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Abstract

Background: Automatic identification of term variants or acceptable alternative free-text terms for gene and
protein names from the millions of biomedical publications is a challenging task. Ontologies, such as the
Cardiovascular Disease Ontology (CVDO), capture domain knowledge in a computational form and can provide
context for gene/protein names as written in the literature. This study investigates: 1) if word embeddings from
Deep Learning algorithms can provide a list of term variants for a given gene/protein of interest; and 2) if biological
knowledge from the CVDO can improve such a list without modifying the word embeddings created.

Methods: We have manually annotated 105 gene/protein names from 25 PubMed titles/abstracts and mapped
them to 79 unique UniProtKB entries corresponding to gene and protein classes from the CVDO. Using more than
14 M PubMed articles (titles and available abstracts), word embeddings were generated with CBOW and Skip-gram.
We setup two experiments for a synonym detection task, each with four raters, and 3672 pairs of terms (target term
and candidate term) from the word embeddings created. For Experiment I, the target terms for 64 UniProtKB
entries were those that appear in the titles/abstracts; Experiment II involves 63 UniProtKB entries and the target
terms are a combination of terms from PubMed titles/abstracts with terms (i.e. increased context) from the CVDO
protein class expressions and labels.

Results: In Experiment I, Skip-gram finds term variants (full and/or partial) for 89% of the 64 UniProtKB entries, while
CBOW finds term variants for 67%. In Experiment II (with the aid of the CVDO), Skip-gram finds term variants for
95% of the 63 UniProtKB entries, while CBOW finds term variants for 78%. Combining the results of both
experiments, Skip-gram finds term variants for 97% of the 79 UniProtKB entries, while CBOW finds term
variants for 81%.

Conclusions: This study shows performance improvements for both CBOW and Skip-gram on a gene/protein
synonym detection task by adding knowledge formalised in the CVDO and without modifying the word
embeddings created. Hence, the CVDO supplies context that is effective in inducing term variability for both
CBOW and Skip-gram while reducing ambiguity. Skip-gram outperforms CBOW and finds more pertinent term
variants for gene/protein names annotated from the scientific literature.
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Background
The sysVASC project [1] seeks to provide a comprehen-
sive systems medicine approach to elucidate pathological
mechanisms for cardiovascular diseases (CVDs), the
number one cause of death globally according to the
World Health Organisation [2]. SysVASC developed the
CVD ontology (CVDO) to provide the schema to inte-
grate ‘omics data (e.g. genomics, transcriptomics, prote-
omics and metabolomics) that, together with the most
recent scientific papers, are the source of up-to-date
knowledge about the biology of the genes and proteins
underlying CVD. Extracting knowledge about genes and
proteins implicated in CVD for incorporation in the
CVDO is an important task in its maintenance. Recog-
nising those genes and proteins within the literature is a
required function of this task.
Rebholz-Schuhmann et al. [3] distinguish two ap-

proaches to identify gene/protein names from literature:

1. Lexicon based approaches that are based on large
terminological resources, e.g. resources generated
from large databases like the UniProt
Knowledgebase (UniProtKB) [4].

2. Machine Learning (ML) approaches such as
conditional random fields [5] that is used in ABNER
[6] and BANNER [7].

The first approach has the benefit of normalisation
(a.k.a. grounding) [3, 8, 9], i.e. the process of mapping a
biological term (e.g. protein name) into a unique entry
in a database of biological entities such as UniProtKB.
Fundel and Zimmer [10] suggest a limitation that “the
overlap of synonyms in different data sources is rather
moderate” and thus, terms from other databases, such as
the HUGO Gene Nomenclature Committee database
[11] or Entrez Gene [12], are also needed to develop a
more complete lexicon for gene and protein names. An-
other difficulty is keeping such a lexicon up-to-date, as
new term variants for genes and proteins are produced
every day [8, 9]. Our study takes the second approach
using Deep Learning, an area within ML, to identify suit-
able term variants (i.e. short forms such as abbreviations
or acronyms as well as long forms including phrases) for
protein/gene names from the literature.
While conventional ML techniques are limited in their

ability to process input data in raw natural language
form [13], neural language models from Deep Learning
can associate terms with vectors of real-valued features,
and semantically related terms end up close in the vec-
tor space [13]. The vector representations learnt for the
terms are known as word embeddings (i.e. distributed
word representations). As the performance of conven-
tional ML techniques are heavily dependent on feature
selection [14, 15], a tangible benefit of applying neural

language models is that the semantic features of the
word embeddings learnt are not explicitly present in the
raw natural language input.
This study investigates the suitability of the neural

language models CBOW (Continuous Bag-of-Words)
and Skip-gram of Mikolov et al. [16, 17] to derive a
list of acceptable alternative free-text terms (i.e. term
variants) for genes/proteins mentioned in the
biomedical literature. The study focuses on two re-
search questions:

1. Is it possible to obtain a list of term variants for a
gene/protein from CBOW and Skip-gram word
embeddings?

2. Can an improved list of term variants for a gene/
protein be produced from the word embeddings by
adding knowledge formalised in the CVDO about
genes/proteins (i.e. providing more context to
reduce ambiguity)?

In this study, a term is a combination of one or more
words/tokens, such as “Klf7(−/−)” with one token and
“Annexin A4” with two tokens. Terms referring to a
gene and its gene product (typically a protein) are likely
to appear together as well as separately in the literature.
CBOW and Skip-gram use content windows as context,
i.e. terms appearing together in the textual input.
According to Mikolov et al. [17], CBOW predicts the
current term based on the context, while Skip-gram pre-
dicts surrounding terms given the current term.
The CVDO represents information about genes and

protein from the UniProtKB as a subClassOf axioms (i.e.
class expressions or descriptions). With the aid of the
CVDO ontology, we expect to obtain terms that provide a
more pertinent context to terms from the word embed-
dings, by, for example a) navigating the class expressions
and retrieving the protein name (e.g. ETS translocation
variant 1) for a gene symbol (e.g. ETV1); or b) retrieving
the full protein name (e.g. Annexin A4) from a partial
match (e.g. annexin 4) with the protein class name.
Knowledge within ontologies has been used in two stud-

ies – Pilehvar and Collier [18] and Minarro-Gimenez et al.
[19] – to assess the quality of word embeddings induced
from the literature. As far as we are aware, the use of on-
tologies per se to provide more context (i.e. extra terms)
and improve the list of candidate terms from the word
embeddings has not been investigated. This study intends
to exploit the relationship between genes and proteins for-
mally represented within the CVDO. A difference between
our work and Pilehvar and Collier’s work [18] is that the
word embeddings are not modified, i.e. no post-
processing of the term vectors is performed. Hence, the
use of terms that exploits biological knowledge from the
CVDO ontology can be seen as an external intervention.
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Related work
ML methods learn input-output relations from examples
with the goal of interpreting new inputs; hence, their
performance is heavily dependent on the choice of data
representation (or features) to which they are applied
[20]. Various types of models have been proposed to rep-
resent words as continuous vectors to estimate continu-
ous representation of words and create distributional
semantic models (DSMs). DSMs derive representations
for words in such a way that words occurring in similar
contexts have similar representations, and therefore, the
context needs to be defined.
Traditional DSMs include Latent Semantic Analysis

(LSA) [21], that generally takes an entire document as a
context (i.e. word-document models), and Hyperspace
Analog to Language (HAL), [22] that takes a sliding
word window as a context (i.e. sliding window models).
Random Indexing [23] has emerged as a promising alter-
native to LSA. LSA, HAL and Random Indexing are
spatially motivated DSMs. Examples of probabilistic
DSMs are Probabilistic LSA (PLSA) [24] and Latent
Dirichlet Allocation (LDA) [25]. While spatial DSMs
compare terms using distance metrics in high-
dimensional space [26], probabilistic DSMs such as LDA
or PLSA measure similarity between terms according to
the degree to which they share the same topic distribu-
tions [26]. Most DSMs have high computational and
storage costs associated with building the model or
modifying it due to the huge number of dimensions in-
volved when a large corpus is modelled [26].
This study applies neural language models, i.e. distrib-

uted representation of words learnt by neural networks
(NNs). Although neural models are not new in DSMs,
recent advances in NNs make feasible the derivation of
words from corpora of billions of words, hence the
growing interest in Deep Learning and the neural lan-
guage models CBOW and Skip-gram [16, 17]. CBOW
and Skip-gram have gained popularity to the point of be-
ing the baseline for benchmarking word embeddings
[27] and as baseline models for performance compari-
sons [28]. CBOW and Skip-gram have already been
trained to produce high-quality word embeddings from
English Wikipedia [27, 29].
Pyysalo et al. [30] and Minarro-Gimenez et al. [19]

were the first to apply neural language models to
PubMed corpora. Pyysalo et al. [30] used Skip-gram with
22 M PubMed articles as well as more than 672 K
PubMed Central Open Access full text articles. The
main aim of Pyysalo et al.’s work was to make available
word representations (1- to 5-grams) from the literature
that could be reused. Minarro-Gimenez et al. [19] used
smaller datasets from PubMed as well as from other
medical (i.e. Merck Manuals [31], Medscape [32]) and
non-medical sources (i.e. Wikipedia [33]). Many later

studies have created word embeddings with CBOW and
Skip-gram using PubMed corpora.
We describe some of these studies taking into account

four tasks that focus on text words, concepts and their
relations. At the end of this subsection, we include stud-
ies that combine ontologies with word embeddings.

Semantic similarity and relatedness task
Pedersen et al. [34] align with more recent studies (Hill
et al. [35] and Pakhomov et al. [36]) in emphasising the
difference between semantic similarity and semantically
relatedness. Pedersen et al. [34] state: “semantically simi-
lar concepts are deemed to be related on the basis of
their likeness”. Both Pedersen et al. [34] and Hill et al.
[35] agree with the view of Resnik [37] that “semantic
similarity represents a special case of semantic related-
ness”. Pedersen et al. [34] advocate semantic similarity
measures based on is-a relations, where concepts within
a hierarchy are linked directly or indirectly. Prior to Pe-
dersen et al. [34], Caviedes and Cimino [38] investigated
conceptual similarity metrics based on the minimum
number of parent links between concepts. Studies by
Caviedes and Cimino [38], Pedersen et al. [34], Hill et al.
[35] and Pakhomov et al. [36] made available their data-
sets of word-pairs together with human judgments of re-
latedness/similarity. Hill et al.’s [35] dataset of 999 word-
pairs, like the WordSimilarity-353 Test Collection [39]
(353 word-pairs) and the MEN Test Collection [40] (3 K
word-pairs), are common English words. These datasets
can be regarded as gold standards for the evaluation of
semantic models.
Muneeb [41] et al. applied Skip-gram and CBOW to

1.25 M PubMed articles and evaluated the quality of the
word embeddings using the Pedersen et al. [34] word-
pairs. Muneeb [41] et al. concluded that Skip-gram is
better suited than CBOW for semantic similarity and re-
latedness. Chiu et al. [42] used the Pyysalo et al. [30]
datasets and more than 10 M PubMed English abstracts
from the BioASQ challenge [43] for an intrinsic evalu-
ation of the Skip-gram and CBOW word embeddings
with the Pakhomov et al. [36] word-pairs. Chiu et al.
[42] conclude that Skip-gram shows overall better re-
sults for semantic similarity and relatedness than CBOW
with different pre-processing.

Synonymy detection task
Hill et al. [35] interpret “relatedness” as “association”
and the strongest similarity relation is synonymy. Two
well-known datasets for evaluating synonymy are the 80
TOEFL (Test of English as a Foreign Language) syno-
nym questions from [21] and the 50 ESL (English as a
Second Language) synonym questions from [44]. Both
studies [21] and [44] consist of synonym questions with
4 options that require knowledge of common English
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words. It should be noted that the TOEFL synonym
questions dataset is used in the paper that introduces
LSA [21].
To the best of our knowledge no gold standard of word-

pairs together with human judgments for synonymy de-
tection exists specific to the biomedical domain.

Name entity recognition (NER) and relation extraction tasks
The BioCreative (Critical Assessment of Information Ex-
traction systems in Biology) challenge [45] focuses on
recognition of entities in text (i.e. NER) as well as rela-
tion extraction. For BioCreative II, Smith et al. [46] men-
tion three tasks: gene mention (GM), gene normalisation
(GN), and protein-protein interaction (PPI); the first two
are within the scope of NER, whilst the third is a rela-
tion extraction task that has NER as a subtask [47].
Pyysalo et al. [30] used Skip-gram to create word em-

beddings from three datasets: one based on all 22 M
PubMed articles; a second based on more than 672 K
PubMed Central Open Access full text articles; and a
third combining the previous two. Pyysalo et al. [30]
clustered the word embeddings created using the well-
known K-means clustering algorithm [48] with k = 100.
Pyysalo et al. [30] performed a set of NER experiments
to assess the quality of both the word embeddings and
the clusters created. The NER experiments rely on three
biomedical domain corpora: GM using the BioCreative
II dataset; anatomical entity recognition using the Ana-
tomical Entity Mention corpus [49]; and disease recogni-
tion using the NCBI (National Center for Biotechnology
Information) Disease corpus [50]. More recently Chiu et
al. [42] performed an extrinsic evaluation of word em-
beddings created from CBOW and Skip-gram for NER
using two biomedical domain corpora: GM using the
BioCreative II dataset and the JNLPBA challenge corpus
from Kim et al. [51]. The JNLPBA challenge is a NER
task using an extended version of the GENIA corpus
(version 3.02) [52]. The GENIA corpus is a manually an-
notated corpus of 2 K PubMed/MEDLINE abstracts se-
lected from a search using Medical subject headings
(MeSH) [53] terms “human”, “blood cells”, and “tran-
scription factors”. Chiu et al. [42] conclude that overall
Skip-gram shows better results for NER using the data-
sets from [46, 51] than CBOW with different pre-
processing.
Li et al. [54] used Skip-gram with 5.33 M PubMed

abstracts obtained from a search with “protein” as the
keyword. Li et al. [54] like Pyysalo et al. [30] applied the
K-means clustering algorithm to cluster word vectors. A
difference to the Pyysalo et al. [30] study is that Li et al.
[54] employed the Brown tree-building algorithm [55],
which is intended for n-gram language models, after ap-
plying K-means clustering. To evaluate the PPI extrac-
tion performed, Li et al. [54] relied on five publically

annotated corpora that has been quantitatively analysed
previously in a study by Pyysalo et al. [56].

Text categorisation (a.k.a. text classification, or topic
spotting)
Sebastiani [15] states that text categorization is "the ac-
tivity of labeling natural language texts with thematic
categories from a predefined set". Therefore, assigning
keywords or key phrases from MeSH to PubMed/MED-
LINE titles or titles-plus-abstracts is a type of text cat-
egorisation known as MeSH indexing. The 2017 BioASQ
challenge comprised three tasks, one is MeSH indexing,
i.e. requesting participants to classify new PubMed arti-
cles before curators manually assign MeSH terms to
them with some help from the Medical Text Indexer
(MTI) [57] from NLM. The MeSHLabeler is an algo-
rithm for MeSH indexing (Liu et al... [58]) that outper-
forms MTI and won the BioASQ challenge for MeSH
indexing in years 2 and 3 of the competition. Both MTI
and the MeSHLabeler [58] employ classic bag-of-words
representations.
Peng et al [59] used more than 1 M PubMed citations

(some downloaded from NLM and some from the
BioASQ Year 3 challenge) and introduced DeepMeSH, a
workflow that exploits CBOW and obtained a slightly
better performance (2% higher micro F-measure) than
the MeSHLabeler. It should be noted that MTI, MeSH-
Labeler, and DeepMeSH employed implementations of
the k-nearest neighbour algorithm.

Word embeddings and ontologies
The neural language models CBOW and Skip-gram rep-
resent each term as a d-dimensional vector of d real
numbers. Taking the vector for a target term and apply-
ing cosine similarity, a list of top ranked terms (highest
cosine value) can be obtained from the created word
embeddings. Minarro-Gimenez et al. [19] and Pilehvar
and Collier [18] employed the knowledge represented
within ontologies together with metrics based on cosine
similarity to evaluate the quality of generated word em-
beddings. We overview the studies as follows:

1. Minarro-Gimenez et al. [19] focused on four
relationships (may_treat; may_prevent; has_PE; and
has_MoA) from the National Drug File - Reference
Terminology (NDF-RT) ontology [60] to assess the
word embeddings created based on the hit rate
(a.k.a. true positive rate or recall). For example, the
number of diseases in a “may_treat” relationship
with a drug. The hit rate increases if more words for
pertinent diseases are within the list of top ranked
terms from the word embeddings. Hence, the
authors assessed the word embeddings based on a
relation extraction task and benchmark against
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knowledge within the NDF-RT ontology. This early
study reported a relatively low hit rate; in contrast,
later studies (e.g. Levy et al. [29] and Chiu et al.
[42]) benefit from the effect of various hyperpara-
meter configurations.

2. Pilehvar and Collier [18] used the Human
Phenotype Ontology (HPO) [61] to assess word
embeddings created with Skip-gram from 4B tokens
from PubMed abstracts based on two tasks:
synonym (alternative names to a class name) and
hypernym (X is-a subclass of Y) identification. For
the synonym task, the authors benchmark against
knowledge within the HPO for two annotation
properties; oboInOwl:hasRelatedSynonym and
oboInOwl:hasExactSynonym. For the HPO in OWL,
a class name (rdfs:label) may have synonyms
represented by these two OWL annotation properties.
Based on the position in the list of retrieved terms,
Pilehvar and Collier [18] calculated the mean and
median rank as well as the percentage of phenotypes
(i.e. class names in the HPO) for which the rank was
equal to one (i.e. the first term in the list retrieved has
a synonym in the HPO). Pilehvar and Collier [18]
reported improvements by post-processing, i.e.
recalculating each dimension of the resulting word
vector per phenotype considering a list of weighted
words obtained via Babelfy [62]. The authors state that
for the phenotype “flexion contracture of digit” a list
of 1.3 K weighted words was obtained via Babelfy.

Methods
This section starts by introducing the three data re-
sources used in two experiments. Next, we describe the
two experiments for a gene/protein synonym detection
task that use the same vector representations learnt for
the terms (i.e. the word embeddings) with CBOW and
Skip-gram. As in the synonym detection task described
by Baroni et al. [63], both experiments consist of a pair
of terms (the target and the candidate) where the cosines
(the normalized dot product) of each candidate term
vector with the target term vector is computed. Finally,
we present the human evaluation performed and the
three metrics applied to assess the performance of
CBOW and Skip-gram in the gene/protein synonym de-
tection task.

Data resources
Creation of a small-annotated corpus of gene/protein
names from 25 PubMed articles
The sysVASC project performed a systematic literature
review that involved a PubMed query with the text: “cor-
onary heart disease AND (proteomics OR proteome OR
transcriptomics OR transcriptome OR metabolomics OR
metabolome OR omics)” [Julie Klein 2016, personal

communication, 07 June]. The sysVASC review formed
part of the data collection protocol to obtain patients
with chronic and stable vascular (coronary) disease with
exclusion of datasets on acute vascular events or history
of potentially interfering concomitant disease. A collec-
tion of 34 ‘omics studies/articles with different biological
entities of interest (gene, protein, metabolite, miRNA)
fulfilled the eligibility criteria. To create a small-
annotated corpus relevant for sysVASC and useful for
the synonym detection task, we selected 25 of these
‘omics studies that focuses mainly on genes/proteins and
are available in the MEDLINE/PubMed database [64].
We left out articles that focus on metabolites or miRNA.
The 25 PubMed articles selected were published be-
tween 2004 and 2014.
To find the genes/proteins mentioned within the 25

PubMed titles/abstracts, we followed Jensen et al. [65]
who divided the task into two: “first, the recognition of
words that refer to entities and second, the unique
identification of the entities in question”. One curator
manually annotated 105 terms related to gene/protein
names from the 25 PubMed abstracts and titles. Corpus
annotation requires at least two annotators and the
development of annotation instructions, and thus, the
small-annotated corpus cannot be considered a gold
standard corpus as only one curator annotated the gene/
protein names and no detailed annotation guidelines
were developed. For unique identification of genes/pro-
teins we use UniProtKB identifiers. In the UniProtKB
each protein entry has two identifiers [66]: 1) an acces-
sion number (AC) that is assigned to each amino acid
sequence upon inclusion into the UniProtKB; and 2) the
“Entry name” (a.k.a. ID), which often contains biologic-
ally relevant information. Table 1 contains examples of
the manual annotation and normalisation process
performed; Table 1 illustrates the lack of standardisation
for protein names in the literature.
The next two examples illustrate the subtask of assign-

ing UniProtKB identifiers to the genes/proteins anno-
tated within the 25 PubMed articles corpus:

� In the abstract of the PubMed article with ID =
15,249,501 the term “heat shock protein-27
(HSP27)” is recognised as a gene/protein name, and
subsequently mapped to UniProtKB AC = P04792.

� In the abstract of the PubMed article with ID =
21,938,407 the term “heat shock protein 70 KDa” is
recognised as a gene/protein name, and
subsequently mapped to UniProtKB AC = P08107.
However, on the 27th May, 2015 this UniProtKB
entry became obsolete (see [67]), and it is now
found with the UniProtKB AC equals P0DMV8 and
P0DMV9. Therefore, the term “heat shock protein
70 KDa” is mapped to both UniProtKB ACs, i.e.
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P0DMV8 and P0DMV9. This example can be seen
as a case where some level of ambiguity remains, i.e.
more than one UniProtKB AC is assigned to the
gene/protein term manually annotated.

The current study is limited to 25 PubMed titles and
abstracts, so we acknowledge that some level of ambigu-
ity may remain. We also acknowledge that one straight-
forward way to disambiguate is by reading the full paper
to find the extra information that may aid in uniquely
identifying the gene/protein of interest. For example,
considering the full text of the article with PubMed ID
= 21,938,407, it is clear that the term “heat shock protein
70 KDa” refers to the protein name “Heat shock 70 kDa
protein 1A” that has the UniProtKB AC = P0DMV8.
Thus, the full article helps to clarify the ambiguity.
The auxiliary file TermsMapped.xls contains the de-

tails of the normalisation performed, i.e. the correlation
of the 105 terms annotated to the 79 unique UniProtKB
entries, where both the UniProtKB identifiers AC and
ID are shown.

The cardiovascular disease ontology (CVDO)
CVDO provides the schema to integrate the ‘omics data
from multiple biological resources, such as the Uni-
ProtKB, the miRBase [68] from EMBL-EBI, the Human
Metabolome Database [69] and the data gathered from
various scientific publications (e.g. 34 full-paper ‘omics
studies from the sysVASC systematic review and their
auxiliary files).
At the core of CVDO is the Ontology for Biomedical

Investigations [70] along with other reference ontologies
produced by the OBO Consortium, such as the Protein
Ontology (PRO) [71], the Sequence Ontology (SO) [72],
the three Gene Ontology (GO) sub-ontologies [73], the
Chemical Entities of Biological Interest Ontology [74],
the Cell Ontology [75], the Uber Anatomy Ontology [76],
the Phenotypic Quality Ontology [77], and the Relation-
ship Ontology [78].
For a protein, the CVDO takes as its IRIs the PRO

IRIs while also keeping the UniProtKB entry identifiers

(i.e. the AC and ID) by means of annotation properties.
UniProtKB entry updates could mean changes in the
amino acid sequence and/or changes in the GO annota-
tions. The CVDO represents formally the associations
between a protein class and classes from the three GO
sub-ontologies. In the CVDO there are 172,121 Uni-
ProtKB protein classes related to human, and 86,792
UniProtKB protein classes related to mouse. Taking into
account the GO annotations for a protein, so far, a total
of only 8,196 UniProtKB protein classes from mouse
and human have been identified as of potential interest
to sysVASC.
The CVDO incorporates information about genes and

proteins from the UniProtKB, where no alternative
names for genes and proteins are available in the Uni-
ProtKB downloadable files [79]. In terms of knowledge
modelling, the CVDO shares the protein/gene represen-
tation used in the Proteasix Ontology (PxO) [80]. The
SubClassOf axioms for the PxO protein class in OWL
Manchester Syntax [81] are shown in Fig. 1. The axiom
“protein SubClassOf (has_gene_template some gene)” is a
class expression that conveys an existential restriction
over the object property “has_gene_template” from the
PRO, where the class “protein” (PR:000000001) is from
the PRO and the class “gene” (SO:0000704) is from the
SO. Hence, in the CVDO, as in the PxO, the association
between a gene and a protein (gene product) is formally
represented with the axiom pattern “protein SubClassOf
(has_gene_template some gene)” and this is the key

Table 1 Exemplifying the identification of genes/proteins mentioned within the 25 PubMed titles/abstracts: Terms from PubMed
abstract/title from the small-annotated corpus (first column) mapped to UniProtKB ACs (second column) and their corresponding
values for skos:altLabel annotation properties of the PxO protein classes (third column)

Term(s) from PubMed abstract/title UniProtKB AC skos:altLabel for PxO protein classes

α(1)-antitrypsin
alpha-1-antitrypsin

P01009 SERPINA1 (P01009; A1AT_HUMAN) Alpha-1-antitrypsin

annexin 4 P09525 ANXA4 (P09525; ANXA4_HUMAN) Annexin A4

superoxide dismutase 3 P08294 SOD3 (P08294; SODE_HUMAN) Extracellular superoxide dismutase [Cu-Zn]

OLR1 P78380 OLR1 (P78380; OLR1_HUMAN) Oxidized low-density lipoprotein receptor 1

glutathione transferase P30711 GSTT1 (P30711; GSTT1_HUMAN) Glutathione S-transferase theta-1

FJX1 Q86VR8 FJX1 (Q86VR8; FJX1_HUMAN) Four-jointed box protein 1

Class: protein
SubClassOf: 

'amino acid chain',
has_gene_template some gene
'located in' some cellular_component,
'participates in' some biological_process,
'has function' some molecular_function

Fig. 1 The SubClassOf axioms for the PxO protein class in OWL
Manchester Syntax
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knowledge along with the protein and gene names (i.e.
lexical content) that we propose to exploit to provide
more context for the target terms in Experiment II (see
subsection ‘Setup of Experiment I and Experiment II for
a gene/protein synonym detection task’ for details).
For a CVDO protein class, we can use its UniProtKB

identifier (i.e. AC or ID) to build SPARQL [82] SELECT
queries to retrieve: a) the protein class label; and b) the
gene class associated to the protein class by exploiting the
axiom pattern “protein SubClassOf (has_gene_template
some gene)”. The auxiliary file TermsMapped.xls contains
the gene and protein class labels (i.e. rdfs:label) from the
CVDO for each of the 79 UniProtKB entries that are part
of the small-annotated corpus created.
In the PxO, the annotation property skos:altLabel from

the Simple Knowledge Organization System (SKOS) [83] is
assigned to each protein class that represents a UniProtKB
entry. The string value for this annotation property also
contains the identifiers (UniProtKB AC and ID) that
pinpoint the protein uniquely and has typically the format
“gene symbol (UniProtKB AC; UniProtKB ID) protein
name”. Hence, in the PxO, the association between a
protein and a gene is modelled at the logical level with a
SubClassOf axiom as well as information attached to the
protein class (UniProtKB entry) with no effect on the
logical aspects of the class. Table 1 shows how the PxO can
provide more context for the terms annotated, e.g. “SER-
PINA1” is the gene symbol for the protein name “Alpha-1-
antitrypsin”.

The 14 M PubMed dataset
We downloaded the MEDLINE/PubMed baseline files
for 2015 and the up-to-date files through 8th June 2016.
To transform the XML PubMed files (see [84] for details
of the XML data elements) into a corpus of suitable text-
ual input for Skip-gram and CBOW, two pre-processing
steps are carried out. For the first step, we created a pro-
cessing pipeline that uses open-source software in Py-
thon, such as Beautiful soup [85] and the open-source
Natural Language Toolkit (NLTK) [86].
When pre-processing the textual input for CBOW and

Skip-gram, it is common practice to transform the text
into lower-case and to remove systematically all num-
bers and punctuation marks. This is, however, unsuitable
when dealing with protein/gene nomenclature and crit-
ical information will be lost if this practice is followed.
Tanabe et al. [87] highlight “gene and protein names
often contain hyphens, parentheses, brackets, and other
types of punctuation”. Furthermore, capitalisation and
numerals are essential features in symbols or abbrevia-
tions. For instance, for human, non-human primates,
chickens, and domestic species, gene symbols contain
three to six alphanumeric characters that are all in up-
percase (e.g. OLR1), while for mice and rats the first

letter alone is in uppercase (e.g. Olr1). We therefore de-
cided to alter the commonly employed pre-processing
workflow. The Python processing examines the PubMed
XML files, locates the data elements of interest and ex-
tracts information contained within them while preserv-
ing uppercase and punctuation marks within a sentence
as well as numbers.
For the second step, we employed word2phrase within

the word2vec software package [88] to get n-grams. The
title and abstract (if available) of each PubMed publica-
tion are the basis to build the DSMs using Skip-gram
and CBOW.
Meaningful biomedical terms are typically multi-

words; therefore, to obtain better performance titles/ab-
stracts need to be transformed into n-grams. To indicate
that more than one word and/or numbers are part of a
term, white space is replaced by ‘_’ indicating that the
multiple words (and/or numbers) constitute a term.
Once pre-processing is complete, we have a biomed-

ical unannotated corpus of 14,056,762 PubMed publica-
tions (titles and available abstracts) with dates of
publication between 2000 and 2016 (termed PubMed
14 M for short). The complete list of PubMed IDs can
be downloaded from [89].

Setup of two experiments for a gene/protein synonym
detection task
This subsection starts by detailing the creation of the
word embeddings with CBOW and Skip-gram using the
14 M PubMed dataset. Next, we detail the setup of two
experiments using a small-annotated corpus of gene/
protein names and we also specify the exact contribution
of the CVDO in Experiment II.

Creation of word embeddings with CBOW and Skip-gram
From CBOW and Skip-gram we typically obtain: 1) a
lexicon (i.e. a list of terms) in textual format that is
constructed from the input data; and 2) the vector
representations learnt for the terms, i.e. the word
embeddings.
The basic Skip-gram formulation uses the softmax

function [17]. The hierarchical softmax is a computa-
tionally efficient approximation of the full softmax. If W
is the number of words in the lexicon, hierarchical soft-
max only needs to evaluate about log2(W) output nodes
to obtain the probability distribution, instead of needing
to evaluate W output nodes. This study uses hierarchical
softmax.
In traditional distributional methods, there are a small

number of variables known as the hyperparameters of
the model. For example, the parameters for the Dirichlet
priors in an LDA model are often referred to as hyper-
parameters. Levy et al. [29] acknowledges that some
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hyperparameters are tuneable, while others are already
tuned to some extent by the algorithms’ designers.
Levy et al. [29] distinguish three types of hyperpara-

meters: 1) pre-processing hyperparameters, 2) associ-
ation metric hyperparameters, and 3) post-processing
hyperparameters. As this study does not modify the
resulting term vectors, we present the setup of the pre-
processing and association metric hyperparameters im-
plemented in word2vec. We refer the reader to Levy et
al. [29] and Chiu et al. [42] that study in detail the effect
of various hyperparameter configurations.
Four pre-processing hyperparameters need to be

considered:

� Vector dimension – In word2vec the default value is
100. We setup the dimensional representation of
terms to 300. This value is much lower than Levy et
al. [29] that uses 500.

� Context window size – In word2vec the default value
is 5. We setup the window size to 10, similarly to
Levy et al. [29]. word2vec implements a weighting
scheme where a size-10 window weights its contexts
by 10/ 9, 10/ 10, …, 2/ 1, 10/ 10.

� Subsampling – This method dilutes very frequent
words [29]. As recommended by Mikolov et al. [17],
and like Levy et al. [29], we use the value 1e-5. In
word2vec subsampling happens before the textual
input is processed and a value zero means that sub-
sampling is switched off.

� Minimum count (min-count) – Terms that occur
only a few times can be discarded and consequently
some terms will not have vector representations. In
word2vec the default value of min-count is 5, which
is the value taken in this study. Chiu et al. [42] show
that this hyperparameter has a small effect on
performance.

The two association metric hyperparameters are:

� Negative sampling – In word2vec by default negative
sampling is zero (i.e. not used). However, Skip-gram
with negative sampling is acknowledged to provide
state-of-the-art results on various linguistic tasks
[29]. A higher negative sampling means [29]: a)
more data and better estimation; and b) negative
examples are more probable. This study does not use
negative sampling, and therefore, performance gains
for Skip-gram should be relatively easy to obtain if
negative sampling is also applied. In other words, it
can be argued that by no using negative sampling we
are reducing the performance for Skip-gram.

� Learning rate – This is a smoothing technique. In
word2vec the default value of alpha is 0.025, which
is used in this study.

In this study to create word embeddings with Skip-
gram and CBOW, we use a Supermicro with 256GB
RAM and two CPUs Intel Xeon E5–2630 v4 at 2.20GHz.
For the 14 M PubMed dataset execution time is less
than 1 hour for CBOW and more than 10 hours for
Skip-gram.

Setup of experiment I and experiment II for a gene/protein
synonym detection task
In the small-annotated corpus with 105 terms mapped
to 79 UniProtKB entries, not all the UniProtKB entries
have the same number of terms manually annotated
from the 25 PubMed titles and abstracts. Considering
the origin of the target terms and driven by a pragmatic
approach, the 79 UniProtKB AC are divided into two
sets that participate in each experiment as follows:

� Experiment I: the UniProtKB entries that participate
in this experiment typically have gene/protein terms
manually annotated from the PubMed titles/
abstracts. The target terms for this experiment are
only gene/protein terms manually annotated with
vector representations.

� Experiment II: the UniProtKB entries that participate
in this experiment typically have gene/protein terms
manually annotated from the PubMed titles/
abstracts for which there is not a vector
representation and/or the CVDO can provide more
biological knowledge (e.g. the gene symbol does not
appear among the terms manually annotated for the
protein/gene of interest). The target terms for this
experiment are a combination of: a) gene/protein
terms manually annotated from PubMed titles and/
or abstracts, and b) terms taken from the CVDO
protein and gene class labels. The terms from the
CVDO can provide more context to the terms
manually annotated to take full advantage of the
biological knowledge represented within the CVDO.

The list of acceptable alternative free-text terms (i.e.
candidate terms) for genes/proteins is made of terms
from the word embeddings with the largest cosine value
(the normalized dot product of two vectors) with the
target term. In this study, we limit the list to the twelve
candidate terms with the highest cosine value (i.e. the
top twelve ranked) and we give more importance to the
three candidate terms with the highest cosine value (i.e.
the top three ranked) within the list. We based our deci-
sion in cognitive theories such as that of Novak and
Cañas [90] that states “if we give learners 10–12 familiar
but unrelated words to memorize in a few seconds, most
will recall only 5–9 words. If the words are unfamiliar,
such as technical terms introduced for the first time, the
learner may do well to recall correctly two or three of
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these. Conversely, if the words are familiar and can be
related to knowledge the learner has in her/his cognitive
structure, e.g. months of the year, 12 or more may be eas-
ily recalled”.
Taking into account the word embeddings obtained,

the final setup of both experiments is as follows:

� Experiment I: this experiment involves 64
UniProtKB entries and 85 target terms, where
typically multiple target terms were tried for the
same UniProtKB entry. For each target term, a list
of the top twelve ranked candidate terms (highest
cosine similarity) is obtained from the word
embeddings, and thus, this experiment has 1020
pairs of terms (the target and the candidate) to be
assessed by the four raters with CBOW and Skip-
gram.

� Experiment II: this experiment involves 63
UniProtKB entries and 68 target terms, where the
correspondence between target terms and
UniProtKB entries is almost one-to-one. For each
target term, a list of the top twelve ranked candidate
terms (highest cosine similarity) is obtained from
the word embeddings, and thus, this experiment has
816 pairs of terms (the target and the candidate) to
be assessed by the four raters with CBOW and Skip-
gram.

A total of 48 UniProtKB entries participate in both
Experiment I and II. In Experiment I there are 16 Uni-
ProtKB entries that do not participate in Experiment II,
for those that the CVDO cannot provide much more
added value as they already have the protein name or
the protein name and the gene symbol. In Experiment II
there are 15 UniProtKB entries that do not participate in
Experiment I, those typically correspond to terms anno-
tated from PubMed title/abstracts that do not have a
vector and for which the CVDO may supply target terms
for them by taking terms from the CVDO protein class
expressions and labels.
To clarify the similarities and differences between the

two experiments as well as the exact contribution of
CVDO in Experiment II, we introduce a simple categor-
isation that can be applied to: a) the terms from the
small-annotated corpus, which appear separated by the
character ‘|’ and b) the target terms for the synonym de-
tection task, which appear separated by white space. The
simple categorisation introduced consists of five
categories:

1. Only gene symbol –Term is the gene symbol. For
example: OLR1.

2. Gene symbol appears – A combination of terms
among which the gene symbol appears. An example

from the small-annotated corpus is C3|complement
C3. An example from the target terms for the syno-
nym detection task is: oxidized_low-density_lipopro-
tein receptor_ 1 OLR1.

3. Refer protein name – Terms that refer to the protein
name. An example from the small-annotated corpus
is CTRP1|C1q/TNF-related protein 1|adipokine
C1q/TNF-related protein (CTRP). An example from
the target terms for the synonym detection task is
collagen_type_1.

4. Only protein name –The exact protein name as it
appears in the UniProtKB. An example from the
target terms for the synonym detection task is
glutathione_S-transferase theta-1.

5. Terms from protein name –Terms taken from the
protein name as it appears in the UniProtKB. An
example from the target terms for the synonym
detection task is c1q tumor_necrosis_factor.

Both categories “Only protein name” and “Terms from
protein name” are applied only to the target terms and
take into account the protein name as it appears in the
UniProtKB, which is the lexical content from protein
class labels (i.e. rdfs:label) within the CVDO.
Table 2 for Experiment I and Table 3 for Experiment

II apply the simple categorisation proposed to the terms
from the small-annotated corpus (first column in the
Tables); and to the target terms for the synonym detec-
tion task (second column in the Tables). The third col-
umn represents the number of target terms. For
example, in Table 2 for Experiment I the higher number

Table 2 Setup for Experiment I: The simple categorisation
introduced (see ‘Setup of Experiment I and Experiment II for a
gene/protein synonym detection task’) has been applied to the
terms from PubMed abstract/title from the small-annotated
corpus (first column) as well as to the target terms (second
column). Each row of the third column contains the number
of target terms for the experiment taking into account the
categories that appear in the first and second column

Simple categorisation introduced

Terms from PubMed titles/abstracts Target terms n

Gene symbol appears Gene symbol appears 5

Gene symbol appears Only gene symbol 13

Gene symbol appears Only protein name 3

Gene symbol appears Refer protein name 2

Gene symbol appears Terms from protein name 2

Only gene symbol Only gene symbol 21

Refer protein name Gene symbol appears 1

Refer protein name Only protein name 16

Refer protein name Refer protein name 18

Refer protein name Terms from protein name 4

Arguello Casteleiro et al. Journal of Biomedical Semantics  (2018) 9:13 Page 9 of 24



of target terms corresponds to the category “Only gene
symbol” with 34 target terms, where 13 of them corres-
pond to terms from the small-annotated corpus belong-
ing to the category “Gene symbol appears”.
Table 3 for Experiment II has a fourth column to clearly

indicate the origin of the terms added by the CVDO to
the target terms. In Table 3 for Experiment II the higher
number of target terms corresponds to the category “Gene
symbol appears” with 53 target terms, where 27 of them
correspond to terms from the small-annotated corpus be-
longing to the category “Refer protein name”. For these 27
target terms, the CVDO added terms from protein name
and gene symbol, and therefore, exploiting the protein
class expressions within the CVDO.
In the rows of the fourth column of Table 3, the

symbol (R) means that the protein class expressions
within the CVDO are used to add terms to the target
terms. Hence, 63 of the 68 target terms (i.e. 93%) exploit
the relationship between genes and proteins modelled in
the CVD ontology. Only 5 target terms (i.e. 7%) exploit
lexical content from protein class labels.

Human evaluation and metrics to assess the performance
of Skip-gram and CBOW in experiment I and II
To assess how many free-text candidate terms within
the list can be actually considered to be term variants
(e.g. synonyms, abbreviations, and variant spellings) we
rely on four domain experts to rate pairs of terms (the
target and the candidate) and assess whether the candi-
date term is a full-term variant (FTV for short), a
partial-term variant (PTV for short), or a non-term vari-
ant (NTV for short, meaning none of the previous

categories). The same four raters (A, B, C, and D)
assessed the 3672 pairs of terms (target term and candi-
date term) in Experiments I and II. Raters A and D are
trained terminologists who work in biomedicine; Raters
B and C are bio-curators, who at the time of the study
worked on biochemical knowledge extraction from text-
ual resources.
We established a strict criterion to mark each pair of

terms (the target and the candidate) from the CBOW
and Skip-gram word embeddings. Following Nenadic et
al. [91], a candidate term is marked as FTV only when
the term falls within the following types of term variation:
a) orthographic, b) morphological, c) lexical, d) structural,
or e) acronyms and abbreviations. Considering the bio-
medical value of phraseological expressions (e.g. “ankyrin-
B_gene” or “CBS_deficiency”), they are marked as PTV if
they refer to the same protein/gene of interest.
In order to calculate precision and recall, which are

well-known metrics for evaluating retrieval (classifica-
tion) performance, one set of annotations should be con-
sidered as the gold standard [92]. In this study, we
advocate a voting system as we have four annotators/
raters and two of them are bio-curators. Hence, we do
not follow studies like Thompson et al. [93], which cal-
culate precision and recall, and use F score (i.e. a metric
that combines precision and recall) as a way of calculat-
ing inter-annotator agreement.
When having two raters/coders/annotators, the inter-

annotator agreement is typically calculated using Cohen’s
Kappa measure [94]. For more than two coders, Fleiss
[95] proposed a coefficient of agreement that “calculates
expected agreement based on the cumulative distribution

Table 3 Setup for Experiment II and contribution of the CVDO: The simple categorisation introduced (see ‘Setup of Experiment I and
Experiment II for a gene/protein synonym detection task’) has been applied to the terms from PubMed abstract/title from the small-
annotated corpus (first column) as well as to the target terms (second column). Each row of the third column contains the number
of target terms for the experiment taking into account the categories that appear in the first and second column

Simple categorisation introduced

Terms from PubMed titles/abstracts Target terms n Terms added by CVDO to the target terms

Gene symbol appears Gene symbol appears 6 Terms from protein name (R)

Gene symbol appears Only protein name 1 Protein name (R)

Gene symbol appears Refer protein name 1 Terms referring to the protein name (R)

Gene symbol appears Terms from protein name 2 Terms from protein name (R)

Only gene symbol Gene symbol appears 20 Terms from protein name (R)

Only gene symbol Only protein name 4 Protein name (R)

Refer protein name Gene symbol appears 27 Terms from protein name and gene symbol (R)

Refer protein name Only gene symbol 2 Gene symbol (R)

Refer protein name Only protein name 2 Protein name

Refer protein name Refer protein name 1 Terms referring to the protein name

Refer protein name Terms from protein name 2 Terms from protein name

The fourth column indicates the terms added by the CVDO, when the symbol (R) appears it means that the protein class expressions within the CVDO are used
to add terms to the target terms
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of judgments by all coders” [96]. This measure of inter-
annotator agreement is also known as Fleiss’s multi-π as it
can be interpreted as a generalisation of Scott’s π [97]. It
should be noted that when all disagreements are consid-
ered equal, as in this study, Fleiss’s multi-π is nearly identi-
cal to Krippendorff ’s α [98], which is an agreement
coefficient recommended in computational linguistics for
coding tasks without involving nominal and disjoint cat-
egories [96]. Hence, we adhere to Artstein and Poesio [96]
who state that it is better practice in computational
linguistics to use generalised versions of the coefficients
(e.g. Fleiss’s multi-π) instead of measuring agreement sep-
arately for each pair of coders (Cohen’s Kappa measure),
and then report the mean.
In this study three metrics are used to assess the per-

formance of CBOW and Skip-gram for the synonym de-
tection task. The first metric is the area under the
Receiver Operating Characteristics (ROC) curve for a
binary classifier. FTV and PTV can be merged into one
category called term variant or TV for short. Hence, the
multiple class classification problem can be reduced to
three binary classification problems: 1) FTV and non-
FTV; 2) PTV and non-PTV; and 3) TV and non-TV.
This study uses ROC curves instead of precision-recall
curves, as ROC curves do not change if the class distri-
bution is different [99]. The second metric is the median
of the rank that was used by Pilehvar and Collier [18] in
a synonym and hypernym identification tasks with Skip-
gram. The third metric is the number of term variants (i.e.
FTV and/or PTV) found for each of the 79 UniProtKB en-
tries within the small-annotated corpus of gene/protein
names from 25 PubMed articles.

Receiver operating characteristics (ROC) curve and the area
under the ROC curve (AUC)
To compare classifiers, calculating the area under the
ROC curve, the so-called AUC [100–102], is a common
method. Fawcett [99] defines the ROC curve as “a tech-
nique for visualizing, organizing and selecting classifiers
based on their performance”. As Bradley [100] states
“when comparing a number of different classification
schemes it is often desirable to obtain a single figure as a
measure of the classifier's performance”. The AUC can
be interpreted as a probability of correct ranking as esti-
mated by the Wilcoxon statistic [101]. Furthermore, as
Hand and Till [102] highlight, the AUC is “independent of
costs, priors, or (consequently) any classification threshold”.
A ROC curve has two dimensions, where typically TP

rate is plotted on the Y axis and FP rate is plotted on the
X axis [99]. TP rate stands for true positive rate (a.k.a.
hit rate or recall or sensitivity) and is the proportion of
positives correctly classified as positives; FP rate stands
for false positive rate (a.k.a. false alarm rate) and is the
proportion of negatives that are incorrectly classified as

positive. For the perfect classifier TP rate = 1 and FP
rate = 0. In the ROC curves, the diagonal line (y = x) is
also plotted which represents random guessing [99] and
acts as the baseline for ROC. A random classifier typic-
ally ‘slides’ back and forth on the diagonal [99].
As the candidate terms evaluated for the human raters

are ranked (highest cosine value), we have the category
assigned by the rater to each candidate term (FTV, PTV,
or NTV) as well as the position that the candidate term
has in the top twelve ranked list. Firstly, for each experi-
ment and rater, we created a table with twelve rows and
three columns: frequency of FTV, frequency of PTV, and
frequency of NTV. For example, the frequency of FTV
column accounts for the number of times that a rater
assigned FTV for the term in the ith position in the list,
with i = [1,…, 12]. Secondly, we calculated the cumula-
tive frequency, and thus, three more columns were
added. The cumulative frequency is calculated in de-
scending order, where the value of the cumulative fre-
quency for the ith position in the list adds to the value
from the frequency column in the ith position, the value
of the cumulative frequency for the (i-1)th position in
the list. Thirdly, we calculated the cumulative rate, and
therefore, three more columns were added. For example,
the cumulative rate of FTV column is calculated by div-
iding the values of the cumulative frequency of FTV col-
umn by the total number of FTV assigned by the rater.
Hence, the last value in any of the cumulative rate col-
umns (12th position) is equal to 1. In the ROC curves,
we plot the cumulative rates obtained. Hence, the ROC
curves for FTV, PTV, and TV end at (1, 1).
The values for the AUC go from zero to one. Random

guessing will have an AUC = 0. 5 and “no realistic classi-
fier should have an AUC less than 0. 5” [99]. We plot
ROC curves for FTV, PTV, and TV and calculate the
AUC for each rater and experiment.

The median of the rank per human rater
Based on the domain expert category assigned (FTV,
PTV, or NTV) to each candidate term from the word
embeddings, as well as the position that the candidate
term has in the top twelve ranked list (highest cosine
similarity), we can calculate the median of the rank for
FTV and PTV per rater. A lower median means that the
terms marked as terms variants (full or partial) appear at
the beginning of the list.

Number of UniProtKB ACs and CVDO classes with a term
variant
Based on the 79 unique UniProtKB entries from the
small-annotated corpus we implement a voting system
based on raters’ judgement and determine for how many
of the 79 UniProtKB entries mapped to CVDO classes,
term variants were found. The voting system takes the
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domain expert category assigned (FTV, PTV, or NTV)
and considers that a candidate term from the top twelve
ranked list is an FTV if at least one of the four raters
assigned the category FTV once. Likewise, and more
generally, if at least one of the four raters marks a candi-
date term from the top twelve ranked list as FTV or
PTV, the voting system concludes a TV has been found.

Results
We start by illustrating the results obtained in Experi-
ment I and II with CBOW and Skip-gram. Next we re-
port the human inter-annotator agreement and the
results obtained for the three metrics to assess the per-
formance of CBOW and Skip-gram in the gene/protein
synonym detection task.

Exemplifying the results obtained for the gene/protein
synonym detection task in experiment I and II
Each auxiliary file - CBOW.xls and Skip-gram.xls - con-
tains the 1836 pairs of terms (target term and candidate
term) from the word embeddings created, along with the
cosine similarity obtained for each pair of terms. Each
file includes the list of the top twelve ranked candidate
terms (highest cosine similarity) per target term, where
the last four columns have the human judgement (FTV,
PTV, or NTV) by the four raters A-D. Each target term:
a) relates to a UniProtKB entry that has a UniProtKB
identifier (i.e. the UniProtKB AC column) and also a
string value for the annotation property skos:altLabel for
the PxO protein class, b) has a unique identifier in col-
umn nQ that also appears in the auxiliary file Terms-
Mapped_votingSystem.xls, c) contains at least one term
from the small-annotated corpus (Term from the
PubMed titles/abstracts column), and d) participates in
Experiment I (abbreviated as Exp I) or Experiment II
(abbreviated as Exp II) as indicated in the Experiment
column.
We use target terms from the auxiliary files to illus-

trate the ranked list of the top twelve candidate terms
(highest cosine similarity) for gene/protein names ob-
tained from the word embeddings created with CBOW
and Skip-gram for Experiments I and II.
Table 4 shows the list of the top twelve candidate

terms (highest cosine similarity) obtained with CBOW
and Skip-gram word embeddings in Experiment I for the
target term “KLF7”, which is a gene symbol and appears
as such in the abstract of the PubMed article with ID =
23,468,932. For CBOW, all four raters agree that there is
not a full or partial gene/protein term variant (i.e. FTV
or PTV) among the list of candidate terms; in other
words, all the top twelve ranked candidate terms for
CBOW were marked as NTV by the four raters. For
Skip-gram, all four raters agree that: a) the candidate
term in the second position in the list is an FTV, and b)

the candidate term in the third position in the list is a
PTV. Hence, in Experiment I for the target term “KLF7”,
CBOW could not find a TV while Skip-gram found an
FTV and also a PTV among the top three ranked candi-
date terms in the list. From a biological point of view,
the target term “KLF7” denotes a human gene, while the
candidate term in the second position in the list “Klf7”
denotes the equivalent gene in mice. The genes KLF7
and Klf7 are orthologs according to the NCBI [103]. The
candidate term in the third position in the list “Klf7(−/−)”
refers to mice which are homozygous for the Klf7 gene
knockout. Hence, the pre-processing of the 14 M PubMed
dataset that keeps uppercase, punctuation marks, and
numbers, demonstrably preserves valuable biological
information.
The term “OLR1”, which is a gene symbol, appears as

such in the abstract of the PubMed article with ID =
22,738,689. Using “OLR1” as the target term in Experi-
ment I for CBOW and Skip-gram, no candidate terms
from the word embeddings were suitable as FTV or PV
according to all four raters.
In Experiment II, the term “oxidized_low-density_lipo-

protein receptor_1” that corresponds to the protein name
is added to the gene symbol “OLR1” to create a target
term. Table 5 shows the top twelve ranked candidate
terms obtained by CBOW and Skip-gram word embed-
dings in Experiment II using these two terms “oxidize-
d_low-density_lipoprotein receptor_1 OLR1” as the target
term. Therefore, the target contains a term that exploits
knowledge within the CVDO and, more concretely, the
association relationship formally represented between
genes and proteins. As the CVDO provides more con-
text, in Experiment II with both CBOW and Skip-gram,
suitable term variants (FTV as well as PTV) were found
for the protein/gene name.
Tables 4 and 5 show higher cosine values for Skip-

gram than CBOW. As cosine similarity gives an indica-
tion of how strongly semantically related is the pair of
terms (the target and the candidate), it seems natural
that Skip-grams finds more term variants than CBOW.
Table 6 shows the categories FTV, PTV, or NTV

assigned by the four human raters (A-D) to the top
twelve ranked candidate terms obtained for Skip-gram
in Experiment II using two terms “oxidized_low-densi-
ty_lipoprotein receptor_1 OLR1” as the target term. This
list of the top twelve ranked candidate terms appears in
the right-hand side of Table 5. The last three columns of
the Table exemplify the voting system (abbreviated as
VS) applied: full term variant (VS: FTV column), full
term variant among the top three (VS: FTV for top three
column), and full and/or partial term variant (VS: TV
column).
Two rows appear with a grey background in Table 6.

They indicate the process of manually assigned categories
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to be error-prone as Rater C assigned NTV to the candi-
date term in the eighth position in the list “oxidized_low-
density_lipoprotein_(ox-LDL)” while marking PTV for the
candidate term in the ninth position, “oxidized_low-densi-
ty_lipoprotein_(oxLDL)”. From visual inspection, the only
difference in these two candidate terms is the appearance
of, or lack of, a ‘-‘. It should be noted that Raters A, B, and
D mark both candidate terms in the list equally, although
they differ in the category assigned. The biological back-
ground knowledge of Raters B and C (curators) and their
impact on the manual categorisation process can be de-
duced from Table 6. Gene OLR1 has a well-known alias
LOX-1, and thus, Raters B and C marked the candidate

terms as FTV if LOX-1 appears alone or PTV if LOX-1
appears in combination with other term(s); however,
Raters A and D marked all the candidate terms as NTV
where LOX-1 appears.

Human evaluation and metrics to assess the performance
of Skip-gram and CBOW in Experiment I and II
We start reporting on the inter-annotator agreement coeffi-
cients for the four raters. For pairwise inter-annotator agree-
ment (the Cohen’s Kappa measure) per experiment and
model, we refer the reader to auxiliary file pairwiseIAA.xls.
All the inter-annotator agreement coefficients are calculated
with the implementations from the NLTK [86]:

Table 4 Exemplifying results for Experiment I: Top twelve ranked candidate terms (highest cosine similarity) from the word
embeddings created with CBOW and Skip-gram for the target term “KLF7” that appears in the abstract of the PubMed article with
ID = 23,468,932

CBOW Skip-gram

Rank Candidate terms from word embeddings Cosine Candidate terms from word embeddings Cosine

1 MoKA 0.376371 Prrx2 0.601920

2 pluripotency-associated_genes 0.335113 Klf7 0.592946

3 Sp1_regulates 0.334092 Klf7(−/−) 0.590523

4 LOC101928923 0.333423 RXRG 0.589875

5 p107_dephosphorylation 0.331689 LOC101928923 0.585979

6 PU_1 0.329925 SOX-17 0.585295

7 histone_demethylase 0.323529 rs820336 0.585094

8 gene_promoter 0.321640 GLI-binding_site 0.581073

9 homeobox_protein 0.319997 Tead2 0.580012

10 histone_arginine 0.315875 hHEX 0.579868

11 transfated 0.314202 ACY-957 0.579542

12 are_unable_to_repress 0.313112 ETS1 0.577272

Table 5 Exemplifying results for Experiment II: Top twelve ranked candidate terms (highest cosine similarity) from the word
embeddings created with CBOW and Skip-gram using two terms as target: “OLR1” from the abstract of the PubMed article with ID
= 22,738,689; and “oxidized_low-density_lipoprotein receptor_ 1” that is the CVDO protein class name (rdfs:label) for the CVDO class
gene with name (rdfs:label) OLR1. Hence, the target term exploits the protein class expressions within the CVDO

CBOW Skip-gram

Rank Candidate terms from word embeddings Cosine Candidate terms from word embeddings Cosine

1 atherogenesis 0.469405 lectin-like_oxidized_low-density_lipoprotein 0.688603

2 atherosclerosis 0.465861 (LOX-1)_is 0.672042

3 CD36 0.439280 atherosclerosis_we_investigated 0.669050

4 LOX-1 0.424173 receptor-1 0.664891

5 atherosclerotic_lesion_formation 0.416537 lectin-like_oxidized_LDL_receptor-1 0.663988

6 vascular_inflammation 0.414620 lOX-1_is 0.660110

7 inflammatory_genes 0.411186 human_atherosclerotic_lesions 0.657075

8 atherosclerotic_lesions 0.405906 oxidized_low-density_lipoprotein_(ox-LDL) 0.655515

9 monocyte_chemoattractant_protein-1 0.398739 oxidized_low-density_lipoprotein_(oxLDL) 0.654965

10 plaque_destabilization 0.398201 (LOX-1) 0.652099

11 oxidized_low-density_lipoprotein_(oxLDL) 0.397967 proatherosclerotic 0.651571

12 atherosclerosis_atherosclerosis 0.396677 receptor-1_(LOX-1)_is 0.649000
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� Using data from auxiliary file CBOW.xls, the Fleiss’s
multi-π for the four raters in Experiment I is
0.763205 and for Experiment II is 0.730869. The
Krippendorff ’s α for the four raters in Experiment I
is 0.763211 and for Experiment II is 0.730874.

� Using data from auxiliary file Skip-gram.xls, the
Fleiss’s multi-π for the four raters in Experiment I is
0.794919 and for Experiment II is 0.673514. The
Krippendorff ’s α for the four raters in Experiment I
is 0.794938 and for Experiment II is 0.674181.

As expected, the values obtained for the Fleiss’s
multi-π and the Krippendorff ’s α for the four raters
are nearly identical. The inter-annotator agreement is
lower for Experiment II, which is more challenging in
terms of biological background knowledge. Camon et
al. [104] reports that the chance of curator agreement
is 39% to 43% when annotating proteins in the Uni-
ProtKB with terms from the GO. Hence, inter-
annotator agreement from 0.6734 (lowest value for
Fleiss’s multi-π) to 0.7949 (highest value for Fleiss’s
multi-π) appears reasonable.

Receiver operating characteristics (ROC) curve and the area
under the ROC curve (AUC)
Using data from auxiliary files CBOW.xls and Skip-
gram.xls, we plotted the ROC curves. For each Rater
A-D the ROC curves are shown in Figs. 2, 3, 4 and 5 re-
spectively. The ROC curves on the left-hand side plot

FTV, PTV, and TV (i.e. the combination of FTV and
PTV) for CBOW in Experiment I (abbreviated as Exp I)
and Experiment II (abbreviated as Exp II). The ROC
curves on the right-hand side plot FTV, PTV, and TV
for Skip-gram in Experiment I and II.
Looking at the AUC values for FTV, PTV, and TV in

Figs. 2, 3, 4 and 5, it can be observed that for all four
raters:

� The AUC values for FTV, PTV, and TV are always
greater than 0. 5 (i.e. better than random guessing) for
both CBOW and Skip-gram in Experiments I and II.

� The AUC values for TV are always greater in
Experiment II than in Experiment I for both CBOW
and Skip-gram.

� The AUC values for TV are always greater for Skip-
gram than for CBOW in both Experiment I and II.

� The AUC values for PTV are always greater in
Experiment II than in Experiment I for both CBOW
and Skip-gram.

� The higher AUC values are for FTV with both
CBOW and Skip-gram.

� The maximum AUC values are for FTV in
Experiment II with Skip-gram.

The only noticeable discrepancy is that for three
Raters (A, C, and D), CBOW has the higher AUC values
for FTV in Experiment II, and for Rater B the higher
AUC value for CBOW is for FTV in Experiment I.

Table 6 Exemplifying human judgements and voting system for Skip-gram: Categories FTV, PTV, or NTV assigned for the four human
raters (A, B, C, and D) to the top twelve candidate terms for the target term “oxidized_low-density_lipoprotein receptor_ 1 OLR1” in
Experiment II using Skip-gram. The last three columns show the voting system (VS) applied for FTV (full term variant), FTV among
the top three, and TV (full and/or partial term variant). The two rows in grey background remark how two almost identical candidate
terms from the word embeddings are marked differently by rater C, and thus, the manual annotation by raters is error-prone
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Considering the ROC curves and the AUC values, we
conclude that: a) Skip-gram outperforms CBOW in both
Experiments for the binary classification problem TV and
non-TV, b) both CBOW and Skip-gram perform best for
the binary classification problem FTV and non-FTV, c) the
best performance is for Skip-gram in Experiment II for the
binary classification problem FTV and non-FTV.

The median of the rank per human rater
Using data from the auxiliary files CBOW.xls and Skip-
gram.xls, we calculated the median of the rank. Table 7
shows the median of the rank for Raters A-D. From Table 7:

� For CBOW and Skip-gram in Experiment II, the
mean of the median of the rank for an FTV is 3.

� For CBOW and Skip-gram in Experiment I, the
mean of the median of the rank for an FTV is 4.

� For Skip-gram in Experiment I and II, the median of
the rank for a PTV is 6 for all four raters.

� For CBOW in Experiment II, the median of the rank
for a PTV is 5 for all four raters.

� For CBOW in Experiment I, the mean of the
median of the rank for a PTV is 6.

The higher the rank (i.e. lowest number) for an FTV
the better, and thus, results obtained for both CBOW
and Skip-gram indicate that CVDO can slightly improve
the ranking of an FTV from being among the top four
ranked candidate terms in Experiment I (without the aid
of the CVDO) to be among the top three ranked candi-
date terms in Experiment II (with the aid of the CVDO).

Fig. 2 ROC curves for rater A: left-hand side CBOW and right-hand side Skip-gram. Abbreviations: Exp I = Experiment I; Exp II = Experiment II

Fig. 3 ROC curves for rater B: left-hand side CBOW and right-hand side Skip-gram. Abbreviations: Exp I = Experiment I; Exp II = Experiment II
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Number of UniProtKB entries mapped to CVDO gene and
protein classes with term variants
The auxiliary file TermsMapped_votingSystem.xls
contains the results of the voting system according to
the simple categorisation introduced (see subsection
‘Setup of Experiment I and Experiment II for a gene/
protein synonym detection task’), which has been
applied to the terms from PubMed abstract/title from
the small-annotated corpus (Category for terms from the
title/abstract column) as well as to the target terms (Cat-
egory for target terms column). The file has 153 target
terms, each with a unique identifier in column nQ that
also appears in each auxiliary file under the column nQ.
Of these 153 target terms: 85 target terms for 64 Uni-
ProtKB entries are mapped to CVDO protein and gene
classes in Experiment I (abbreviated as Exp I), and 68

target terms for 63 UniProtKB entries are mapped to
CVDO protein and gene classes in Experiment II (abbre-
viated as Exp II). The last six columns display the presence
(i.e. value equals 1) or absence (i.e. value equals 0) for each
neural language model CBOW and Skip-gram of: full
term variants (i.e. FTV) among the top twelve ranked can-
didate terms for the target term; FTV among the top three
ranked candidate terms for the target term; and term vari-
ants (i.e. FTV and/or PTV) among the top twelve ranked
candidate terms for the target term.
Tables 8–11 take the data from auxiliary file Terms-

Mapped_votingSystem.xls and summarise the results
obtained.
Table 8 shows the overall performance of CBOW and

Skip-gram in Experiment I and II according to the
voting system, which can be summarised as follows:

Fig. 4 ROC curves for rater C: left-hand side CBOW and right-hand side Skip-gram. Abbreviations: Exp I = Experiment I; Exp II = Experiment II

Fig. 5 ROC curves for rater D: left-hand side CBOW and right-hand side Skip-gram. Abbreviations: Exp I = Experiment I; Exp II = Experiment II
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� In Experiment I, Skip-gram finds term variants
among the top twelve ranked candidate terms
(Number TV column) for 89% of the 64 unique
UniProtKB entries mapped to CVDO gene and
protein classes, while CBOW finds term variants for
67%. Hence, using as target terms only terms from
PubMed titles/abstracts, the word embeddings
generated with the 14 M PubMed dataset can obtain
a list of term variants for gene/protein names.

� In Experiment II (with the aid of the CVDO), Skip-gram
finds term variants among the top twelve ranked candi-
date terms (Number TV column) for 95% of the 63
unique UniProtKB entries mapped to CVDO gene and
protein classes, while CBOW finds term variants for
78%. Hence, both neural language models Skip-gram
and CBOW provide more term variants (FTVs and/or
PTVs) if the CVDO is used to provide more context for
the target terms, and therefore increasing the chances of
finding suitable term variants for a gene/protein name.

� Combining the results of both experiments, Skip-gram
finds term variants (FTVs and/or PTVs) among the top
twelve ranked candidate terms for 97% of the 79 Uni-
ProtKB entries mapped to CVDO gene and protein
classes, while CBOW finds term variants for 81%.

� The number of term pairs in Experiment I is 1020
while in Experiment II it is 816, however more term
variants are found in Experiment II. Hence,

knowledge from the CVDO (i.e. mostly the protein
class expressions along with lexical content from
protein class labels) to make the term targets more
efficient as fewer term pairs are needed to produce
more term variants.

Table 9 shows the performance of CBOW and Skip-
gram according to the voting system and considers the
number of UniProtKB entries that participate in each ex-
periment. The third column contains the number of target
terms for the experiment considering the number of Uni-
ProtKB entries, where Experiment I has a higher number
of target terms per UniProtKB entry than Experiment II.
In Table 9 there are some rows with a grey background;
they refer to the 48 UniProtKB entries that participate in
both Experiments. There are 16 UniProtKB entries that
participate only in Experiment I and 15 UniProtKB entries
that participate only in Experiment II. Considering each
number of UniProtKB entries in an Experiment, it can be
observed that Skip-gram always outperforms CBOW and
finds more FTVs among the top twelve ranked candidate
terms (Number FTV column); FTVs among the top three
ranked candidate terms (Number FTV for the top three
column); and TVs among the top twelve ranked candidate
terms (Number TV column). By considering only the 48
UniProtKB entries that participate in both Experiments, it
can be observed that:

Table 7 Median of the rank for CBOW and Skip-gram in Experiments I and II for each of the four raters

Experiment Model Rater A Rater B Rater C Rater D

Median FTV Median PTV Median FTV Median PTV Median FTV Median PTV Median FTV Median PTV

I CBOW 4 5 3 7 4 6 4 6

II CBOW 3 5 4 5 3 5 3 5

I Skip-gram 4 6 4 6 4 6 4 6

II Skip-gram 3 6 4 6 3 6 3 6

Table 8 Overall performance of CBOW and Skip-gram according to the voting system: Number of unique UniProtKB entries and
number of term pairs for protein/gene names that are involved in Experiment I, II, and combined (i.e. merging Experiment I and II)

Voting system

Experiment Model Number of terms pairs Number of UniProtKB entries Number
FTV

Number FTV for top three Number TV
(%)

I CBOW 1020 64 31 21 43 (67%)

II CBOW 816 63 29 21 49 (78%)

I and II
combined

CBOW 1836 79 47 37 64 (81%)

I Skip-gram 1020 64 49 37 57 (89%)

II Skip-gram 816 63 56 51 60 (95%)

I and II
combined

Skip-gram 1836 79 71 63 77 (97%)

According to the voting system, for each model the last three columns show: the number of full term variants among the top twelve ranked candidate terms for
the UniProtKB entries (Number FTV column); the number of full term variants among the top three ranked candidate terms for the UniProtKB entries (Number FTV
for top three); and the number and % of term variants (i.e. FTV and/or PTV) among the top twelve ranked candidate terms for the UniProtKB entries (Number
TV column)
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� CBOW finds TVs (Number TV column) among
the top twelve ranked candidate terms for 30 of
the 48 UniProtKB entries in Experiment I (i.e.
62%) and for 37 of the 48 UniProtKB entries in
Experiment II (i.e. 77%).

� Skip-gram finds TVs (Number TV column) among the
top twelve ranked candidate terms for 42 of the 48
UniProtKB entries in Experiment I (i.e. 87%) and for 45
of the 48 UniProtKB entries in Experiment II (i.e. 93%).

Tables 10 and 11 display the performance of CBOW and
Skip-gram for Experiments I and II respectively according
to the voting system and considering the categorisation in-
troduced (see subsection ‘Setup of Experiment I and Ex-
periment II for a gene/protein synonym detection task’)

that has been applied to the terms from PubMed abstract/
title from the small-annotated corpus (first column) as well
as to the target terms (second column). From these two ta-
bles, it can be observed:

� In Table 10, corresponding to Experiment I, the higher
number of target terms corresponds to the category
“Only gene symbol” (two rows with a grey background)
with a total of 34 target terms. CBOW finds TVs
among the top twelve ranked candidate terms (nTV
column) for 19 of them (i.e. 56%), while Skip-gram
finds TVs among the top twelve ranked candidate
terms (nTV column) for 29 of them (i.e. 85%).

� In Table 11, corresponding to Experiment II, the
higher number of target terms corresponds to the

Table 9 Performance of CBOW and Skip-gram - Experiment I and Experiment II: Number of unique UniProtKB entries mapped to
CVDO gene and protein classes that participated in Experiment I or II

The rows with grey background remark the 48 UniProtKB entries that participate in both Experiment I and II. Each row of the third column contains the number
of target terms for the experiment taking into account the number of UniProtKB entries. According to the voting system, for each model and experiment, the last
three columns show: the number of full term variants among the top twelve ranked candidate terms for the UniProtKB entries (Number FTV column); the number
of full term variants among the top three ranked candidate terms for the UniProtKB entries (Number FTV for top three); and the number of term variants (i.e. FTV
and/or PTV) among the top twelve ranked candidate terms for the UniProtKB entries (Number TV column)

Table 10 Results for Experiment I according to the voting system and the simple categorisation introduced: Results of the voting system
according to the simple categorisation introduced (see ‘Setup of Experiment I and Experiment II for a gene/protein synonym
detection task’), which has been applied to the terms from PubMed abstract/title from the small-annotated corpus (first column) as
well as to the target terms (second column)

Abbreviations: n = number of target terms; nFTV= number of target terms that have a FTV among the top twelve candidate terms; nFTVr3= number of target terms that
have a FTV among the top three candidate terms; nTV = number of target terms that have a TV (i.e. FTV and/or PTV) among the top twelve candidate terms
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category “Gene symbol appears” (three rows with a
grey background) with a total of 53 target terms.
CBOW finds TVs among the top twelve ranked
candidate terms (nTV column) for 39 of them (i.e.
74%), while Skip-gram finds TVs among the top
twelve ranked candidate terms (nTV column) for 50
of them (i.e. 94%).

� Comparing results of the voting system for CBOW
and Skip-gram, corresponding to both Experiments I
(Table 10) and II (Table 11), Skip-gram always ob-
tains an equal or higher number than CBOW for:
FTVs variants among the top twelve ranked
candidate terms (nFTV column), FTVs among the
top three ranked candidate terms (nFTVr3 column);
and TVs (FTVs and/or PTVs) among the top twelve
ranked candidate terms (nTV column).

Table 8 shows, corresponding to both Experiments I
and II, the number of FTVs among the top twelve
ranked candidate terms (Number FTV column) for
Skip-gram is higher than the number of TVs among the
top twelve ranked candidate terms (Number TV col-
umn) for CBOW. To further illustrate this: a) in Experi-
ment I, CBOW finds 43 TVs while Skip-gram finds 49
FTVs, and b) in Experiment II, CBOW finds 49 TVs
while Skip-gram finds 56 FTVs. Tables 10 and 11 pro-
vide more details based on the categorisation intro-
duced; it can be observed that for both Experiments I
and II, the number of FTVs among the top twelve
ranked candidate terms (nFTV column) for Skip-gram
is always equal to or greater than the number of TVs
among the top twelve ranked candidate terms (nTV col-
umn) for CBOW.

We conclude that: a) Skip-gram outperforms CBOW
in both Experiments and finds more TVs and FTVs; b)
the number of FTVs in both Experiments for Skip-gram
is equal to or greater than the number of TVs for
CBOW; and c) both Skip-gram and CBOW find more
TVs and FTVs in Experiment II (with the aid of the
CVDO) than in Experiment I.

Discussion
The CVDO has a limited lexical content, where each
gene and protein class has only one name (i.e. the value
of the rdfs:label), and thus lacks term variants (e.g. syno-
nyms and acronyms) for genes/proteins. Keeping the
CVDO up-to-date in this respect is a challenge shared
with the typical biologist. As Jensen et al. [65] acknow-
ledge that “for the typical biologist, hands-on literature
mining currently means a keyword search in PubMed”.
Both biological entity annotations (gene/protein and or-
ganism/species) and molecular interaction annotations
(protein-protein and genetic interactions) of the free-
text scientific literature are needed to support queries
from biologists that may use different names to refer to
the same biological entity. However, identification of
biological entities within the literature has proven diffi-
cult due to term variation and term ambiguity [105], be-
cause a biological entity can be expressed by various
realisations. A large-scale database such as PubMed
contains longer forms including phrases (e.g. “serum
amyloid A-1 protein”) as well as shorter forms such as
abbreviations or acronyms (e.g. “SAA”). Finding all term
variants in text is important to improve the results of in-
formation retrieval systems such as PubMed that trad-
itionally rely on keyword-based approaches. Therefore,

Table 11 Results for Experiment II according to the voting system and the simple categorisation introduced: Results of the voting
system according to the simple categorisation introduced (see ‘Setup of Experiment I and Experiment II for a gene/protein synonym
detection task’), which has been applied to the terms from PubMed abstract/title from the small-annotated corpus (first column) as
well as to the target terms (second column)

Abbreviations: n ; number of target terms; nFTV ; number of target terms that have a FTV among the top twelve candidate terms; nFTVr3; number of target terms
that have a FTV among the top three candidate terms; nTV; number of target terms that have a TV (i.e. FTV and/or PTV) among the top twelve candidate terms

Arguello Casteleiro et al. Journal of Biomedical Semantics  (2018) 9:13 Page 19 of 24



the number of documents retrieved is prone to change
when using acronyms instead of and/or in combination
with full terms [106, 107].
This study investigates to what extent word embed-

dings can contribute to keeping the CVDO up-to-date
with new biomedical publications, and furthermore if
the CVDO itself can aid such update. Experiment I in-
vestigates whether, in taking a gene/protein name from
PubMed titles/articles as a target term, it is possible to
obtain a list of term variants from the word embeddings
created with a 14 M PubMed dataset. The results
obtained for Experiment I confirm that it is feasible and
that Skip-gram finds 22% more term variants than
CBOW using 85 target terms that correspond to 64
UniProtKB entries, which are mapped to CVDO gene
and protein classes. Experiment II investigates if the
same word embeddings used in Experiment I can pro-
duce a better list of term variants (i.e. more term vari-
ants) using as target terms a combination of gene/
protein names from PubMed titles/abstracts with terms
(i.e. more context) from the CVDO protein class expres-
sions and labels. The results obtained for Experiment II
show an improvement in performance of CBOW by 11%
and Skip-gram by 6% using 68 target terms (fewer target
terms than in Experiment I) that corresponds to 63
UniProtKB entries, which are mapped to CVDO gene
and protein classes. In Experiment II (with the aid of the
CVDO), not only is a better list of gene/protein term
variants obtained but also a better ranking, where a full-
term variant is likely to appear among the top three
ranked candidate terms. Hence, the CVDO supplies con-
text that is effective in inducing term variability whilst
reducing ambiguity.
Studies related to semantic similarity and relatedness

tasks employ gold standards specific for the biomedical
domain that have a relatively small number of term
pairs, such as Caviedes and Cimino [38] with 10 term/
concept pairs, Pedersen et al. [34] with 30 term/concept
pairs, and Pakhomov et al. [36] with 724 term pairs. This
study considers a total of 3672 term-pairs from the two
experiments together with human judgments from four
raters. Hence, an outcome of this study is the creation of
a gene/protein names dataset (larger than the MEN Test
Collection [40] with 3 K common English word-pairs)
that can be reused for the evaluation of semantic models
in a gene/protein synonym detection task. However, the
overall setup of the two experiments is unbalanced as a
result of capturing a realistic scenario where: a) some
gene/protein names appearing in PubMed titles/ab-
stracts do not have a vector representation; and b) a
gene and its product (typically a protein) can appear to-
gether in the scientific text, and thus, the biological
knowledge formally represented in the CVDO is already
present.

Considering only the 48 UniProtKB entries mapped to
CVDO gene and protein classes that participate in both
Experiment I and II, the asymmetry between the two ex-
periments can be reduced leading to a smaller gene/pro-
tein names dataset with: a) 660 pairs of terms (target
term and candidate term) taken from the word embed-
dings created with CBOW and Skip-gram (i.e. total of
1320 term pairs) and assessed by four raters in Experi-
ment I; and b) 624 pairs of terms taken from the word
embeddings created with CBOW and Skip-gram (i.e. a
total of 1248 term pairs) and assessed by four raters in
Experiment II. Considering only these 2568 term-pairs
instead of the total of 3672 term-pairs from the two ex-
periments, the performance obtained for CBOW and
Skip-gram is the same as the overall performance re-
ported with Skip-gram outperforming CBOW in both
Experiments; and both CBOW and Skip-gram find more
term variants in Experiment II (with the aid of the
CVDO) than in Experiment I.
Besides the asymmetry between the two experiments

presented, there are certain areas of improvement possible
regarding the data resources. On one hand, the small-
annotated corpus is very narrow in scope with only one
curator performing the gene/protein name annotation for
25 PubMed articles (titles and abstracts). On the other
hand, the 14 M PubMed dataset used to generate the
word embeddings can be arguably larger or include more
recent PubMed articles as it only contains titles and avail-
able abstracts from PubMed articles published between
2000 and 2016 (files up to 8th June 2016).
As of today, data integration remains a challenge in

the life sciences, and therefore, the main curation effort
for the sysVASC project is in normalisation. Rebholz-
Schuhmann et al. [3] emphasises the lack of a complete
solution to normalise proteins and genes (e.g. unique
protein identifier together with protein properties and
alternative names/labels) that facilitates recognising
them from the scientific text. As part of this study, gene/
protein names annotated from PubMed titles and/or ab-
stracts are mapped to UniProtKB entries. Other studies
have also carried out normalisation whilst making no
distinction between genes/proteins. For example, Dogan
et al. [108] annotated genes/proteins of interest and
manually added their corresponding Entrez Gene identi-
fiers. There are, however, studies that have a list of mul-
tiple types of biomedical entities, such as PubTator
[109], and BEST [110]. PubTator considers 5 biomedical
entities and BEST considers 10 biomedical entities. Both
PubTator and BEST perform daily updates of PubMed
content and both have automated identification of bio-
medical entities such as genes. Neither PubTator nor
BEST, however, distinguish between proteins and genes.
The results obtained for Experiment II suggest benefits

in using target terms belonging to the category “Gene
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symbol appears” introduced – using terms from protein
class expressions and labels from the CVDO (or the
PxO) – with Skip-gram to automatically obtain the top
three ranked candidate terms for a gene/protein of inter-
est. Although this study does not present a tool, it sug-
gests that the CVDO can provide a better context and
improve the performance of CBOW and Skip-gram
without modifying the word embeddings (i.e. no post-
processing of the term vectors is performed), and this
could be the foundation for building a tool similar to
PubTator or BEST. As the CVDO and the PxO are for-
malised in OWL, it seems natural to envision a tool
based on Semantic Web technologies, such as OWL and
SPARQL. Therefore taking into account two annotation
properties from SKOS, i.e. skos:altLabel and skos:hidden-
Label, we can define the automation for the gene/pro-
tein synonym detection task as: “for each CVDO protein,
find term variants for the string values within skos:altLa-
bel and store them in skos:hiddenLabel”.
Levy et al. [29] remarks that if different models “are

allowed to tune a similar set of hyperparameters, their
performance is largely comparable”. The neural language
models CBOW and Skip-gram have a similar set of
hyperparameters, and thus, their performance has been
already compared when accomplishing biomedical tasks
[41, 42]. Muneeb et al. [41] applied different hyperpara-
meter configurations and reported a better performance
for Skip-gram than CBOW in a semantic similarity and
relatedness task for biomedical concepts. Chiu et al. [42]
performed a systematic exploration of different hyper-
parameter configurations and reported an overall better
performance for Skip-gram than CBOW in word simi-
larity and NER tasks using biomedical corpora. This
study also shows a better performance for Skip-gram
than CBOW in a gene/protein synonym detection task
considering two metrics: the AUC for the binary classifi-
cation problem TV and non-TV; and the number of
term variants found for 79 UniProtKB entries. We, how-
ever, used the same hyperparameter configuration for
CBOW and Skip-gram in a study about patient safety
[111] and it was not possible to determine which
(CBOW or Skip-gram) had better performance on an
NER task. This study does not exploit Skip-gram with
negative sampling, which typically improves its perform-
ance [29]. Furthermore, this study does not systematic-
ally explore alternative hyperparameter configurations
that may lead to performance gains.
As far as we are aware, the use of ontologies to pro-

vide more context (i.e. extra terms) for terms selected
from the scientific literature has not previously been in-
vestigated. This paper demonstrates that the CVDO, and
by extension the PxO, can provide better target terms
for a gene/protein synonym detection task without alter-
ing the word embeddings created by Deep Learning

algorithms CBOW and Skip-gram from a 14 M PubMed
dataset. At the time of writing BioPortal [112], an open
repository of biomedical ontologies, has 551 ontologies.
The PxO is re-used by CVDO and is in BioPortal. The
experiments reported here can be replicated, and do not
demand post-processing of the word embeddings cre-
ated with CBOW or Skip-gram to obtain performance
gains. Therefore, other ontologies from BioPortal may
benefit from our proposal to anchor the CVDO in the
biomedical literature.

Conclusion
This study shows performance improvements for both
CBOW and Skip-gram on a gene/protein synonym de-
tection task by adding knowledge formalised in the
CVDO and without modifying the word embeddings
created. Hence, the CVDO supplies context that is ef-
fective in inducing term variability for both CBOW and
Skip-gram while reducing ambiguity. Skip-gram outper-
forms CBOW and finds more pertinent term variants
for gene/protein names annotated from the scientific
literature.

Additional files

Additional file 1: TermsMapped.xls, this file contains the mapping
performed for the 105 terms from 25 PubMed titles/abstracts to 79
UniProtKB identifiers (ACs and IDs) along with the CVDO gene and
protein classes labels. (XLS 34 kb)

Additional file 2: CBOW.xls, this file shows the results for CBOW per
experiment and rater. (XLSX 175 kb)

Additional file 3: Skip-gram.xls, this file shows the results for Skip-gram
per experiment and rater. (XLS 465 kb)

Additional file 4: TermsMapped_votingSystem.xls, this file contains the
details of the voting system for CBOW and Skip-gram per experiment.
(XLS 70 kb)

Additional file 5: pairwiseIAA.xls, this file contains the values of the
Cohen’s Kappa measure for each pair of raters per experiment and
model, as well as the average mean. (XLS 8 kb)
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