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Abstract

Background: Scientific activity for 3D bioprinting has increased over the past years focusing mainly on fully functional
biological constructs to overcome issues related to organ transplants. This research performs a scientometric analysis on
bioprinting based on a competitive technology intelligence (CTI) cycle, which assesses scientific documents to establish
the publication rate of science and technology in terms of institutions, patents or journals. Although analyses of
publications can be observed in the literature, the identification of the most influential authors and affiliations has not
been addressed. This study involves the analysis of authors and affiliations, and their interactions in a global framework.
We use network collaboration maps and Betweenness Centrality (BC) to identify of the most prominent actors in
bioprinting, enhancing the CTI analysis.

Results: 2088 documents were retrieved from Scopus database from 2007 to 2017, disclosing an exponential growth
with an average publication increase of 17.5% per year. A threshold of five articles with ten or more cites was
established for authors, while the same number of articles but cited five or more times was set for affiliations. The
author with more publications was Atala A. (36 papers and a BC = 370.9), followed by Khademhosseini A. (30
documents and a BC = 2104.7), and Mironov (30 documents and BC = 2754.9). In addition, a small correlation was
observed between the number of collaborations and the number of publications. Furthermore, 1760 institutions with a
median of 10 publications were found, but only 20 within the established threshold. 30% of the 20 institutions had an
external collaboration, and institutions located in and close to the life science cluster in Massachusetts showed a strong
cooperation. The institution with more publications was the Harvard Medical School, 61 publications, followed by the
Brigham and Women’s hospital, 46 papers, and the Massachusetts Institute of Technology with 37 documents.

Conclusions: Network map analysis and BC allowed the identification of the most influential authors working on
bioprinting and the collaboration between institutions was found limited. This analysis of authors and affiliations and
their collaborations offer valuable information for the identification of potential associations for bioprinting researches
and stakeholders.

Keywords: Network map analysis, Betweenness centrality, Bioprinting, Text mining, Collaboration analysis,
scientometrics, competitive technology intelligence
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Background
Research articles are public documents that report scien-
tific advancements to share knowledge and promote devel-
opment in science. These documents contain fundamental
information regarding not only to research but also to the
organizations and authors involved. This data is of interest
to identify leading organizations and to map scientific
collaborations.
Scientometric tools such as co-citation analysis, biblio-

graphic coupling, or co-author analysis can help to achieve
these goals. Co-citation analysis and bibliographic coupling
are mainly used to measure the flow of information based
on the documents selected by authors, while co-author
analysis is more focused on the analysis of collaboration be-
tween authors, taking into consideration the social aspect
of the research collaboration. Furthermore, co-author ana-
lysis has been proved to be useful to determine the multi
and interdisciplinary of the institutions and their collabora-
tions [1]. Co-author analysis requires information related to
authors’ aliases, affiliations, publications, areas of research,
and their collaborations. This information can be obtained
from digital libraries (DL) aimed to create systems for the
identification of authors such as ORCID, which was created
by non-profit organizations, or ResearcherID, Scopus,
PubMED or Web of Science, which are companies that are
developing their unique identifiers for authors [2–4]. When
evaluating advances in science and technology, names of
authors and affiliations become major indicators, as 1) their
number of citations by peers correlates to their acknow-
ledgment as influential on their area of research [5] and 2)
contributes to determining the specific disciplines involved
in the research [1], both are important elements to nurture
the decision-making process. In this sense, Competitive
Intelligence (CI) acquires a relevant role, through the defin-
ition, collection, analysis, and presentation of relevant infor-
mation [6]. The CI process can be further enhanced by
incorporating feedback form experts to validate the infor-
mation obtained [7]. CI is fundamental to research and de-
velopment (R&D), including products or processes with
radical novelty, such as bioprinting.
Bioprinting is an emerging technology, a variant of addi-

tive manufacturing that involves the fabrication of 3D con-
structs for living tissues and organs [8, 9]. This discipline
is growing at an accelerated pace, involving branches of
knowledge such as biology and engineering. Bioprinting
has been developed to assist the needs of a fast-growing
population. This technique has potential social and eco-
nomic impacts [10, 11], including a huge effect in organ
transplants, where one of the main objectives is the print-
ing of functional biological structures to help in the short-
age of organs, thus overcoming long waiting lists and
issues related to the transplanted organs such as rejection
[10–12]. Although there have been significant signs of pro-
gress in the past years, there are some areas of research to

be explored in this incipient technology [11]. Since acad-
emy and industry have acknowledged that bioprinting will
have a significant impact on the health-care sector in the
following years, the identification of technology trends in
3D bioprinting [13, 14], including potential printing tech-
niques [15], becomes crucial to stay competitive and to
develop new technologies in this field. With this aim,
Rodriguez-Salvador et al. [7] performed a patentometric
and scientometric analysis in bioprinting to identify trends
and to explore the knowledge landscape of this technology.
In addition, they also identified the most prolific institu-
tions, being the MIT (113 publications) the number one,
followed by Nanyang Technology University (103 publica-
tions), and Tsinghua University (93 publications); They
also found that the three first countries with more publica-
tions were USA with 1491, followed by China with 744,
and Germany with 377 [7]. These analyses are mostly
based on the frequency of documents by affiliation and
country, and no inclusion or exclusion terms were set. The
insights obtained can be enhanced with the identification
of the leading scientists and their field of expertise, thus
distinguishing the principal areas of current research and
determining potential opportunities for R&D.
In order to unveil scientific and technological trends, it is

important to face big volumes of information using text
mining. This activity can be applied to identify and extract
potentially useful information from texts. It combines tools
such as machine learning, artificial intelligence, and statis-
tics to analyse large amounts of both structured and un-
structured data. The information obtained can contribute
to understanding patterns in data by making use of tools
such as text categorization, text clustering, information ex-
traction, among others [16]. Information retrieval, word
frequency analysis, word distribution, pattern recognition,
and visualisation techniques are some of the most frequent
practices [17]. As a conclusion, text mining adds important
value to the pattern recognition by structuring the content
of data from textual sources for research, data analysis,
business or competitive intelligence (CI) [17–19].
A fundamental topic for the CI is the determination of

key players, such as the main organizations and authors in-
volved in scientific advancements. Network analysis can be
used to identify the collaboration in a visual pattern, where
either the authors or affiliations are represented by nodes
and their collaborations can be seen as the connection
among them. Moreover, the nodes with common attributes
of interest for the analysis can be grouped using clusteriza-
tion. Clusterization allows to group components with simi-
lar characteristics, such as research topics or techniques.
When clustering collaborations, the closer the nodes in au-
thors or affiliations network maps, the more similarities
they share [5, 20]. Furthermore, collaboration analysis can
be strengthened with the assessment of the Betweenness
Centrality (BC) to determine the level of association of the
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nodes according to their position in the network. A
straightforward measurement of the association level can
be the connectivity, but it fails to disclose the importance
of a node. To overcome this, BC measure can be calculated
to evaluate the importance of a node and its social inter-
action in a network as this measure counts the number of
regions in the map connected by each element, setting
their importance in the flow of information [21, 22].
Scientometric and patentometric techniques have been

used recently to analyse the number publications per year,
the main authors, and organizations to determine the main
advancements in bioprinting (methods, materials, etc.)
[23–25]. Scientometric and text mining can be used to de-
tect the authors and affiliations with more publications
and more influence in bioprinting. This information can
be an input for people looking for well-known experts in
bioprinting or state-of-the-art developments in the field.
To achieve the main goal of this paper, a customised

search query was used to gather documents from Scopus.
The query included keywords highly used in the most
cited papers on bioprinting. Two network maps of collab-
orations, one for authors and one for affiliations, were
generated and analysed. Further analyses were carried out
to estimate the BC measurement, and the relationship be-
tween number of publications and the number of collabo-
rations. These parameters were used for the identification
of the most prolific (those with more publications on this
topic) and important authors and institutions involved in
the publications of advances in bioprinting.
This analysis is the first attempt to undertake a quantita-

tive analysis using a network analysis approach and the
calculation of centrality measurements to strengthen the
CI methodologies. The findings enhance the perception of
the importance of collaborations among institutions for
the generation of high-quality scientific outcomes and for
the dissemination of the knowledge generated, helping
both researchers and stakeholders in the identification of
potential opportunities for research and collaboration.

Methods
This paper is focused on the network analysis of authors
and institutions from scientific publications in bioprinting.
The analysis comprises both, a network analysis on the
collaboration among institutions and one that deals with
the collaboration among authors. The network maps were
generated in Gephi, an open-source software for network
analysis [26–34]. Betweenness centrality was calculated
for both, authors and institutions’ collaborations.
The adequate identification of specific keywords on the

topic of interest is a determining step in the search strat-
egy, as they contribute to the appropriate establishment of
the search queries. A preliminary search in Scopus using
only the term bioprinting with no period of time defined
was the first stage of this research. Scopus was selected for

the information retrieval as this is a major scientific data-
base that includes information from more than 20,000 sci-
entific journals [35]. The ten most cited papers identified
through this search were selected, as they have been
acknowledged as referents for the topic. Table 1, García-
García[36], shows the ten articles that formed the first set
of documents. These papers were used to identify the key-
words to form the search queries. A text mining program
was specially coded to carry out the text-mining of these
publications, thus determining the most relevant keywords
on the topic. With a broader range of terms and their syn-
onyms we guarantee the inclusion of a wide range of pub-
lications compared to searches performed using only the
term bioprinting. Three different types of keywords were
searched in the whole text of the papers, being 1) the most
frequent terms, 2) terms containing the word bio, and 3)
the collocations, which are the juxtapositions of two words
with a greater frequency. A cleaning of terms was accom-
plished manually afterward to sort them out according to
specialized language of the subject. The identified key-
words were separated by subtopics (i. e. technology,
process, and application) to form the search queries. A set
of 23 searches were performed with the selected termin-
ology prior to the development of the definite query.
These searches were used to identify the correct grouping
of terms and the exclusion terms.
The search query was formed using the keywords previ-

ously identified in combination with Boolean and proxim-
ity operators, and exclusion terms. For this stage, the
definite search was carried out by defining the period of
time, from 1 January 2000 to 15 November 2017 (when
the information collection was concluded). The main
query is observed in the appendix A1. The collection activ-
ity involved the use of the query to search in title, abstract
and keywords. A quick review of titles and abstracts of the
documents found was carried out to discard those not
related to bioprinting.
The bibliographic information of the documents identi-

fied in Scopus was retrieved and exported in a CSV format
to be cleaned and analysed. A cleaning process and the
complete normalization of the data was carried out to
standardize authors and affiliations names. We performed
a manual name disambiguation for both authors and affili-
ations. The two authors analysed manually all the names
on each one of the publications gathered. Every time a
similar name was observed, name disambiguation was car-
ried out by looking to the full name, affiliation, and e-mail.
The level of agreement on the disambiguation performed
by the authors was measured using Cohen’s kappa [37].
Co-author analysis was limited exclusively to the informa-
tion of the publications gathered and we did not require
further information from available DLs.
The analysis to identify the most influential authors

and affiliations was carried out by setting a threshold for
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each analysis. A threshold of five documents cited at
least ten times was set for authors, while for the institu-
tions we selected those with five documents cited at least
five times. These inclusion parameters were based on
the median number of cites for the whole set of docu-
ments, which was 10.33, and the median number of pub-
lications per author was 5.76. For institutions, the mean
number of publications was 10 with the same median of
cites for the documents, 10.33; however, only three affili-
ations were within the threshold, hence the median for
citations and documents was reduced to 5 to include
more affiliations.
To identify the most prolific authors, the top ten au-

thors with more frequency within the threshold defined
were selected and a Pearson correlation was computed to
determine the relationship existing between the number
of publications and the number of co-authors. The au-
thors were clustered by the similarity of areas of research
in the network maps and those with higher networking
were identified by BC calculation. The number of times a
node is taken as a connection for the shortest paths
between two other nodes can be estimated through BC,
which measures the node’s connection to different groups
on a network map, being of a higher value the one who
connects more groups [53]. The BC is obtained using the
equation [53]:

CB vð Þ ¼
X

v≠s≠t

σst vð Þ
σst

Where σst is the total of shortest paths from node s to
node t, and σst (v) is the number of those paths that go
through v.
The information within the threshold was imported

into VOSviewer, a software for data analysis and visual-
isation [54, 55], to perform the network map analysis.
The authors or institutions are represented by nodes or
vertex in the network maps, and their connections are
represented by links or edges; in this document, the
terms are used indistinctly to refer to authors or affilia-
tions and their connections. Two undirected network
maps were constructed from two matrices, representing
only the correlation and not causality. A matrix of au-
thors and a matrix of affiliations were generated using
the visualisation of singularities (VOS) of the VOSviewer
software [55]. The clustering was performed in VOS-
viewer, computed using the default Field Independent
Clustering Model (FICM) [55]. The statistical analysis to
determine the BC of the nodes forming both maps was
performed in Gephi. The final step of the analysis was
the consultation with experts in 3D bioprinting to valid-
ate the results. Experts from UK and Asia were selected
based on their international presence and impact in the
field considering elements such as their number of cites,

publications, projects, and their availability. Instead of
providing the experts with a list of authors found on the
results of this research, we asked them to provide a list
of authors working on bioprinting according to their
own criteria. This method was used to reduce bias in
their selection, as they provided a list acknowledging
their peers based on their own experience. Is it worth
mentioning that the experts requested anonymity, there-
fore, we can only provide professional details of three of
them at the time they were consulted. One of the ex-
perts was affiliated to the School of materials at the Uni-
versity of Manchester and had more than 10,000 Scopus
citations. A second expert was affiliated to the Faculty of
Engineering at the University of Nottingham and had
more than 760 citations. A third one was affiliated to the
Singapore Centre for 3D printing at Nanyang Technol-
ogy University with more than 14,000 citations.

Results
From the initial search, where the ten most cited articles in
bioprinting from Scopus were considered, the top-cited
article is 3D bioprinting of tissue and organs [37]. This is a
review of different techniques used in bioprinting cited
1498 times, as seen in Table 1; the second most cited art-
icle is Scaffold-free vascular tissue engineering using bio-
printing [38]. This article describes a fully biological
method to fabricate tubular vascular grafts and has been
cited less than 50% of the first author, 600 times; the third
paper, entitled 3D bioprinting of vascularized heterogeneous
cell-laden tissue constructs [24] was cited 446 times and
describes methods to generate vascularized tissue con-
structs. The second and third papers are focused on one of
the biggest challenges faced to print fully functional organs,
the fabrication of scaffold-free blood vessels with mechan-
ical properties close to the naturally grown vessels. Five of
the ten articles were published in journals related to mate-
rials, four of them in general science journals (Nature Bio-
technology, Nature Communications, and Science), and
one in the journal of Biofabrication, as can be observed in
Table 1. The results of the searches in Scopus using only
the term bioprinting and those obtained using the search
query developed are listed and compared in Table 1. It can
be observed that the paper entitled 3D bioprinting of tissue
and organs still in first place in both results. The second
paper listed in the results from the search string is Micro-
scale technologies for tissue engineering biology by Khadem-
hosseini et al. [39] with 77% of the cites of the most first
publication, 1163, followed by the paper Clinical trans-
plantation of a tissue-engineered airway by Macchiarini
et al. [40], published in the Lancet. Interestingly, the first
three papers are published in three major journals covering
biology and medical-related science, and six out of the 10
papers on this search were published in journals related to
materials and one in chemical engineering.
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Using the previously defined search query a total of
2088 publications were found from 2007 to November
15 of 2017 (when information collection activity ended).
Figure 1 shows the number of publications per year,
there is a remarkable growth, where the highest number
of publications is 339 for 2017.
After the data selection and cleaning, a total of 228

authors were found within the threshold of at least 5 docu-
ments with 10 or more citations. 89 of the authors were
found with repeated surnames. A Cohen’s kappa (κ) of
0.62 was obtained for the agreement on the author name
disambiguation. Values from 0.61 to 0.8 are ranked as
Good [36]. A collaboration was observed in 93% of the au-
thors, being 792 the total number of connections in the
map. Regarding affiliations, a total of 20 organizations fall
into the inclusion threshold, from which only 30% had an
external collaboration.
From the analysis, only ten authors were found to have

more than 18 documents, as seen in Fig. 2, where the
number of documents and the number of co-authors for
each of them are shown. The author with more documents
falling in the threshold defined is Atala A. with 36 docu-
ments and 13 co-authors. The following author, Khadem-
hosseini A., had a total of 30 documents and more than
double of collaborations for the first author, 27 co-authors,
being the one with more connections. Mironov V. was in
third place with 30 documents, and 20 co-authors. A Pear-
son correlation analysis was performed to determine the
relationship between documents and co-authors, and a

weak positive correlation was observed, as the Pearson cor-
relation coefficient had a value r = 0.29 for the top ten au-
thors, stating a lack of relationship between the number of
co-authors and the number of publications.
Figure 3 shows the network map of the author’s col-

laboration, where the nodes’ size is proportional to their
BC value. The nodes representing the authors were
grouped in a total of 17 clusters. From the BC calcula-
tion, the most prolific author, Atala A., was at the Wake
Forest Institute for Regenerative Medicine from the
Wake Forest University School of Medicine, Winston
Salem, United States when the information was gathered
(15 November 2017). According to Scopus altmetrics,
this author had an h-index of 89, 850 documents pub-
lished, and a total of 17,376 citations working with 150
co-authors at the time of the analysis (see Table 2). On
the other hand, under the inclusion terms, this author
published a total of 36 documents on the topic analysed,
having 13 connections, 2851 citations, and a between-
ness centrality value of 370.9.
The second most prolific author found is Khademhos-

seini Ali L.I., affiliated with the Brigham and Women’s
Hospital, Department of Medicine, Boston, United States,
when the data was collected. This author had an h-index
of 88, a total of 645 papers, with a total of 16,704 citations
and 150 co-authors, as stated in the Scopus altmetrics.
Considering the inclusion terms, this author accounted
for 30 documents, 27 connections, 3047 citations, and a
betweenness centrality of 2104.9 (see Table 2).

Fig. 1 Publications per year in bioprinting
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The third author was Mironov V., from the Laboratory
for Biotechnological Research ‘3D bioprinting solutions’,
Moscow, Russian federation. The Scopus altmetrics showed
that this author had 105 papers, 3231 cites, and an h-index
of 31, co-authoring with 150 people. In this analysis, the au-
thor accounted for 30 documents, 20 links, 1009 citations,
and a betweenness centrality of 2754.9 (see Table 2).
According to the network map and the BC calculations,

Mironov V. was stated as the author with a higher influ-
ence in the knowledge flow of the collaboration network, as
it had the higher BC, followed by Khademhosseini A. While
Mironov was affiliated to a biotechnological research
laboratory, Atala and Khademhosseini were associated to
two of the top ten research departments in bioprinting
found on this analysis.
The authors ranked by the experts were compared

with the most influential authors disclosed in this study,
as it can be seen from Table 3.
Three of the ten top authors in this scientometric study

were considered as influential by the experts consulted,
Atala A., Mironov V., and Wei Sun; who were listed among
the top five authors in both cases. The top three authors
from this study, who are listed in Table 3, are also the main
influential authors with a higher BC (see Table 2).
Institutions’ research efforts can be better estimated by

the number and the quality of their publications, therefore
the affiliations with more publications on bioprinting are
here analysed. A total of 1760 affiliations were identified
in the information obtained for the 2088 documents, with

a median of 10 publications per institution and a standard
deviation of 7.8. The top ten affiliations with more publi-
cations in bioprinting are presented in Fig. 4. An interest-
ing fact is that seven of the top ten are based in the
United States, two of them are in China and one in
Singapore.
Remarkably, four of the 7 affiliations in the United

States are located in Massachusetts, and three of them
have a higher number of publications within the thresh-
old. The Harvard Medical School is the institution with
more publications in the analysis here presented, with
61 documents, followed by the Brigham and Women’s
Hospital, with 46 documents. Both affiliations are lo-
cated at the Longwood Medical and Academic Area, a
medical campus in Boston with a strong life science
cluster [56]. The Brigham and Women’s Hospital, is an
institution joint to the Harvard Medical School and
holds the second largest hospital-based program in the
world, pioneering in the heart valve operation and the
world’s first solid organ transplant [57].
The Massachusetts Institute of Technology (MIT), lo-

cated in Cambridge, MA, was found to be in third place
on papers related to the bioprinting, presenting 37 docu-
ments within the threshold defined. This institute holds
the fifth place in the World University Ranking 2016–
2017 of the Times Higher Education [58]. The fourth in-
stitution found with more publications is the Wake For-
est University School of Medicine, an academic medical
centre ranked among the best in the United States,

Fig. 2 Number of documents and co-authors of the top ten authors in bioprinting
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promoting research in medical areas [59]. This affiliation
shows 35 documents. Tsinghua University is placed in
fifth place, with 33 publications. This institution was on
the 35th place on the Times Higher Education World
University Rankings 2017 [58].
For the affiliations’ analysis, a total of 20 out of the 1760 in-

stitutions met the inclusion requirements, which at least five
documents with at least five citations each. However, only six
affiliations within this threshold were found to have a collab-
oration with external institutions. Figure 5 depicts the

collaboration network between these institutions, the size of
the nodes is proportional to their number of documents,
while the thickness of the connection line is proportional to
the strength of the link, which is equal to the number of doc-
uments they have co-authored. Within the inclusion limits
above stated, the Harvard-MIT Division of Health Science
has the first position having 37 papers, followed by the Wake
Forest Institute for Regenerative Medicine with 28 docu-
ments and the Biomaterials Innovation Research Centre from
the Brigham and Women’s Hospital with 26 documents.

Fig. 3 Co-authors network map, the authors names were normalized with lower case letters

Table 2 Comparison of the Scientometric information between Scopus and the analysis performed to the top three authors with 5
or more documents with 10 or more citations

Author Documents Connections Citations BC h-
indexScopus Threshold Scopus Threshold Scopus Threshold

Atala A. 850 36 150 13 17,376 2851 370.9 89

Khademhosseini Ali L.I. 645 30 150 27 16,704 3047 2104.9 88

Mironov V 105 30 150 20 3231 1009 2754.9 31
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On the other hand, the network map shows four institu-
tions with 5 collaborations. These institutions are the
Biomaterials Innovation Research Centre, at the Brigham
and Women’s Hospital from the Harvard Medical School,
United States, the Harvard-MIT Division of Health
Sciences and Technology at the Massachusetts Institute of
Technology, United States, the Department of Physics at
the King Abdulaziz University, Saudi Arabia, and the De-
partment of Bioindustrial Technologies, Konkuk Univer-
sity, South Korea. The remainder institutions have four
connections, the Wyss Institute for Biologically Inspired
Engineering, Harvard University, United States and the
Wake Forest Institute for Regenerative Medicine, Wake
Forest School of Medicine. Interestingly, three of the six
affiliations are located in Massachusetts and two of them
are associated to the University of Harvard, the second-
best research university from the United States [60]. This
institution has a close collaboration with the top institute

in the United States, the Massachusetts Institute of Tech-
nology [58]. Both institutions have founded the Harvard-
MIT Division of Health Sciences and Technology, associ-
ated to the Massachusetts Institute of Technology. This
institute is the one with more citations, 1454, which also
has a strong collaboration with the Biomaterials
Innovation Research Centre, which has 1099 citations.
These affiliations are followed by the Wake Forest School
of Medicine with 858 citations.
The low number of institutions and the high degree of

connectivity among them is reflected on the computa-
tion of the BC for each institution. The four affiliations
with five links each had the same BC centrality, 0.25, cal-
culated with Gephi’s statistic tools; this low value means
that all the affiliations share the same importance for the
network. On the other hand, the remaining two affilia-
tions have four connections, and a BC equal to zero, not
contributing significantly to the network.

Fig. 4 Top ten institution and number of publications in bioprinting

Fig. 5 Network map of the collaboration between affiliations
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Discussion
The identification leading authors and affiliations and their
collaborations were the main factors to be determined in
this study. The use of the text mining software developed
was found to have a significant contribution to the identifi-
cation of keywords to design the search queries. This step
was crucial to include the complete set of publications dis-
cussing the topic of bioprinting. The search queries created
included a wide range of terms and synonyms that are
used in articles on topics related to bioprinting. An expo-
nential growth of publications per year was observed from
the data of the documents obtained. Furthermore, as one
of the main goals of this study was to identify the most
influential authors working in bioprinting, the analysis,
including author disambiguation, was exclusively based on
the publications’ information specifically obtained from the
Scopus database. Although there are more scientific data-
bases available, Scopus was selected because it also con-
tains non-English coverage and its altmetrics tools were
used for a quick overview of the results. Although Data-
bases such as Web of Science cover records back to 1900,
we analysed only a specific period, which could be covered
by Scopus. Although results provide the appraisal of one of
the most complete scientific databases available, Scopus,
the information obtained can be further enhanced by
analysing data obtained from more databases to support
the findings. The author disambiguation was performed
manually for the authors with good agreement; however,
this procedure can be improved by including tools such as
similarity of pairs or features contribution. In this analysis
it was observed that although a high number of authors
were engaged in the advancement of the scientific output
on bioprinting, only a small percentage have a remarkable
productivity on the topic. Furthermore, there was found a
slight association between the number of documents and
the number of collaborations. Co-author analysis has con-
tributed to the identification of the intellectual structure of
fields and specialties [2] and to identify research groups
[3]. In this research, the network map analysis was en-
hanced with the calculation of BC to identify the authors
with more publications and the most influential authors
and institutions working in bioprinting. Although some of
the authors might be regarded as scientists with a higher
rank or seniority, this classification was beyond the scope
of this study.
The number of affiliations working in bioprinting was

found to be high, as expected. However, only a small
portion of them fulfil the inclusion requirements for the
analysis. The most prolific institutions that came across
in this study, such as Nanyang Technological University,
MIT, and Tsinghua University, were also previously re-
ported to be among the three most prolific in [15].
Moreover, a reduced number of collaborations between
the institutions in the threshold was found, an

unanticipated outcome for a multidisciplinary technol-
ogy. The institutions with more publications, The Har-
vard Medical School and the Brigham and Women’s
hospital, were two of the top ten Universities in the
World University Ranking [58], which have established a
research centre close to both institutions. Besides, the
strategic geographical position of the affiliations to pro-
mote collaborations has been observed as important to
encourage scientific production. But not only the institu-
tions located closely, namely the Harvard Medical
School, Brigham and Women’s Hospital and the Div-
ision of Health Science, were found to have strong col-
laborations, also the Department of Bioindustrial
Technologies of the Konkuk University and the Depart-
ment of Physics, of the King Abdulaziz University exhib-
ited a high degree of collaboration. This illustrates that
geographical positioning is an important factor to collab-
orate, but it is not crucial.
The method here presented involved the overall static

analysis of collaborations over a ten-year period, as the
change in time for both kinds of collaboration, those
among authors and those among affiliations, were not
analysed for different periods. Furthermore, the results
here shown concern the general approach of bioprinting
domain, where a wide range of methodologies and tech-
nologies are involved without special emphasis on any
particular methodology. In this sense, any agreement on
the most influential authors and institutions is more dif-
ficult to reach. The threshold set in this study was used
to determine the most influential authors and institu-
tions in bioprinting, taking into account also the depart-
ments of affiliation, thus differing from the analyse made
by Rodriguez-Salvador et al. [7], where only countries
and institutions were considered. Regarding affiliations,
insights obtained in the analysis are consistent with the
institutions reported in by Rodriguez-Salvador et al. [7].
Both analyses, this analysis and the one reported by
Rodriguez-Salvador et al. differ from the list provided by
the experts, shown in Table 3. The threshold was de-
fined to include only those authors and affiliations with
cites above the average, and this influenced the network
map analysis, by reducing significantly the number of
nodes in the map. Another aspect that influenced the re-
sults was the exclusion of those nodes with no connec-
tions. These nodes were neglected in this study as zero
links on the maps mean zero BC and do not have any ef-
fect in the overall results. Furthermore, another possible
reason for the difference between the list provided by
experts and the results here disclosed, is that expert tra-
jectories can have a subjective influence to define the
most influential authors in bioprinting.
In this research, we also disclosed the six main institu-

tions working on bioprinting and their collaboration net-
work. The use of network analysis and the calculation of
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the BC was decisive to find the authors with a higher de-
gree of influence on the topic. However, the identifica-
tion of research areas of both authors and affiliations
was out of the scope of this research, and this can be in-
vestigated when looking for R&D opportunities for
innovation in bioprinting. This research set the basis to
determine collaborations and their position in a scien-
tific network. The knowledge obtained in our research
can provide support to researchers and stakeholders
looking for engagement in R&D projects on bioprinting.

Conclusions
Network map analysis was used here to identify the most
prominent institutions and authors. A threshold was de-
fined to disclose authors and organisations with a higher
network of collaboration, identifying authors with more
publications. Moreover, the Betweenness Centrality cal-
culation allowed us to identify the most influential au-
thors and institutions working on bioprinting. The
outcomes obtained can give strength to the perception
of the collaborations in bioprinting technologies. Al-
though the global research community in bioprinting
has grown, the most influential affiliations and authors
are located in the United States. The top three authors
have more than 29 articles each within the threshold
established. From the authors’ network map analysis, it
was observed that there is no direct correlation between
the BC, number of documents, and connections, as the
one with more documents in the threshold was the one
with less connections and the lower BC value. The affili-
ations with more publications are members of the top
universities in the United States and are part of medical
research programs. Individuals interested in the develop-
ment of bioprinting can benefit from the information
here disclosed to perform a trend analysis on the institu-
tions hereby mentioned. And identifying core technolo-
gies that have led them to success. The findings of this
study can offer valuable information to be used in

systematic approaches to support the decision making of
researchers and stakeholders.

Appendix
Search query
TITLE-ABS-KEY (((((3d OR 3-d OR three-dimensional)
W/1 (bioprint* OR engineer* OR print* OR tech* OR
fabricat* OR process* OR manufact* OR building OR
built)) OR ((bio-engineer* OR bioengineer* OR biofabri-
cat* OR bioprint* OR biotech* OR biomanufact*)) OR
(bioadditive W/1 manufact*) OR (3d AND bioprint*)))
W/5 (scaffold* OR construct* OR spheroid* OR channel*
OR structure* OR matr* OR crosslinking OR block* OR
aggregate* OR sheet* OR biomim* OR bioactiv* OR bio-
hybrid* OR bioresorbable OR bioscaffolds OR biosensors
OR bioassembl* OR bioartificial OR bioerodible OR bio-
patterning OR biopaper OR microextrusion) W/5 (cell*
OR tissue* OR stem OR multicellular OR organ* OR
biolog* OR embryonic OR vascular OR vessels OR cola-
gen OR bone* OR osseo* OR adipose OR vascular OR
cardiac OR heart OR cartilage* OR muscle) AND NOT
(“data storage” OR photonic OR pcl OR “social capital”))
AND (PUBYEAR > 2000 AND PUBYEAR < 2018).
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