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Abstract

Background: There are many challenges associated with ontology building, as the process often touches on many
different subject areas; it needs knowledge of the problem domain, an understanding of the ontology formalism,
software in use and, sometimes, an understanding of the philosophical background. In practice, it is very rare that an
ontology can be completed by a single person, as they are unlikely to combine all of these skills. So people with these
skills must collaborate. One solution to this is to use face-to-face meetings, but these can be expensive and
time-consuming for teams that are not co-located. Remote collaboration is possible, of course, but one difficulty here
is that domain specialists use a wide-variety of different “formalisms” to represent and share their data – by the far
most common, however, is the “office file” either in the form of a word-processor document or a spreadsheet.
Here we describe the development of an ontology of immunological cell types; this was initially developed by domain
specialists using an Excel spreadsheet for collaboration. We have transformed this spreadsheet into an ontology using
highly-programmatic and pattern-driven ontology development. Critically, the spreadsheet remains part of the source
for the ontology; the domain specialists are free to update it, and changes will percolate to the end ontology.

Results: We have developed a new ontology describing immunological cell lines built by instantiating ontology
design patterns written programmatically, using values from a spreadsheet catalogue.

Conclusions: This method employs a spreadsheet that was developed by domain experts. The spreadsheet is
unconstrained in its usage and can be freely updated resulting in a new ontology. This provides a general
methodology for ontology development using data generated by domain specialists.
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Introduction
Ontologies have been used extensively to describe many
parts of biology. They have two key features which make
their usage attractive: first, they can provide a mecha-
nism for standardising and sharing the terms used in
descriptions; and, second, they provide a computation-
ally amenable semantics to these descriptions, making
it possible to draw conclusions which are not explicitly
stated.
Ontologies are increasingly used to facilitate the man-

agement of knowledge and the integration of information
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as in the SemanticWeb [1]. Biological data is not only het-
erogeneous but requires special knowledge to deal with
and can be large [2]. Ontologies are good for representing
complex and, potentially, changeable knowledge. There-
fore, they are widely used in biomedicine with examples
such as the Gene Ontology [3], ICD-10 (International
Classification of Diseases) [4] or SNOMED (Systematized
Nomenclature of Medicine) [5] being the best known.
However, building an ontology is a challenging task [6].

Ontologies often use languages with a complex underly-
ing formalism (such as OWL1 -Web Ontology Language-
for instance) especially when modelling complex domain
area such as biology or medicine. Moreover, ontology
building is normally a collaboration between domain spe-
cialists and ontology developers. However, any form of
multi-disciplinary collaboration is difficult. In the case,
for example, of the Gene Ontology, these challenges were
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addressed through explicit community involvement using
meetings, focus groups and the like [7]. Other methodolo-
gies have adopted a more distributed approach [8].
It is, perhaps, because of these challenges that, despite

the computational advantages of ontologies, the oldest
and most common form of description in biology is free
text, or a semi-structured representation through the use
of a standardised fill-in form. These representations have
numerous advantages compared to ontologies: they are
richly expressive, widely supported by tooling and while
the form of language used in science (“Bad English” [9])
may not be easy to use, understand or learn, it is widely
taught and most scientists are familiar with it. Similarly,
most biologists are familiar with the tools used for pro-
ducing free-text and forms, either a word-processor doc-
ument or a spreadsheet. Tools for producing this form
of knowledge are wide-spread, richly functional both in
application and cloud-delivered form, and support highly
collaborative development.
The ontology community, conversely, has largely built

its own tool-chain for development. Tools such as Protégé
[10] are highly functional in their own right, but have a
user interface which is far removed from those that biol-
ogists are used to. There have been several responses to
this problem. First, it is possible to take existing ontol-
ogy tools and customise them for use within a specific
community, so that they have a familiar look and feel;
this is the approach taken by iCAT (Collaborative Author-
ing Tool) – a version of WebProtégé [11] built explicitly
for the ICD-11 community [12]. A second approach is to
enable existing ontology tools to ingest office documents;
for example, Cellfie [13] is a Protégé plugin which can
transform a spreadsheet into an OWL ontology, which
can then be developed further; however this is a one-
off process – once ingested, the data in the spreadsheet
is converted into OWL; further updates cannot be made
using the original spreadsheet formalism. Finally, tools
such as RightField [14] and Populous [15] add ontologi-
cal features to office documents, by allowing selection of
spreadsheet cells from a controlled vocabulary, followed
by export to OWL using OPPL (Ontology Pre-Processor
Language) [16] to express the patterns used in the trans-
formation [17].
These tools, however much they support the use of

office software, at some point require leaving this soft-
ware and moving into an ontology specific environment.
We have developed a new, highly-programmatic environ-
ment for ontology development called Tawny-OWL [6].
With this approach the ontology is developed as program-
matic source code, which is then evaluated to generate the
final ontology, either in memory or as an OWL file. This
offers a new methodology. In this research, we developed
a document-centric workflow centred on the use of office
tooling to construct the ontology; biologists generate and

maintain their dataset in an unconstrained Excel spread-
sheet; we then use this spreadsheet directly as part of our
source code2, driven by Tawny-OWL. In this model, we
can apply arbitrary validation and transformation of the
data held in the spreadsheet, into an ontological form. As
the spreadsheet is now part of the source code, rather than
being used as knowledge capture interface, it can be freely
updated and the final ontology regenerated.
In this paper, we describe the application of this

methodology to the generation of a catalogue of immuno-
logical cell types, called the tolAPC (tolerogenic antigen-
presenting cells) catalogue. We discuss the background
technology, the design decisions that we have faced and
the general implications that this approach has for ontol-
ogy development.

Background
The tolAPC catalogue is a list of immunological cell
types. It has been captured as part of the EU Cost
Action BM1305 A-FACTT (Action to Focus and Accel-
erate Cell-based Tolerance-inducing Therapies)3 which is
aimed at increasing data sharing and collaborative work-
ing across the community [18]. These cell types have been
“tolerised” – that is treated so that they suppress the
immune response – and have been created with the inten-
tion that they will be used therapeutically in a variety of
situations including: the treatment of auto-immune dis-
ease such as rheumatoid arthritis; or to reduce rejection
following transplantation [19]. Information about these
cells is, therefore, high value. The tolAPC catalogue con-
tains extensive details about these cell lines, including 9
“sheets” of data. The catalogue has been created as an
Excel spreadsheet, although it uses the spreadsheet only
to represent tabular information (i.e. there is no use of
equations or calculation in the spreadsheet). The spread-
sheet has been created by individual scientists freely; that
is, there is no formal constraint on the legal set of values
in each cell, just the social convention of copying previ-
ous cells. Figure 1 shows the structure of the spreadsheet
filled with false information due to the confidentiality of
the tolAPC catalogue.
Next, we describe Tawny-OWL; it is a fully program-

matic development environment for OWL. It has been
implemented in Clojure, which is a dialect of lisp, run-
ning on the Java Virtual Machine. It wraps the OWL-API
[20] which performs much of the actual work, includ-
ing interaction with reasoners, serialisation and so forth.
Tawny-OWL has a simple syntax which was originally
modelled on the Manchester OWL notation [21], modi-
fied to conform to standard Clojure syntax and to increase
regularity [22]. For example, we can create a new class
with an existential restriction as follows:

(defclass A :super (some r B))
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Fig. 1 A mock sample of tolAPC catalogue to show the structure of the Excel spreadsheet

Or, we can define a new individual with a property
assertion:

{(defindividual i :fact (is r j))}

As a domain specific language embedded in a full pro-
gramming language, we also gain all the features of that
environment; for instance, we can create arbitrary pat-
terns simply by using a Clojure function. Consider for
example:

(defn some-only [property & classes]
(list (some property classes)

(only property
(or classes))))

Here defn introduces a new function, property

& classes are the arguments, and list packages the
return values as a list. some, only and or4 are defined
by Tawny-OWL as the appropriate OWL class construc-
tors. This allows a definition specifying an existential
relationship with a closure axiom as follows:

(defclass D :super (some-only r A B))

We also gain access to the full Clojure infrastructure: we
can edit and evaluate terms in a power editor or IDE (Inte-
grated Development Environment)5; write unit tests and
run them through a build tool [23], publish and version
using git, and continuously integrate our work with other
ontologies.
We have previously used this functionality to create the

karyotype ontology which is generated from a series of
interlocking sub-patterns [24], parameterised using literal
data structures in the source code. The karyotype ontol-
ogy is highly patternised, with almost all of the classes
coming from a single large pattern.

As a full programming environment, Clojure can also
read and parse arbitrary data formats, which can operate
as additional source during the generation of the ontology.
We have previously used this to scaffold a mitochondrial
ontology from a varied set of input files [25], or to add
multi-lingual annotation using key=value properties
files to the pizza ontology. We have also used this technol-
ogy with a spreadsheet to specify a set of ontological unit
tests for the karyotype ontology [23]. In this case, the val-
ues in the spreadsheet are used to generate a set of OWL
classes which are then checked for correct subsumption
using a reasoner. In this case, however, these ontological
statements are used only as part of a test suite, rather than
intended for downstream usage, and the spreadsheet was
created specifically for this purpose.

Methods
The data for the tolAPC catalogue was captured directly
in a spreadsheet largely co-ordinated through email. As
a pre-existing resource, it made little sense to rewrite
directly in OWL either using Protégé or Tawny-OWL –
to do so would have resulted in transcription errors,
and made updates more complex. However, as described
in the “Background” section, we have all the compo-
nents that we need to build an ontology directly from a
spreadsheet.
Therefore, we started the development process using

our new document-centric workflow that incorporates
Excel spreadsheet during development as described in
Fig. 2. We read the spreadsheet directly and extract all
values we need to instantiate the ontology patterns we
have already designed using the programming facilities
of Tawny-OWL. The final ontology can be saved as an
OWL file to be browsed using Protégé software or a web
browser.
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Fig. 2Workflow using Excel spreadsheet and Tawny-OWL Patterns

Building the tolAPC ontology
In this section, we describe the issues that have arisen dur-
ing the process which can conceptually be split into three
phases6:

1. Extraction
2. Validation
3. Ontologisation

The extraction phase is straight-forward. Clojure offers
a number of libraries capable of reading a spreadsheet.
In the case of the tolAPC catalogue, we read the spread-
sheet using the Docjure library7, accessed directly from
the file system. It would also be simple and straight-
forward to read from a network which would support
building ontologies from cloud-hosted spreadsheets. Pre-
viously, for performance reasons, we have read and then
cached the results of tests generated from a spreadsheet
[23]; however, for the tolAPC catalogue performance is
such that the spreadsheet can be read in full every time
the environment is initialised, significantly simplifying the
development.
In the second phase, values extracted are validated

against a set of constraints specifying those which are
legal. For many of the fields, values are highly stereo-
typed having only a few different options; for example,
cells can either be Autologous or Allogeneic, while
expression levels can either be + or -. Currently, valida-
tion is performed through the use of ad hoc testing –
we expect to move to a more formal data constraint lan-
guage in future. The choice of validation depends on the
requirements and modelling choices made, which will be
discussed later.

In the third phase, values are “ontologised”. The top
level of the ontology which provides what we describe as
schema terms is written by hand using Tawny-OWL. In
the case of the tolAPC catalogue, this includes terms such
as CellType, Species and AntigenLoad. Next, a set
of patterns is defined using these schema terms. Finally,
these patterns are instantiated using the values from the
second phase, generating entities that we call patternised
terms.
During the development process, both reasoning and

manual inspection of the created ontology is used to
ensure that the process is happening as expected; for the
latter process, the ontology is saved to file and examined,
either in the Clojure development environment or within
Protégé, as shown in Fig. 3.
We next discuss the modelling issues that have arisen.

Modelling in the tolAPC ontology
All entities in the ontology need to be represented by
an IRI (Internationalized Resource Identifier). Two broad
schemes are used to generate IRIs: semantics free identi-
fiers which are generally numeric; and semantically mean-
ingful identifiers which are normally derived from the
common name for the entities. Generally, the latter are
easier to work with, while the former are easier to keep
stable over releases.
Currently, for the tolAPC ontology, schema terms have

IRIs which reflect their names (CellType uses an IRI with
a fragment of “CellType”), while patternised terms use an
ad hoc schema based on several of their properties (a sin-
gle property is not enough to ensure uniqueness). If we
wish to re-evaluate this situation at a later date, however,
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Fig. 3 tolAPC ontology displayed from Protégé screen

Tawny-OWL simplifies the situation; we can easily allo-
cate IRIs to entities according to any scheme that we
choose, by changing a single function.
A recurrent issue in ontology modelling is whether to

use classes or individuals; within the tolAPC ontology,
we faced this question for cell types. There are a num-
ber of different criteria for making this decision [26]. We
considered briefly a “realist” perspective: modelled as a
single entity, cell types are probably best represented as
a metaclass, akin to a taxonomic species [27]; modelling
as multiple entities (differentiating between the protocol
and the cell type produced) would also be possible. How-
ever, there appears to be no clear principle to distinguish
between these options. Similar problems also arise for
proteins/cell-surface markers which are described in the
ontology. As an additional problem, these representations
introduce considerable unnecessary complexity [28].
We considered therefore the needs of our application:

it seems unlikely that we will ever need subclasses of a
cell type, but might reasonably wish for cell types to be
unique – to state that two cell types are necessarily the
same (or different) individual. For these reasons, wemodel
cell types as individuals. An example from the ontology
structure is shown in Fig. 4.
The tolAPC ontology largely models a set of cell types,

with the rest of the ontology designed to support these

Fig. 4 Class Structure in tolAPC ontology

descriptions. The ontology, as a result, contains very little
hierarchy, and is at the extreme end of a normalised ontol-
ogy [29]. Cell types are defined as individuals with a large
set of different property assertions, as can be seen from
the following definition:

(individual cell-name
:fact (is fromGroup group)

(is hasLocation loc)
(is fromClinicalDisease clinic-disease)
(is fromSpecies from-species)
(is hasStatus stat)
(is hasType c-type)
(is hasDescription desc)
(is hasActivation active)
(is hasAntigenLoad anti-load)
(is itsOrigin cell-org)
(is withStartMaterial start-material)
(is hasIsolation isol))

Here, cell-org, group, loc and others are variables,
therefore, this definition describes a pattern. fromGroup,
hasLocation and others are specific object properties
from the schema terms of the ontology. individual,
:fact and is are part of Tawny-OWL syntax. The whole
definition defines a new cell type, and its association with
a set of individuals.
The values of the property assertions fall into one of

three main categories.
Open but Limited:Many properties support a very lim-

ited, but nonetheless open, range of values. Examples of
these are withStartMaterial which describes the tis-
sue or part of the tissue from which the cells are derived.
These values are modelled as disjoint classes, explicitly
stated in the ontology. Although, we could have used an
external ontology at this point, as only a few options are
actually used, we have not imported one.
Constrained Partition: Many properties support an

exact number of options. These are modelled using a
Value Partition [30]. Fortunately, Tawny-OWL provides
explicit support for this design pattern, which allows
a relatively succinct definition. An example of this is
CellOrigin which is defined as follows:
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(deftier CellOrigin
[[Allogeneic

:comment "Allogeneic stem cell transplant
uses a donor blood"]

[Autologous
:comment "Autologous stem cell transplant

uses a patient own blood"]])

Unconstrained Values: Some properties have uncon-
strained values such as Location, Group (i.e. the people
responsible for the cell type) or AntigenLoad. These are
currently modelled as individuals, created on-demand.
In some cases, these values also reuse terms from exter-

nal ontologies; currently, our Species term refers to the
NCBI (National Centre for Biotechnology Information)
taxonomy, although we do not import the full semantics
of this ontology as it would cause a considerable increase
in reasoning time, for relatively low reward.
In addition to these threemain categories, we are adding

phenotype descriptors to the cell types, in terms of raised
or lowered expression levels. For these, we are modelling
the expression levels as a value partition, while the over-
all phenotype is modelled using the N-ary relationship
pattern [31], as shown in Fig. 5.

Results
We have developed a new ontology describing immuno-
logical cell lines built by instantiating ontology design
patterns written programmatically, using values from a
spreadsheet catalogue. The development of the tolAPC
ontology is a work in progress. As can be seen from
Table 1, while parts of the tolAPC catalogue have been
recast, there are significantly more spreadsheet cells
which need to be converted.

Discussion
In this paper, we have described the development of the
tolAPC ontology, describing data about immunological
cell types. This ontology is unusual in that it is derived
directly from another data resource, the tolAPC cata-
logue which is maintained as an Excel spreadsheet. Essen-
tially, the ontology provides context and semantics to data
which is available in another form.
The value of recasting a spreadsheet into a form with

precise machine interpretable semantics is obvious, but
there are less apparent virtues arising from the process.

Table 1 Current statistics of excel sheet and tolAPC ontology

tolAPC catalogue Number of sheets 9

Number of cells 1181

Number of cell types 15

tolAPC ontology Number of classes 21

Number of individuals 101

Number of object properties 13

In the initial validation step, for example, we have had
to clarify parts of the tolAPC catalogue which are oth-
erwise unclear. For example, one cell-line is described
as “Autologous/Allogeneic”. The original author intent
here is unclear: this could be intended to mean either
autologous or allogeneic (possible), both (probably incon-
sistent) or just the absence of knowledge. Similarly the
process of “ontologisation” forces us to clarify some areas
of the biology; including questions about whether cell
types produced by the same protocol at different times
are “the same” or otherwise, which touches on issues of
reproducibility. Where these issues have arisen, either the
ontology schema, patterns or the spreadsheet can bemod-
ified accordingly. As shown in Fig. 2, information flows
in both directions between the spreadsheet and ontol-
ogy. Currently, validation is performed “by hand” specify-
ing constraints as enumerations of strings. In future, we
would like to move this to a more declarative approach;
fortunately, because Tawny-OWL is implemented over a
full programming language, there are a number of dif-
ferent data constraint languages, such as Prismatic [32],
or clojure.spec8. We expect richer validation will help to
enhance the ontology development process further.
The development of the tolAPC ontology is an ongoing

work where some parts of the tolAPC catalogue have been
adapted into the ontology, but there are other spread-
sheet cells which still need to be imported. Additionally,
while adding machine interpretable semantics is useful in
its own right, we have only started to address the issue
of interoperability with other ontologies. Currently, child
terms of Species re-use IRIs from the NCBI taxonomy;
the mapping between the free text used in the tolAPC
catalogue and the NCBI taxonomy is stored in a literal

Fig. 5 N-ary Relation in tolAPC ontology
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data structure in source, but could also be stored in a flat-
file or subsidiary spreadsheet. We do not import the full
ontology for reasons of performance, a process known as a
“soft import” [33]. Developing a programmatically defined
ontology allows us to switch easily between “soft”, “hard”
and MIREOT-style “semi” imports [34]. Conversely, child
terms of ClinicalDisease do not currently relate to
other ontologies. At the current time, we have not pri-
oritised this process because confidentiality restrictions
on the tolAPC catalogue limit our ability to share the
results anyway. Adding this form of interoperability is not
complex though as we have already demonstrated with
Species and by using the “scaffolding” process described
previously [25].
This work is a further demonstration of the value of

programmatic and pattern-driven ontology development
using the Tawny-OWL library; it builds on earlier work
with: a karyotype ontology where patterns are instantiated
using in-code literal data structures; the mitochondrial
ontology which is scaffolded using a variety of different
input formats; or our reworking of SIO which patternises
a pre-existing ontology [35]. Patternisation allows the
development of an ontology to be performed rapidly and
repeatedly.
The fully programmatic environment also demonstrates

its value, as we have been able to add a new input format,
even a very complex format such as an Excel spreadsheet
with relative ease, building on tools provided by others.
This replicates our earlier experiences with Tawny-OWL;
we can reuse and repurpose existing tools not specifically
intended for use in ontology development, also adapt a
complete software development environment to the task.
The use of Excel spreadsheets to drive ontology pat-

terns is not new of course; it is directly supported with
Protégé plugins as well as with tools such as RightField
and Populous. The key addition of our methodology is
to incorporate the spreadsheet as a part of the ontology
source code. The spreadsheet can be updated, changed
and consulted by the domain specialists who created it,
and still remain part of the ontology development pro-
cess. The importance of the right format should not be
under-estimated; for example, early versions of the Gene
Ontology were developed in their own bespoke syntax
(later to evolve into OBO -Open Biomedical Ontologies-
Format), something which persisted for a considerable
time after the development and release of OWL. The
reasons for this were simple: OBO Format behaved well
in a version control system, and could be easily created,
edited and manipulated in a text editor, something not
true of RDF (Resource Description Framework)9 serial-
isation of OWL available at the time. We wish to build
on these lessons: ontologists should seek to interact and
build on the tools that domain specialists already use, if
they hope to describe the knowledge that these specialists

have. It is also for this reason, that we have not designed
an Excel template. Rather, we let the experts design and
create a suitable spreadsheet that matches their needs. So,
domain users will be happy and comfortable in using their
usual tool (Excel spreadsheet, designed according to their
needs) and ontology developers can conveniently program
the ontology using Tawny-OWL. Conversely, one disad-
vantage of this approach is that domain users normally
only interact with one part of the ontology source; the
spreadsheet may be correct with respect to the domain,
but the ontology wrong. We are, therefore, also investigat-
ing techniques for making the Tawny-OWL section of the
ontology more readable [36].
In future, we may consider designing a general template

for particular domain experts who do not have a clear
structure for their data, so that gives them the opportunity
to start organising their data in a semi-structured way;
there are a number of pre-existing schemas that we could
using, including MAGE-TAB [37] and later ISA-TAB [38].
The tolAPC ontology and the document-centric

approach it embodies is a first step toward establishing
a richer methodology, where we interact with domain
specialists using their own tool chain to capture knowl-
edge. In the future, we aim to combine other formats like
Word documents in the ontology development pipeline
and design a comprehensive template to communicate
effectively with domain specialists in order to build an
accurate and well designed ontology.

Conclusions
In this paper, we have successfully developed tolAPC
ontology based on the tolAPC catalogue using an Excel
spreadsheet as a source of information. Critically, the
spreadsheet is unconstrained by the ontology developers
having been freely developed by the domain users. More-
over, we have not converted the spreadsheet in a one-off
process; the spreadsheet is part of the source code for the
ontology and can be freely updated. Taken together this
demonstrates a newmethodology for building an ontology
which enable us to interact with domain specialists using
their preferred tools.

Endnotes
1 https://www.w3.org/TR/owl2-overview/
2 By source code, we mean the spreadsheet is not

imported but remains the preferred form for editing.
3 http://www.cost.eu/COST_Actions/bmbs/BM1305
4We have elided namespaces: or and some are also

core Clojure functions.
5We use Emacs but there is rich support in Vim, Eclipse,

IntelliJ, or LightTable
6 In practice, the tolAPC ontology is developed

iteratively.

https://www.w3.org/TR/owl2-overview/
http://www.cost.eu/COST_Actions/bmbs/BM1305
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7 https://github.com/mjul/docjure
8 https://clojure.org/news/2016/05/23/introducing-

clojure-spec
9 https://www.w3.org/TR/1998/WD-rdf-schema-

19980409/
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