printf text and fillers respectively. The
value field is used with the data_list_var def_xrefs to specify a list
database_cross_reference annotations on the definition

the class expression: “‘chemical entity’ or ‘transcript”’. The
quoted OWL entity names in this expression are spec-
ified in the dictionaries. Both patterns also include an
example of a variable that takes a data type as an input.
The data_list_vars field specifies variables whose values
are lists in which all elements share an OWL data type,
specified in the value of the variable field. For example
def_dbxref in Fig. 1 is specified to be a list of (XSD) strings.

Output fields
The core schema has just two output fields: annotations
for annotation property axioms and logical_axioms for
logical owl axioms. The value of both of these fields is a list
of axiom specifications. Each axiom specification includes
a specification of axiom type (logical type or annotation
property). Content is either specified using printf sub-
stitution of variable values into a text string (field type
printf_annotation or printf_owl in Table 1 or by specify-
ing a list of values to be used to generate multiple axioms

Fig. 2 Example pattern implementation. An example of a term,
‘leucine transport across the plasma membrane’, generated using the
pattern in Fig. 1. Note the automated classification under ‘amino acid
transport across the plasma membrane’, specified using the same
pattern

of the same type (e.g. field type list_annotation in Table 1.
Where OWL entities (specified as vars) are used to specify
Printf substitution, the readable label of the entity is
used. Axiom specifications can also be used to specify
annotations of the specified axiom.
In our example, the annotations field is used to specify

an rdfs:label axiom and a definition axiom. In both
cases a text output is specified using a text field to specify
a printf statement and a vars field to specify an ordered
list of fillers. The definition axiom specification specifies a
set of axiom annotations using a database_cross_reference
annotation property. These axioms will be generated
using a list of strings provided in the data_list_var
def_dbxref. The results can be seen in Fig. 2.
The OBO version (1) encodes the same information

using named fields: name, def, and xrefs. These fields fol-
low the tag names used in OBO format [16]. The field
specifications (in the OBO JSON schema doc) map these
fields to the relevant OWL annotation properties, remov-
ing the need for ontology pattern developers to specify
these mappings in an annotation property dictionary.
The logical_axioms field in Fig. 1b specifies just one

equivalence axiom. This is a very common pattern for
defining classes. To make specifying this type of pat-
tern easier, we define convenience fields that can be used
whenever there is only one axiom of a given type per
pattern. The pattern in 1a uses the convenience field for
equivalentTo to concisely capture the single logical axiom
in this pattern.

Osumi-Sutherland et al. Journal of Biomedical Semantics (2017) 8:18 Page 5 of 7

Discussion
Limitations
DOS-DPs are designed to be simple and clear. There are
a number of obvious ways that they could be made more
powerful but which we have avoided in order to retain
simplicity and clarity.
By design, DOS-DPs lack a mechanism for relating pat-

terns to each other via inheritance or composition. Such
mechanisms would add a technical burden to their, use
requiring additional tooling, and so be a barrier to their
adoption. Manual maintenance of design pattern hierar-
chies also risks re-creating the maintenance problem that
these patterns are meant to solve.
For the sake of simplicity, DOS-DPs also lack a sys-

tem for specifying optional clauses. This places some
burden on the development of patterns that naturally
form a subsumption hierarchy. However, the relationships
between patterns can easily be derived by generating a
set of OWL classes using default fillers (variable ranges)
and classifying the results using a reasoner. This clas-
sification can then be used as a way of testing sets of
DOS-DPs and to generate a browsable hierarchy of related
patterns.

Adoption
DOS-DPs are used both as formal documentation, and
as part of the ontology-engineering pipelines in the GO,
OBA, the Environmental Ontology (ENVO) [22], the
Plant Trait Ontology [23], the Plant Stress and Disease
Ontology [24], the Agriculture Ontology, and the Envi-
ronmental Conditions and Exposures Ontology [25]; the
central DOS-DP GitHub repo has a list of all adopters. See
Figs. 1 and 2 for an example of a pattern used extensively
in the GO.
One heavy user of (OPPL) patterns is Webulous, an

application that allows specification of OWL classes using
templates loaded into Google spreadsheets. It should be
straightforward to develop a version of Webulous that
supports design patterns specified as DOS-DPs, removing
the need for expertise in OPPL to specify new patterns.
Similarly, it should be possible to extend Tawny-OWL to
support DOS-DPs. This could prove to be a very effec-
tive combination of accessible design pattern specification
with a computationally powerful language for writing and
manipulating OWL ontologies.
Patterns inevitably evolve as use-cases evolve. Changing

all uses of an existing pattern by hand is impractical
unless the number of uses is relatively low. For branches
of ontologies where all terms follow a completely stereo-
typed pattern, we can specify whole branches simply by
specifying a DOS-DP together with a URI and set of
variable fillers for each term. We plan to use this to pro-
grammatically generate suitable branches of the GO at
each release.

Where more flexibility is required, DOS-DPs could be
used to update existing terms that are part of a human-
edited ontology file. A system of tagging terms by the
pattern they implement would allow all relevant terms to
be identified. DOSDP-scala [26] can be used to identify
existing classes within an ontology that follow a speci-
fied pattern, returning the fillers populating each vari-
able in the pattern. If an ontology pattern changes then
DOSDP-scala can also be used to test whether tagged
terms conform to the old pattern, flagging those that do
for automated update and those that do not for manual
inspection.

Conclusions
As can be seen from Fig. 1, which shows a pattern for
defining terms in the GO, DOS-DPs are easy to read and
write. The choice of YAML limits the need for balancing
brackets and commas. The use of printf, Manchester
syntax, and labels for OWL entities makes the pattern easy
to read. Figure 2, which shows an application of the pat-
tern specified in Fig. 1, illustrates how similar the pattern
is to the way human editors interact with ontology classes
in a GUI editor like Protégé [17]. As well as ease of reading
and writing, our other aim is language independence. Cur-
rently there are partial (OBO-specific) implementations
in Python [27] and Jython [28, 29], along with the Scala-
based pattern matcher [26]. TermGenie is being extended
to consume DOS-DPs. These implementations cover pat-
tern validation and the addition of new classes. They also
allow for generation of markdown format documentation
from design patterns.

Availability and requirements
Project name:Dead Simple OWLDesign Patterns (DOS-
DP). The specification and recommendations for valida-
tion are available from [29] under the GNUGeneral Public
License v3.0.
Programming language and requirements: The schema
is specified using JSON-schema [18]. This specification
can be consumed by any language for which a schema
checker exists (see [18]).

Abbreviations
ChEBI: Chemical entities of biological interest; CL: Cell ontology; CODP:
content ontology design pattern; CURIE: Compact URI; DOS-DP: Dead simple
OWL design pattern; GO: Gene ontology; GUI: Graphical user interface; IRI:
Internationalized resource identifier; JSON: JavaScript object notation; OBA:
Ontology of biological attributes; OBO: Open biomedical ontologies; OPPL:
Ontology preprocessing language; OWL: Web ontology language; XML:
Extensible markup language; XSD: XML schema description; YAML: YAML ain’t
markup language

Acknowledgements
We sincerely thank Helen Parkinson, the Gene Ontology Consortium and the
Sample, Phenotypes and Ontologies Group at the EBI for providing a fertile
intellectual environment for the development of DOS-DPs.

Osumi-Sutherland et al. Journal of Biomedical Semantics (2017) 8:18 Page 6 of 7

Funding
This work was funded by the Gene Ontology Consortium P41 grant from the
National HumanGenome Research Institute (NHGRI) [grant 5U41HG002273- 14]
and by BD2K [grant U01 HG009453]. CJM acknowledges the support of the
Director, Office of Science, Office of Basic Energy Sciences, of the US
Department of Energy (DE-AC02- 05CH11231). MC was funded by the Gene
Ontology Consortium P41 grant from the National Human Genome Research
Institute (NHGRI) [grant 5U41HG002273- 14] and EMBL-EBI core funds.

Availability of data andmaterials
The DOS-DP specification and recommendations for validation are available
from [29].

Authors’ contributions
DOS-DPs were developed by DOS in with suggestions from CJM and JPB.
Many of the uses of DOS-DPs described here were implemented by CJM. MC
supervised some of this work and contributed to drafting this paper. JPB
developed DOSDP-scala. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome
Campus, CB10 1SD Cambridge, UK. 2RTI International, 27709 Research Triangle
Park, NC, USA. 3Genomics Division, Lawrence Berkeley National Laboratory,
94720 Berkeley, CA, USA.

Received: 23 November 2016 Accepted: 29 March 2017

References
1. Blake JA, Christie KR, Dolan ME, Drabkin HJ, Hill DP, Ni L, Sitnikov D,

Burgess S, Buza T, Gresham C, McCarthy F, Pillai L, Wang H, Carbon S,
Dietze H, Lewis SE, Mungall CJ, Munoz-Torres MC, Feuermann M,
Gaudet P, Basu S, Chisholm RL, Dodson RJ, Fey P, Mi H, Thomas PD,
Muruganujan A, Poudel S, Hu JC, Aleksander SA, McIntosh BK, Renfro
DP, Siegele DA, Attrill H, Brown NH, Tweedie S, Lomax J,
Osumi-Sutherland D, Parkinson H, Roncaglia P, Lovering RC, Talmud PJ,
Humphries SE, Denny P, Campbell NH, Foulger RE, Chibucos MC,
Gwinn Giglio M, Chang HY, Finn R, Fraser M, Mitchell A, Nuka G,
Pesseat S, Sangrador A, Scheremetjew M, Young SY, Stephan R, Harris
MA, Oliver SG, Rutherford K, Wood V, Bahler J, Lock A, Kersey PJ,
McDowall MD, Staines DM, Dwinell M, Shimoyama M, Laulederkind S,
Hayman GT, Wang SJ, Petri V, D’Eustachio P, Matthews L, Balakrishnan
R, Binkley G, Cherry JM, Costanzo MC, Demeter J, Dwight SS, Engel SR,
Hitz BC, Inglis DO, Lloyd P, Miyasato SR, Paskov K, Roe G, Simison M,
Nash RS, Skrzypek MS, Weng S, Wong ED, Berardini TZ, Li D, Huala E,
Argasinska J, Arighi C, Auchincloss A, Axelsen K, Argoud-Puy G,
Bateman A, Bely B, Blatter MC, Bonilla C, Bougueleret L, Boutet E,
Breuza L, Bridge A, Britto R, Casals C, Cibrian-Uhalte E, Coudert E, Cusin
I, Duek-Roggli P, Estreicher A, Famiglietti L, Gane P, Garmiri P, Gos A,
Gruaz-Gumowski N, Hatton-Ellis E, Hinz U, Hulo C, Huntley R, Jungo F,
Keller G, Laiho K, Lemercier P, Lieberherr D, MacDougall A, Magrane M,
Martin M, Masson P, Mutowo P, O’Donovan C, Pedruzzi I, Pichler K,
Poggioli D, Poux S, Rivoire C, Roechert B, Sawford T, Schneider M,
Shypitsyna A, Stutz A, Sundaram S, Tognolli M, Wu C, Xenarios I, Chan
J, Kishore R, Sternberg PW, Van Auken K, Muller HM, Done J, Li Y,
Howe D, Westerfield M. Gene Ontology Consortium: going forward.
Nucleic Acids Res. 2015;43(Database issue):1049–56.

2. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette
MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP. Gene
set enrichment analysis: A knowledge-based approach for interpreting
genome-wide expression profiles. Proc Natl Acad Sci. 2005;102(43):
15545–50. doi:10.1073/pnas.0506580102, http://www.pnas.org/content/
102/43/15545.full.pdf.

3. Milyaev N, Osumi-Sutherland D, Reeve S, Burton N, Baldock RA,
Armstrong JD. The Virtual Fly Brain browser and query interface.
Bioinformatics. 2012;28(3):411–5.

4. Haendel MA, Balhoff JP, Bastian FB, Blackburn DC, Blake JA, Bradford Y,
Comte A, Dahdul WM, Dececchi TA, Druzinsky RE, Hayamizu TF, Ibrahim
N, Lewis SE, Mabee PM, Niknejad A, Robinson-Rechavi M, Sereno PC,
Mungall CJ. Unification of multi-species vertebrate anatomy ontologies
for comparative biology in Uberon. J Biomed Semantics. 2014;5:21.

5. Mungall C, Deitze H, Osumi-Sutherland D. Use of OWL within the Gene
Ontology In: Maria Keet C, Tamma V, editors. Proceedings of the 11th
International Workshop on OWL: Experiences and Directions - OWLED.
CEUR Workshop Proceedings. Volume 1265. Aachen; 2014. p. 25–36.
ceur-ws.org/Vol-1265.

6. Brinkman RR, Courtot M, Derom D, Fostel JM, He Y, Lord P, Malone J,
Parkinson H, Peters B, Rocca-Serra P, Ruttenberg A, Sansone SA,
Soldatova LN, Stoeckert CJ, Turner JA, Zheng J. Modeling biomedical
experimental processes with OBI. J Biomed Semantics. 2010;1 Suppl 1:7.

7. Costa M, Reeve S, Grumbling G, Osumi-Sutherland D. The Drosophila
anatomy ontology. J Biomed Semantics. 2013;4(1):32.

8. Meehan TF, Masci AM, Abdulla A, Cowell LG, Blake JA, Mungall CJ, Diehl
AD. Logical development of the cell ontology. BMC Bioinforma. 2011;12:6.

9. Ontology of Biological Attributes. 2016. Available at https://github.com/
obophenotype/bio-attribute-ontology.

10. Hastings J, de Matos P, Dekker A, Ennis M, Harsha B, Kale N,
Muthukrishnan V, Owen G, Turner S, Williams M, Steinbeck C. The ChEBI
reference database and ontology for biologically relevant chemistry:
enhancements for 2013. Nucleic Acids Res. 2013;41(Database issue):
456–63.

11. Gangemi A. Ontology Design Patterns for Semantic Web Content In: Gil
Y, Motta E, Benjamins VR, Musen MA, editors. The, Semantic Web – ISWC
Lecture Notes in Computer Science 2005, Volume 3729. Berlin: Springer;
2005.

12. Hammar K, Presutti V. Template-based content odp instantiation. In:
Proceedings of the Workshop on Ontology and Semantic Web Patterns
(7th Edition) - WOP2016; 2016. http://ontologydesignpatterns.org/wiki/
WOP:2016%23Proceedings.

13. Dietze H, Berardini TZ, Foulger RE, Hill DP, Lomax J, Osumi-Sutherland
D, Roncaglia P, Mungall CJ. TermGenie - a web-application for
pattern-based ontology class generation. J Biomed Semant. 2014;5:48.
doi:10.1186/2041-1480-5-48.

14. Lord P. The Semantic Web takes wing: Programming ontologies with
Tawny-OWL In: Rodriguez-Muro M, Jupp S, Srinivas K, editors.
Proceedings of the 10th International Workshop on OWL: Experiences
and Directions (OWLED 2013) CEUR Workshop Proceedings. Volume
1080. Aachen; 2013. ceur-ws.org/Vol-1080.

15. Egana M, Stevens R, Antezana E. Transforming the axiomisation of
ontologies: The ontology pre-processor language. In: CEUR Workshop
Proceedings. vol. 496; 2009. doi:10.1038/npre.2009.4006.1.

16. Antezana E, Balhoff J, Day-Richter J, Ireland A, Manzoor S, Ruttenberg A,
Osumi-Sutherland D, Hamid Tirmizi S, Mungall C. OBO 1.4 - Available at
http://owlcollab.github.io/oboformat/doc/GO.format.obo-1_4.html.

17. Musen MA. The protégé project: A look back and a look forward. AI
Matters. 2015;1(4):4–12. doi:10.1145/2757001.2757003.

18. JSON Schema -http://json-schema.org/.
19. Osumi-Sutherland DJ. Dead Simple OWL Design Patterns - Specification.

2016. Available at https://github.com/dosumis/
dead_simple_owl_design_patterns.

20. YAML - Relation to JSON - http://www.yaml.org/spec/1.2/spec.html#
id2759572.

21. In: Hitzler P, Krötzsch M, Parsia B, Patel-Schneider PF, Rudolph S, editors.
OWL2 Web Ontology Language: Primer: W3C Recommendation; 2009.
Available at http://www.w3.org/TR/owl2-primer/.

22. Buttigieg P, Morrison N, Smith B, Mungall CJ, Lewis SE. The environment
ontology: contextualising biological and biomedical entities. J Biomed
Semant. 2013;4(1):43. doi:10.1186/2041-1480-4-43.

http://dx.doi.org/10.1073/pnas.0506580102
http://www.pnas.org/content/102/43/15545.full.pdf
http://www.pnas.org/content/102/43/15545.full.pdf
https://github.com/obophenotype/bio-attribute-ontology
https://github.com/obophenotype/bio-attribute-ontology
http://ontologydesignpatterns.org/wiki/WOP:2016%23Proceedings
http://ontologydesignpatterns.org/wiki/WOP:2016%23Proceedings
http://dx.doi.org/10.1186/2041-1480-5-48
http://dx.doi.org/10.1038/npre.2009.4006.1
http://owlcollab.github.io/oboformat/doc/GO.format.obo-1_4.html
http://dx.doi.org/10.1145/2757001.2757003
http://json-schema.org/
https://github.com/dosumis/dead_simple_owl_design_patterns
https://github.com/dosumis/dead_simple_owl_design_patterns
http://www.yaml.org/spec/1.2/spec.html#id2759572
http://www.yaml.org/spec/1.2/spec.html#id2759572
http://www.w3.org/TR/owl2-primer/
http://dx.doi.org/10.1186/2041-1480-4-43

Osumi-Sutherland et al. Journal of Biomedical Semantics (2017) 8:18 Page 7 of 7

23. Plant Trait Ontology. 2016. Available at https://github.com/Planteome/
plant-trait-ontology.

24. Plant Stress Ontology. 2016. Available at https://github.com/Planteome/
plant-stress-ontology.

25. Environmental Conditions Treatments and Exposures Ontology. 2016.
Available at https://github.com/cmungall/environmental-conditions.

26. Balhoff JP. dosdp-scala . 2016. Available at https://github.com/balhoff/
dosdp-scala.

27. Mungall CJ. Pattern2OWL - https://github.com/cmungall/pattern2owl.
28. Jython maintainers: The Jython project. 2016. Available at http://www.

jython.org.
29. Osumi-Sutherland DJ. Dead Simple OWL Design Patterns. 2016. Available

at https://github.com/dosumis/dead_simple_owl_design_patterns.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

https://github.com/Planteome/plant-trait-ontology
https://github.com/Planteome/plant-trait-ontology
https://github.com/Planteome/plant-stress-ontology
https://github.com/Planteome/plant-stress-ontology
https://github.com/cmungall/environmental-conditions
https://github.com/balhoff/dosdp-scala
https://github.com/balhoff/dosdp-scala
https://github.com/cmungall/pattern2owl
http://www.jython.org
http://www.jython.org
https://github.com/dosumis/dead_simple_owl_design_patterns

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	OWL design pattern systems

	Implementation
	Approach
	Details
	Pattern metadata
	Dictionaries
	Input fields
	Output fields

	Discussion
	Limitations
	Adoption

	Conclusions
	Availability and requirements
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Publisher's Note
	Author details
	References

