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Abstract

Background: Medical texts such as radiology reports or electronic health records are a powerful source of data for
researchers. Anonymization methods must be developed to de-identify documents containing personal information
from both patients and medical staff. Although currently there are several anonymization strategies for the English
language, they are also language-dependent. Here, we introduce a named entity recognition strategy for Spanish
medical texts, translatable to other languages.

Results: We tested 4 neural networks on our radiology reports dataset, achieving a recall of 97.18% of the identifying
entities. Alongside, we developed a randomization algorithm to substitute the detected entities with new ones from
the same category, making it virtually impossible to differentiate real data from synthetic data. The three best
architectures were tested with the MEDDOCAN challenge dataset of electronic health records as an external test,
achieving a recall of 69.18%.

Conclusions: The strategy proposed, combining named entity recognition tasks with randomization of entities, is
suitable for Spanish radiology reports. It does not require a big training corpus, thus it could be easily extended to
other languages and medical texts, such as electronic health records.
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Background
Medical imaging is widely used in clinical practice for
the diagnosis and treatment of several diseases, such as
Alzheimer, cancer or pneumothorax. Data from radiology
reports, electronic health records and other medical texts
such as clinical trial protocols are being used for research
purposes [1, 2]. Health care institutions, researchers and
patients can greatly benefit from these datasets. However,
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these records and reports contain patient notes known
as personal data that can challenge patient confidentiality
and privacy, as provided for in the European Regulation
on the protection of personal data [3]. All words that could
identify a patient must be removed or de-identified before
data analysts start their research or even more before the
dataset is published.
From a legal point of view, Regulation (EU) 2016/67 on

the protection of natural persons and with regard to the
processing of personal data and on the free movement of
such data [3] provides the regulatory framework in the
European Union. Although its application is mandatory to
all its member states, its concrete implementation varies
depending on each of them. In Spain, the Organic Law
3/2018 [4] establishes the legal framework for data pro-
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tection in biomedical research. Reuse of personal data for
medical research needs to be approved by an ethics com-
mittee, and data must be at least pseudonymized before
the researchers get access to it.
Legal issues regarding data privacy are not the only

source of concern. Direct consequences for patients are
also a very important factor to be carefully considered. It
is crucial to protect the private health details of a patient
from any third party’s access, and avoid exposing identifi-
able personal data such as identifier numbers or addresses.
De-identification is therefore essential to ensure patient
privacy and comply with legal requirements.
From a data management point of view, the de-

identification methodology needs to be precise and
recallable. Precision is needed to minimize the data loss of
the de-identification process and to preserve the seman-
tic meaning of the radiology report; recall allows getting
the best de-identification possible and avoid leaving any
identifiable information in the text [5].
Even though several de-identification or anonymization

methodologies have been proposed in English, legislation
differs on a national level worldwide and language-specific
problems can arise, hence a different method for each
language must be developed. These difficulties extend to
any Natural Language Processing (NLP) implementation.
In the biomedical field, NLP has been applied success-
fully in English, including for de-identification purposes
[6], but many of these strategies rely on language-specific
resources and are not extensible to other languages
[7]. Apart from the English language, this problem has
been assessed in French, where different strategies from

machine learning to the use of dictionaries and lists have
been proposed, along with protocols for corpus develop-
ment [8, 9]. In other languages such as German, Swedish,
Dutch or Chinese some strategies andmethodologies have
also been proposed [5, 10–13], but there have been so far
rather limited attempts in automatic de-identification for
Spanish medical texts [14–16], such as the MEDDOCAN
task [16]. For the sake of giving an insight on the different
approaches proposed by these authors, the datasets used
and the performance of each work, we have summarized
this information in Table 1.
Most of the works around text de-identification are

based on pattern matching or machine learning, or even a
combination of both. Whereas pattern matching does not
account for the context of a word and is unaware of typo-
graphical errors, machine learning techniques require a
large corpus of annotated text [17]. Since our radiology
reports were mostly free text with sensitive data out-
side headers, we opted for annotating our own corpus
and developing a Named Entity Recognition (NER) based
de-identification method.
NER is a sequence tagging task comprised inside the

field of NLP, which focuses on assigning different tokens
or words into specific predefined classes, such as persons,
dates or organizations. NLP tasks are usually based on
recurrent neural networks (RNNs), and NER approaches
tend to employ long short-term memory units (LSTM)
[18] combined with conditional random fields (CRF)
[19, 20]. LSTMs are variants of RNNs that can cope with
long distance dependencies in the text, and for many
applications it is beneficial to access to left and right

Table 1 State of the art summary for de-identification studies in non-English languages

Study Methodology Recall F1-score Corpus size Identifying tokens

Dalianis et al. [5] CRF 0.715 0.810 100 clinical records, train set 6170

4-fold cross-validation

Menger et al. [12] Regular expression rules 0.916 0.862 2000 medical texts, development 542, test set

and tree-based hashing 400 medical texts, test set

Jian et al. [13] Rule-based and CRF 0.851 0.848 201 sentences, train set 1259, train set

1000 clinical records, test set

Lange et al. [28] BiLSTM with CRF 0.974 0.974 500 clinical records, train set 11333, train set

250 clinical records, development 5801, development

250 clinical records, test set 5661, test set

Jiang et al. [29] BERT and flair system 0.968 0.962 500 clinical records, train set 11333, train set

250 clinical records, development 5801, development

250 clinical records, test set 5661, test set

Pérez et al. [30] spaCy 0.953 0.960 500 clinical records, train set 11333, train set

250 clinical records, development 5801, development

250 clinical records, test set 5661, test set

The table describes the methodology used by the authors, the performance of the approach and the corpus size in number of documents and number of identifying tokens.
From MEDDOCAN, the top 3 best-performing models were included
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context in the sentence through bi-directional LSTMs
[20, 21]. Moreover, the reference model for several state-
of-the-art NER implementations in English language is
the bidirectional LSTM (BiLSTM)-CRF model by Lam-
ple et al. [22–24]. Some implementations combine LSTM
units with convolutional layers [24, 25], and other archi-
tectures such as Bidirectional Encoder Representations
for Transformers (BERT) [26] have been proposed for
several NLP tasks, including NER.
Although some contests and projects have been orga-

nized to exploit the content of unstructured clinical
records in Spanish language using NLP tools, they are
not focused on de-identification. For example, Cantemist
(Cancer Text Mining SharedTask) is a project held to
gather a community effort to create tools and models to
perform text mining using NLP in oncological records
[27]. The best performing models in this contest were
based on BiLSTM with CRF. Nevertheless, regarding the
de-identification of clinical text for secondary use, in 2019
the MEDDOCAN (Medical Document Anonymization)
task was organized. The most successful models in this
task employ deep learning-based methodologies to per-
form a NER detection task, for instance, the winner model
presented by Lange et al. [28] used a network based on
BiLSTM-CRF and achieved a recall and F1 score of 0.974.
The second-best model for the de-identification task was
designed by Jiang et al. [29] with a model based on BERT
and Flair embeddings, and achieved a recall of 0.962 and a
F1 score of 0.968. The third proposed model used a spaCy
NER model achieving a recall of 0.953 and F1 score of
0.960 [30].
Having in mind that the best NER approaches in Span-

ish language and in the general literature are based on
RNNs with LSTM units and CRF, we decided to focus our
work on these architectures. Nevertheless, automatic de-
identification approaches do not achieve a perfect recall
score, meaning that sensitive information could be leaked.
To address this issue, we have proposed and developed a
methodology to combine both NER and the replacement
of the named entities recognized with synthetic data.

Methods
The proposed methodology is based on a combination
of NER and the substitution of the detected sensitive
words with others randomly sampled from databases. The
approach started with the definition of the named enti-
ties that contain sensitive information and the annotation
of the corpus (Fig. 1a). Then, a randomizer script was
created based on publicly available databases to create a
synthetic corpus by substituting the manually annotated
words by new ones extracted from the databases (Fig. 1b).
This corpus was then fed to different NER neural net-
works to assess their performance and select the most
suitable model for the desired application (Fig. 1c). Lastly,

when a new radiology record needs to be de-identified,
the trained model detects the named entities and the ran-
domizer script substitutes themwith randomwords of the
same category (Fig. 1d).

Named entities
Given that there is no specific guidance in the Spanish
legal system on what information has to be removed to
de-identify medical texts, we decided to assess the pres-
ence in our corpus of the Protected Health Information
(PHI) categories defined by the Health Insurance Portabil-
ity and Accountability Act (HIPAA) in the United States
of America [31]. After manual inspection of the data and
considering the scope of this work, we performed a sub-
selection of PHI categories and finally grouped them in
6 Named Entities (NEs) as shown in Table 2. Some NEs
included other information that should be protected to
preserve the privacy of patients or doctors but was not
included in PHI categories, such as digital signatures or
healthcare centres. The named entities selected were:

• NAME (name): This NE includes names and
surnames of any person mentioned in the radiology
record, typically patients or medical staff.

• DIR (address): Includes geographic data in form of
full addresses, including streets and zip codes.

• LOC (locations): Considers geographic data referring
only to cities, villages and other populated areas. This
is differentiated from the DIR named entity due to
the possibility of a city to be mentioned out of the
context of a full address, for example, next to a data
as in “14 de Abril, Valencia”.

• NUM (numbers): Includes any number or
alphanumeric string that might identify a person,
such as patient record identification numbers,
medical license numbers, digital signatures, fiscal
identification numbers and others.

• FECHA (dates): Any date available in the report,
either numeric or written.

• INST (institutions): Any healthcare facility or
institution mentioned in the radiology record that
could be used to narrow the location of a patient or
medical staff.

Header sections (CAB) were included as a seventh NE
to ensure that they were not removed from the final text.
These headers are necessary for further analysis, being key
to extract the most relevant information of a radiology
report.

Corpus construction
The de-identification corpus consists of brain imag-
ing radiology reports randomly extracted from the
Medical Imaging Databank of the Valencian Region
(BIMCV) database [32, 33], distributed among 17 health
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Fig. 1 Summary of the proposed de-identification approach. a Corpus creation, annotation and manual revision, further detailed in Fig. 2. b
Selection of databases to develop a randomizer script. The script is used to create the synthetic corpus. c Training and testing of different neural
networks to select the best performing model. dWhen a new report needs to be de-identified, the selected model labels the words that belong to
one of the defined named entities. Finally, the randomizer script creates a de-identified report with synthetic information

departments of the Valencian Region (Fig. 2). A total of
7848 records were initially retrieved and automatically
pre-annotated using the Spanish National Statistics Insti-
tute name and surname database [34], which includes
those names with a frequency higher or equal to 20 in
Spain, and a list of the hospital names in the Valen-
cian Region. To ensure the presence of personal infor-
mation in our corpus, a subset of reports with at least
two “NAME” tags was extracted. This filter left out of
the selected reports those including words like “cabeza”,
included in the text as an anatomical part although it can
be also a surname, but containing no sensitive informa-
tion. One-third of those reports were randomly selected

to be manually corrected and annotated, with a final
corpus of 692 records. The annotations were manually
reviewed by three annotators, including finally all the
NE tags.
Radiology reports were not pre-processed so that

they remain unchanged after the de-identification, apart
from the identifying information. Although our radiology
reports were mostly free-text sections preceded by head-
ers, the 7th health department lacked headers and had an
increased number of entities entirely out of context: this
is, a name or a surname with no more text in an indepen-
dent line, as shown in Fig. 3. With this in mind, we divided
our dataset into three sets:
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Table 2 Named entities selected for this task and their
associated Protected Health Information categories

NEs Description PHIs

CAB Section headers -

NAME Names and surnames (patient and
others)

Names

DIR Full addresses, including streets,
numbers and zip codes

Geographic data

LOC Cities, inside and outside addresses Geographic data

NUM Numbers or alphanumeric strings
that might identify someone,
including digital signatures, patient
numbers, medical numbers,
medical license numbers and
others

medical record numbers,
social security numbers,
account numbers, any
unique identifying
number or code

FECHA Dates Dates

INST Hospitals, healthcare centres or
other institutions that might point
to someone’s location

-

• Training set, including 447 randomly selected records
from all the departments, including 65 reports from
the 7th health department.

• Validation set, including 213 randomly selected
records from all the departments except 7th
department.

• Test set, including 32 randomly selected records from
the 7th department.

To assess the performance of our final model with exter-
nal data, we decided to incorporate 100 randomly selected
clinical records from the MEDDOCAN task [16]. These
records have a different structure (Fig. 4) and are not
related to radiology.
Whereas both training and validation sets present a sim-

ilar distribution of NEs (Table 3), the test set shows an
increase of addresses, locations and institutions. Having a
separate test for department 7 allows us to check the per-
formance of our method with highly unstructured data,
with a distribution of NEs different from the training. As
shown in Table 3, addresses and locations are the NEs with
the lowest sample size.

NE randomization
We developed a methodology to randomize the PHIs
found in a text, and applied it to the manually labelled
dataset, obtaining a synthetic corpus. This methodology
applies a set of rules depending on the NE associated
with each tagged word. It is based on the substitution of
tagged entities with new words randomly extracted from
different databases available online:

• Spanish National Statistics Institute name and
surname database [34], weighted by frequency. This
database includes foreign names and surnames, such
as Xiaojing, Steven, Abdul or Harrison.

• Spanish National Statistics Institute municipal

Fig. 2 Data curation process and corpus preparation workflow. a 7848 radiology reports in total were retrieved from BIMCV database. bWe used a
custom Python script to automatically annotate the names, surnames and hospital names from radiology reports. c A subset of records was made
meeting the condition that more than one ‘name’ tag was present, remaining 2214 reports. d Another subsetting was performed to randomly select
one-third of reports to be manually annotated and corrected by three annotators. After the manual revision, 692 reports remain. e Ground Truth
dataset was divided into 3 subsets: the training set included 447 reports, validation 213, and test 32 reports from healthcare department number 7
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Fig. 3 Partial examples of radiology reports from validation and test. Validation set (a) has metadata headers clearly defined. In turn, test set (b) has
metadata headers in Valencian language andmetadata information detached from these headers by a line break. Both structures include identifiable
information in new lines without metadata headers. Any name, surname, address, identification number or date presented in the figure are fictitious

register database [35], weighted by population in
2019.

• National Hospital Index [36].
• National Outpatients Clinic Index [37].
• Municipality addresses [38].

With the aim of avoiding the leakage of sensitive per-
sonal data, this methodology also checks that the ran-
domly chosen word or number is not the same as the
original one.

Networks
A variety of neural networks were tested and evaluated, all
of them designed for NER tasks. Three network architec-
tures were based on Bidirectional Long Short-TermMem-
ory (BiLSTM) layers, obtained from Guillaume Genthial’s
GitHub repository [39]:

• LSTM-CRF: GloVe vectors, BiLSTM and Conditional
Random Fields (CRF) based on the work of Huang et
al [20].
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Fig. 4 Structure differences between the radiology records used for training/testing and the clinical records from MEDDOCAN. a Radiology record
from the Valencian Region, where names, surnames and other sensitive information from patients and medical staff are not always in the same line
that the metadata information. b Clinical record from MEDDOCAN, where sensitive data is preceded by their correspondent metadata descriptors.
Any name, surname, address, identification number or date present in the figure are fictitious

Table 3 Number and percentage of annotations per corpus
subset: Training, validation and test

Training
(words / %)

Validation (words / %) Test (words / %)

CAB 1987 /
21.37%

993 / 20.87% 120 / 9.4%

NAME 3286 /
35.34%

1591 / 33.45% 386 / 30.25%

DIR 128 / 1.38% 106 / 2.23% 72 / 5.64%

LOC 79 / 0.85% 46 / 0.97% 26 / 2.04%

NUM 1159 /
12.47%

585 / 12.29% 143 / 11.21%

FECHA 1655 /
17.79%

897 / 18.86% 300 / 23.51%

INST 1004 /
10.80%

539 / 11.33% 229 / 17.95%

• LSTM-LSTM-CRF: GloVe vectors, character
embeddings, BiLSTM for character embeddings,
BiLSTM and CRF, based on the work of Lample et al
[22].

• Conv-LSTM-CRF: GloVe vectors, character
embeddings with 1D convolution and max pooling,
BiLSTM and CRF, based on the work of Ma and
Hovy [40].

These networks were trained with and without Expo-
nential Moving Average (EMA) of the weights. We also
trained a spaCy [24] NERmodel, based partly on the work
of Lample et al [22] with Bloom embeddings along with
Convolutional Neural Networks (CNNs) with an attention
mechanism.

Evaluation metrics
To assess the performance of the different models trained
we computed precision, recall and F1-score metrics.
These metrics can be defined as:



Pé et al. Journal of Biomedical Semantics            (2021) 12:6 Page 8 of 13

Table 4 Evaluation metrics for each of the different neural networks tested

Training set Validation set Test set

Model Precision Recall F1 Precision Recall F1 Precision Recall F1

LSTM-CRF 90.39 81.93 85.95 87.09 77.11 81.79 81.35 61.37 69.96

LSTM-CRF with EMA 91.19 84.15 87.53 87.05 78.49 82.55 71.48 59.65 64.96

LSTM-LSTM-CRF 99.20 98.79 98.99 98.13 97.18 97.66 93.01 90.94 91.96

LSTM-LSTM-CRF with EMA 99.06 98.96 99.01 98.00 97.34 97.67 94.20 91.10 92.63

Conv-LSTM-CRF 99.31 99.05 99.18 98.11 97.29 97.70 94.49 90.43 92.41

Conv-LSTM-CRF with EMA 99.17 99.05 99.11 98.08 97.36 97.72 93.72 90.64 92.15

Spacy 99.87 99.28 99.58 98.06 96.10 97.07 93.23 89.39 91.31

Bold font highlights the best metric in each data subset

precision = TP
TP + FP

recall = TP
TP + FN

F1score = 2 · precision · recall
precision + recall

being TP the number of true positives, FP the number of
false positives, and FN the number of false negatives.
To compute the amount of de-identification achieved by

the model, we did not only apply these metrics to each
NE, but to the set of words that should have been labelled
as an identifying NE. With this approach, we obtained
quantitative indicators of global de-identification.

Results
First, models for each neural network were trained and
then evaluated. Table 4 shows the mean global results of
the different networks, given three replicates for each one.
The recall is one of the most relevant evaluation metrics

in any de-identification process [5], to avoid the leakage
of sensitive information. Taking this into account, LSTM-
LSTM-CRF with EMA shows the highest recall in test,
and Conv-LSTM-CRF with EMA in validation. Although
these are the two best-performing networks in both sets,
we decided to include also spaCy for further analysis and

leave outside the worst-performing architecture: LSTM-
CRF.
The performance stats of each NE for LSTM-LSTM-

CRF with EMA, Conv-LSTM-CRF with EMA and spaCy
are displayed in Tables 5, 6 and 7. Whereas in training
set spaCy outperforms the other networks in every NE
except for CAB, in validation and test sets the results
are more contested. Evaluating F1-score in validation,
LSTM-LSTM-CRF classifies better dates, locations,
names and numbers, while spaCy stands out with insti-
tutions. On the other hand, Conv-LSTM-CRF performs
better with addresses and shows higher recall in names
than LSTM-LSTM-CRF. When analysing the results
for the test set, the spaCy model shows better met-
rics in dates and better recall in institutions whereas
LSTM-LSTM-CRF has a higher F1-score in institutions,
locations and names. Conv-LSTM-CRF again performs
better with addresses, but also with numbers and shows
the highest recall in locations and names. When apply-
ing the models to MEDDOCAN dataset there’s a decay
of the performance, although spaCy has higher recall
rates in addresses, dates, institutions and name, whilst
Conv-LSTM-CRF outperforms in locations and numbers.
Given that our aim was not to correctly classify NE, but

to completely remove sensitive information from the text,
global de-identification metrics were computed (Table 8).

Table 5 Evaluation metrics obtained with LSTM-LSTM-CRF with EMA model for each named entity

Training set Validation set Test set MEDDOCAN

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

CAB 98.29 97.94 98.11 96.03 94.92 95.47 83.69 75.76 79.53 13.33 33.33 19.05

DIR 100 100 100 93.49 95.00 94.22 90.91 90.91 90.91 0.00 0.00 0.00

FECHA 99.74 99.64 99.69 98.93 99.20 99.07 96.65 94.83 95.74 74.95 86.34 80.20

INST 98.96 98.96 98.96 95.73 95.72 95.73 96.08 96.08 96.08 11.11 0.67 1.26

LOC 100 89.45 94.42 94.35 87.88 90.99 92.58 55.55 69.41 0.00 0.00 0.00

NAME 98.99 99.15 99.07 98.97 98.24 98.60 94.78 95.13 94.95 61.62 77.39 68.59

NUM 99.39 99.91 99.65 99.34 98.69 99.01 96.65 97.66 97.15 56.93 68.28 62.05

99.05 98.96 99.01 98.00 97.34 97.67 94.20 91.10 92.62 62.35 56.11 59.07
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Table 6 Evaluation metrics obtained with Conv-LSTM-CRF with EMA model for each named entity

Training set Validation set Test set MEDDOCAN

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

CAB 98.57 97.99 98.28 96.82 94.97 95.89 91.45 76.89 83.54 0.78 16.67 1.48

DIR 100 100 100 98.33 95.00 96.63 93.94 93.94 93.94 10.71 1.18 2.11

FECHA 99.71 99.78 99.74 98.79 99.13 98.96 95.77 93.21 94.47 82.28 86.21 84.18

INST 98.96 98.96 98.96 96.35 95.94 96.14 92.91 94.12 93.51 0.00 0.00 0.00

LOC 100 91.56 95.59 92.89 87.88 90.29 89.44 55.56 68.50 20.83 0.58 1.12

NAME 99.17 99.28 99.23 98.69 98.28 98.49 92.31 96.26 94.23 70.17 77.39 73.56

NUM 99.35 99.88 99.62 98.98 98.63 98.80 95.59 95.57 95.58 64.53 78.29 70.69

99.17 99.06 99.11 98.08 97.36 97.72 93.72 90.64 92.16 67.07 58.90 62.71

Conv-LSTM-CRF with EMA shows better recall in vali-
dation and test sets (Fig. 5), whilst LSTM-LSTM-CRF has
higher F1-score on test. OnMEDDOCANdata, themodel
that better maintains recall and F1-score is LSTM-LSTM-
CRF (Fig. 5, Table 8). To assess the performance of our
models with external data, we wanted to apply the models
generated at MEDDOCAN to our data. Only one of the
participants made their models available [30], being one
of the implemented networks spaCy. Their spaCy model
achieved a precision of 87.89% and 80.31%, a recall of
42.66% and 26.54%, and an F1-score of 57.44% and 39.89%
in our validation and our test, respectively (Table 8).

Discussion
This work has defined and evaluated amethodology based
on NER to de-identify radiology reports in Spanish lan-
guage. In comparison with traditional approaches based
on regular expressions, NLP and neural networks do not
underperform due to human misspellings or the absence
of a clear and repeated structure. Neural networks are also
context-dependent, and words like Cabeza (head), a com-
mon surname in Spanish that also refers to an anatomical
part, will be detected as a “NAME” entity when used as a
surname but left unchanged when used as a medical word,
avoiding the loss of meaningful information.
The main drawback of this methodology is the requi-

rement of a learning corpus of de-identified reports,
which is not necessary for regular expression-based
strategies. Although the curation of a corpus is a tedious
and methodical task, there is no need for a big dataset:
with a training set of 447 texts, we achieved a suitable
performance.
Neural networks should be trained with a corpus diverse

in structure to avoid overfitting. Machine learning models
tend to learn the structure or format of the text, finding
the position of words containing sensitive data when per-
forming de-identification. If a model was trained with a
corpus with a determined structure, it will only be able
to de-identify similarly-formatted texts. By comparing our
spaCy model with the spaCy model retrieved from MED-
DOCAN [30], we show the high impact that text structure
has in the outcome. The MEDDOCAN training set was
similar in size to ours (500 and 447 texts with a median
of 20 and 22 lines per text, respectively), but their text
structure was highly defined and invariant (texts from
both datasets are compared at Fig. 4). With a training set
diverse in its structure we can obtain higher recall and
precision in external data, generating a de-identification
model better prepared to deal with new data. Figure 3
illustrates the structure and format diversity of radiolog-
ical reports between health departments included in our
dataset.

Table 7 Evaluation metrics obtained with spaCy model for each named entity

Training set Validation set Test set MEDDOCAN

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

CAB 99.43 96.54 97.96 98.28 93.98 96.08 92.54 74.49 82.52 4.76 33.33 8.33

DIR 100 100 100 94.28 63.96 76.01 87.79 74.77 61.46 43.15 4.47 8.01

FECHA 100 100 100 98.54 99.04 98.78 98.20 97.53 97.86 51.39 89.41 65.13

INST 99.97 99.96 99.98 98.19 97.24 97.71 93.50 98.00 95.69 45.72 12.28 19.27

LOC 100 100 100 76.64 54.66 63.80 61.04 26.85 36.79 7.19 0.32 0.59

NAME 100 99.99 99.99 98.34 98.28 98.31 88.78 94.29 93.19 75.62 83.91 79.23

NUM 100 100 100 97.81 95.65 96.72 95.11 87.56 91.18 68.50 60.32 63.99

99.87 99.28 99.58 98.06 96.10 97.08 93.23 89.39 91.31 65.63 55.37 59.98



Pé et al. Journal of Biomedical Semantics            (2021) 12:6 Page 10 of 13

Table 8 Global de-identification metrics for LSTM-LSTM-CRF, Conv-LSTM-CRF, spaCy and the model retrieved from MEDDOCAN

Validation set Test set MEDDOCAN

Precision Recall F1 Precision Recall F1 Precision Recall F1

LSTM-LSTM 99.66 99.29 99.48 99.08 97.18 98.10 98.09 69.18 81.13

with EMA

Conv-LSTM-CRF 99.58 99.42 99.50 98.18 97.43 97.80 97.11 67.10 79.36

with EMA

spaCy 99.28 94.15 96.64 95.69 91.18 93.38 84.96 61.69 71.48

MEDDOCAN 87.89 42.66 57.44 80.31 26.54 38.89 96.70* 95.30* 96.60*

model

(*)Results extracted from the original publication [30]

Considering that the recall metric assesses the capa-
bility to avoid the leakage of sensitive information of a
model, we propose LSTM-LSTM-CRF with EMA as the
best neural network to address a de-identification task
based on NER. This neural network showed higher F1-
score in the test and MEDDOCAN, and its recall in
validation and test sets are comparable to those obtained
with Conv-LSTM-CRF with EMA. Furthermore, its recall
on MEDDOCAN outperforms the one obtained by other
networks. Thus, we expect LSTM-LSTM-CRF with EMA
to behave optimally when presenting new data to it.
Although its recall is 99.29 and 97.18 for validation and
test sets respectively, it is not perfect. If we compare
the results obtained by our models with those presented
in MEDDOCAN, our LSTM-LSTM-CRF trained model
outperforms the winner of MEDDOCAN contest at F1-
score, 98.1 vs 97.4, but not at recall level, 97.1 vs 97.4,

respectively. Thus, our presented models are close in
terms of performance with those models presented on
MEDDOCAN.
When new radiology reports from the Valencian Region

are included in BIMCV database, 97.18% of recall in
test set means that almost 3% of identifying words will
remain in the text. It might not be enough to re-identify
the patient: could be left only a surname, a city name,
or a part of an address. In fact, the de-identification
methodology proposed in this work was applied to the
COVID-19 image dataset described by de la Iglesia Vayá
et al. [41], that needed to be reused for research due
to the medical emergency situation in 2020. The radiol-
ogy records in this dataset were revised by radiologists,
finding in 28 out of 11558 (0.24%) reports enough sensi-
tive information to identify patients or medical staff. This
included names, patient record identification numbers,

Fig. 5 Global de-identification metrics for the three best performing architectures. Precision (a), recall (b) and F1-score (c) for the three best
performing architectures, LSTM-LSTM-CRF with EMA (blue), Conv-LSTM-CRF with EMA (yellow) and spaCy (grey) by data subset
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birthdates or healthcare centre names. To ensure that
the identity of a patient is not recoverable, a final check
of the texts by an authorized person remains necessary.
Nevertheless, we propose a randomization strategy to
change the identified NEs for synthetic ones of the same
category. This strategy masks the identifying words left
by the neural network with synthetic information, mak-
ing it more difficult to discern between real and synthetic
identifying words than by simply erasing words (Fig. 6).
Further efforts need to be done to validate whether
this strategy makes original information irretrievable or
not.

Conclusions
Medical texts hold great potential for research, but legal
and privacy concerns arise with its use, even more, when
institutions external to the hospital are involved. Real-
world medical texts tend to be semi-structured with free
text that includes sensitive information, thus classical

de-identification approaches based on regular expressions
are not good enough. We propose a robust and flexi-
ble framework based on NER for Spanish medical texts,
tested on radiology reports from the Valencian Region.
This framework is generic and relatively simple and can
be easily generalizable to other Spanish medical texts by
re-training the network with additional data. However,
the applicability of the de-identification methodology to
other languages needs to be evaluated. We consider that
our approach can be replicated in other Romance derived
languages, following the training of a BiLSTM-CRF net-
work with suitable data and the application of the ran-
domization strategy. The easiest network to implement
for deep learning non-specialized teams would be spaCy,
although it is not the best performing. The proposed de-
identification methodology still missed identifiers after
training, thus a final check of the texts by an autho-
rized person remains necessary. Nevertheless, we believe a
combination of NER with the generation of synthetic data

Fig. 6 Anonymization strategies. When applying word elimination (a) errors are easily detectable whereas with synthetic substitution (b) any mistake
is hidden with randomized synthetic information. Any name, surname, address, identification number or date presented in the figure are fictitious
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will make it virtually impossible to extract real identifying
words from the text. Further efforts need to be done to
assess and test this hypothesis.

Abbreviations
NLP: Natural language processing; NER: Named entity recognition; PHI:
Protected health information; HIPAA: Health insurance portability and
accountability act; NE: Named entity; BIMCV: Medical imaging databank of the
Valencian Region; BiLSTM: Bidirectional long short-term memory; CRF:
Conditional random fields; EMA: Exponential moving average; CNN:
Convolutional neural network

Acknowledgements
We would like to thank the Medical Image Bank of the Valencian Community,
from which the data used in this publication come from. We would also like to
thank the support from the Regional Ministry of Innovation, Universities,
Science and Digital Society, the Valencian Innovation Agency (Spain) and
Regional Ministry of Health in Valencia Region, for applying this methodology
in the COVID-19 dataset cited in this publication.

Author’s contributions
IPD.: conceptualization; data curation; formal analysis; investigation;
methodology; software; validation, visualization; writing - original draft, review
& editing. RPM: conceptualization; data curation; formal analysis; investigation;
methodology; software; validation, visualization; writing - original draft, review
& editing. ALC: conceptualization; data curation; writing - review & editing.
JMSS: project administration; resources; writing - review & editing. MIV:
conceptualization; funding acquisition; project administration; resources;
supervision; writing - review & editing.

Funding
This article describes work undertaken in the context of the DeepHealth
project, “Deep-Learning and HPC to Boost Biomedical Applications for Health”
(https://deephealth-project.eu/) which has received funding from the
European Union’s Horizon 2020 research and innovation programme under
grant agreement No 825111”. The contents of this publication reflect only the
author’s view, can in no way be taken to reflect the views of the European
Union and the Community is not liable for any use that may be made of the
information contained therein.

Availability of data andmaterials
The data that support the findings of this study are available from BIMCV but
restrictions apply to the availability of these data under a research use
agreement. Data access can be requested at http://bimcv.cipf.es/bimcv-
projects/dismed
Supplementary information and code are available online in GitHub.

• Project name: DiSMed - De-identifying Spanish medical texts
• Project home page: https://github.com/BIMCV-CSUSP/DiSMed
• Operating system(s): Platform independent
• Programming language: Python
• Other requirements: Python (version ≥3.5). DiSMed imports the

following Python non-built-in libraries: pandas, numpy, codecs, spacy,
tensorflow (version <2)

• License: MIT

Declarations

Ethics approval and consent to participate
The study was approved by the local institutional ethics committee
DGSP-CSISP NÚM. 20190503/12.

Consent to publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1FISABIO-CIPF Joint Research Unit in Biomedical Imaging. Fundació per al
Foment de la Investigació Sanitària i Biomèdica (FISABIO), Av. de Catalunya 21,
46020 València, Spain. 2Bioinformatics and Biostatistics Unit. Centro de
Investigación Príncipe Felipe (CIPF), Carrer d’Eduardo Primo Yúfera 3, 46012
València, Spain. 3ESI International Chair@CEU-UCH, Departamento de
Matemáticas, Física y Ciencias Tecnológicas, Universidad Cardenal
Herrera-CEU, CEU Universities, Calle San Bartolomé 55, 46115 Alfafara del
Patriarca, Spain. 4Health Informatics Department, Hospital San Juan de
Alicante, 03550 Sant Joan d’Alacant, Spain. 5Regional ministry of Universal
Health and Public Health in Valencia, Carrer de Misser Mascó 31, 46010
València, Spain. 6CIBERSAM, ISCIII, Av. Blasco Ibáñez 15, 46010 València, Spain.

Received: 28 April 2020 Accepted: 2 March 2021

References
1. Hemingway H, Asselbergs FW, Danesh J, Dobson R, Maniadakis N,

Maggioni A, van Thiel GJM, Cronin M, Brobert G, Vardas P, Anker SD,
Grobbee DE, and SD. Big data from electronic health records for early and
late translational cardiovascular research: challenges and potential. Eur
Heart J. 2017;39(16):1481–95. https://doi.org/10.1093/eurheartj/ehx487.

2. Bustos A, Pertusa A, Salinas J-M, de la Iglesia-Vayá M. Padchest: A large
chest x-ray image dataset with multi-label annotated reports. Med Image
Anal. 2020;66:101797. https://doi.org/10.1016/j.media.2020.101797.

3. Council of the European Union. Regulation (EU) 2016/679 of the
European Parliament and of the Council of 27 April 2016 on the
protection of natural persons with regard to the processing of personal
data and of the free movement of such data. Off J. 2016;L119:1.

4. Cortes Generales de España. Ley Orgánica 3/2015, de 5 de diciembre, de
protección de datos personales y garantía de los derechos digitales.
Boletín Oficial del Estado. 2018A-2018-16673.

5. Dalianis H, Velupillai S. De-identifying Swedish clinical text-refinement of
a gold standard and experiments with Conditional random fields. J
Biomed Semant. 2010;1(1):6. https://doi.org/10.1186/2041-1480-1-6.

6. Cardinal RN. Clinical records anonymisation and text extraction (CRATE):
an open-source software system. BMC Med Inf Decis Mak. 2017;17(1):50.
https://doi.org/10.1186/s12911-017-0437-1.

7. Névéol A, Dalianis H, Velupillai S, Savova G, Zweigenbaum P. Clinical
natural language processing in languages other than english:
opportunities and challenges. J Biomed Semant. 2018;9(1):12. https://doi.
org/10.1186/s13326-018-0179-8.

8. Chazard E, Mouret C, Ficheur G, Schaffar A, Beuscart J-B, Beuscart R.
Proposal and evaluation of FASDIM, a Fast And Simple De-Identification
Method for unstructured free-text clinical records. Int J Med Inform.
2014;83(4):303–12. https://doi.org/10.1016/j.ijmedinf.2013.11.005.

9. Grouin C, Névéol A. De-identification of clinical notes in French: towards
a protocol for reference corpus development. J Biomed Inform. 2014;50:
151–61. https://doi.org/10.1016/j.jbi.2013.12.014. Special Issue on
Informatics Methods in Medical Privacy.

10. Seuss H, Dankerl P, Ihle M, Grandjean A, Hammon R, Kaestle N,
Fasching P, Maier C, Christoph J, Sedlmayr M, Uder M, Cavallaro A,
Hammon M. Semi-automated De-identification of German Content
Sensitive Reports for Big Data Analytics. In: RöFo - Fortschritte auf dem
Gebiet der Röntgenstrahlen und der bildgebenden Verfahren; 2017. p.
661–71. https://doi.org/10.1055/s-0043-102939.

11. Richter-Pechanski P, Amr A, Katus HA, Dieterich C. Deep learning
approaches outperform conventional strategies in de-identification of
German medical reports. Stud Health Technol Informat. 2019;267:101–9.
https://doi.org/10.3233/SHTI190813.

12. Menger V, Scheepers F, van Wijk LM, Spruit M. DEDUCE: A pattern
matching method for automatic de-identification of Dutch medical text.
Telematics Inform. 2018;35(4):727–36. https://doi.org/10.1016/j.tele.2017.
08.002.

13. Jian Z, Guo X, Liu S, Ma H, Zhang S, Zhang R, Lei J. A cascaded approach
for Chinese clinical text de-identification with less annotation effort. J
Biomed Inf. 2017;73:76–83. https://doi.org/10.1016/j.jbi.2017.07.017.

14. Medina S, Turmo J. Building a Spanish/Catalan health records corpus
with very sparse protected information labelled. In: LREC 2018: Workshop
MultilingualBIO: Multilingual Biomedical Text Processing: Proceedings;
2018. p. 1–7. http://hdl.handle.net/2117/124710.

http://bimcv.cipf.es/bimcv-projects/dismed
http://bimcv.cipf.es/bimcv-projects/dismed
https://github.com/BIMCV-CSUSP/DiSMed
https://doi.org/10.1093/eurheartj/ehx487
https://doi.org/10.1016/j.media.2020.101797
https://doi.org/10.1186/2041-1480-1-6
https://doi.org/10.1186/s12911-017-0437-1
https://doi.org/10.1186/s13326-018-0179-8
https://doi.org/10.1186/s13326-018-0179-8
https://doi.org/10.1016/j.ijmedinf.2013.11.005
https://doi.org/10.1016/j.jbi.2013.12.014
https://doi.org/10.1055/s-0043-102939
https://doi.org/10.3233/SHTI190813
https://doi.org/10.1016/j.tele.2017.08.002
https://doi.org/10.1016/j.tele.2017.08.002
https://doi.org/10.1016/j.jbi.2017.07.017
http://hdl.handle.net/2117/124710


Pé et al. Journal of Biomedical Semantics            (2021) 12:6 Page 13 of 13

15. Perez-Lainez R, Iglesias A, de Pablo-Sanchez C. Anonymitext:
anonimization of unstructured documents. In: Proceedings of the
International Conference on Knowledge Discovery and Information
Retrieval. Funchal: INSTICC; 2009. p. 284–7.

16. Marimon M, Gonzalez-Aguirre A, Intxaurrondo A, Rodríguez H, Martin J,
Villegas M, Krallinger M. Automatic de-identification of medical texts in
Spanish: the MEDDOCAN track, corpus, guidelines, methods and
evaluation of results. In: Proceedings of the Iberian Language Evaluation
Forum (IberLEF 2019); 2019. p. 618–38.

17. Meystre SM, Ferrández Ó, Friedlin FJ, South BR, Shen S, Samore MH.
Text de-identification for privacy protection: A study of its impact on
clinical text information content. J Biomed Inf. 2014;50:142–50. https://
doi.org/10.1016/j.jbi.2014.01.011. Special Issue on Informatics Methods in
Medical Privacy.

18. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput.
1997;9(8):1735–80. https://doi.org/10.1162/neco.1997.9.8.1735.

19. Lafferty JD, McCallum A, Pereira FCN. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In:
Proceedings of the Eighteenth International Conference on Machine
Learning ICML ’01. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc.; 2001. p. 282–9.

20. Huang Z, Xu W, Yu K. Bidirectional LSTM-CRF Models for Sequence
Tagging. arXiv:1508.01991 [Preprint]. 2015. https://arxiv.org/abs/1508.
01991. Accessed 19 Dec 2019.

21. Dyer C, Ballesteros M, Ling W, Matthews A, Smith NA. Transition-based
dependency parsing with stack long short-term memory. In: Proceedings
of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural
Language Processing. Beijing, China: Association for Computational
Linguistics; 2015. p. 334–43. https://doi.org/10.3115/v1/P15-
1033. https://www.aclweb.org/anthology/P15-1033.

22. Lample G, Ballesteros M, Subramanian S, Kawakami K, Dyer C. Neural
architectures for named entity recognition. In: Proceedings of the 2016
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies. San Diego,
California: Association for Computational Linguistics; 2016. p. 260–70.
https://doi.org/10.18653/v1/N16-1030. https://www.aclweb.org/
anthology/N16-1030.

23. Zhang B, Pan X, Wang T, Vaswani A, Ji H, Knight K, Marcu D. Name
tagging for low-resource incident languages based on expectation-
driven learning. In: Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies. San Diego, California: Association for
Computational Linguistics; 2016. p. 249–59. https://doi.org/10.18653/v1/
N16-1029. https://www.aclweb.org/anthology/N16-1029.

24. Explosion: spaCy 2.0. 2018. https://spacy.io/. Accessed 16 Dec 2019.
25. dos Santos C, Guimarães V. Boosting named entity recognition with

neural character embeddings. In: Proceedings of the Fifth Named Entity
Workshop. Beijing, China: Association for Computational Linguistics; 2015.
p. 25–33. https://www.aclweb.org/anthology/W15-3904.

26. Devlin J, Chang M-W, Lee K, Toutanova K. BERT: Pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of
the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers). Minneapolis, Minnesota: Association for
Computational Linguistics; 2019. p. 4171–86. https://www.aclweb.org/
anthology/N19-1423.

27. Miranda-Escalada A, Farré-Maduell E, Krallinger M. Named entity
recognition, concept normalization and clinical coding: Overview of the
cantemist track for cancer text mining in spanish, corpus, guidelines,
methods and results. In: Proceedings of the Iberian Language Evaluation
Forum (IberLEF 2020), CEUR Workshop Proceedings; 2020. p. 303–23.

28. Lange L, Adel H, Strötgen J. Neither-language-nor-domain-experts’ way
of Spanish medical document de-identification. In: Proceedings of the
Iberian Language Evaluation Forum (IberLEF 2019); 2019. p. 671–8.

29. Jiang D, Shen Y, Chen S, Tang B, Wang X, Chen Q, Xu R, Yan J, Zhou Y.
A deep learning-based system for the MEDDOCAN task. In: Proceedings
of the Iberian Language Evaluation Forum (IberLEF 2019); 2019. p. 761–7.

30. Perez N, García-Sardiña L, Serras M, Del Pozo A. Vimcotech at
MEDDOCAN: Medical document anonymization. In: Proceedings of the
Iberian Language Evaluation Forum (IberLEF 2019); 2019. p. 696–703.

31. United States Congress. The Health Insurance Portability and
Accountability Act (HIPAA). 1996. 104th Congress L.104-191.

32. BIMCV: Medical Imaging Databank of the Valencia Region. 2014. https://
bimcv.cipf.es/. Accessed 10 Dec 2019.

33. Salinas JM, de la Iglesia-Vaya M, Bonmati LM, Valenzuela R, Cazorla M. R
& D cloud CEIB: Management system and knowledge extraction for
bioimaging in the cloud. In: Distributed Computing and Artificial
Intelligence. Berlin, Heidelberg: Springer; 2012. p. 331–8.

34. Instituto Nacional de Estadística: Nombres y apellidos más frecuentes.
2019. https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=
Estadistica_C&cid=1254736177009&menu=ultiDatos&idp=
1254734710990. Accessed 3 Jan 2020.

35. Instituto Nacional de Estadística: Cifras oficiales de población resultantes
de la revisión del Padrón municipal. 2019. https://www.ine.es/dynt3/
inebase/es/index.htm?padre=517&capsel=525. Accessed 3 Jan 2020.

36. Ministerio de Sanidad, Consumo y Bienestar Social: Catálogo Nacional de
Hospitales. 2019. https://www.mscbs.gob.es/ciudadanos/prestaciones/
centrosServiciosSNS/hospitales/home.htm. Accessed 3 Jan 2020.

37. Ministerio de Sanidad, Consumo y Bienestar Social: Catálogo de Centros
de Atención Primaria del SNS. 2019. https://www.mscbs.gob.es/
ciudadanos/prestaciones/centrosServiciosSNS/centrosSalud/home.htm.
Accessed 3 Jan 2020.

38. Gobierno de España: Direcciones, tel. y CIF de todos los ayuntamientos
de España. 2016. https://datos.gob.es/en/peticiones-datos/direcciones-
tel-y-cif-de-todos-los-ayuntamientosde-espana. Accessed 3 Jan 2020.

39. Genthial G. Tensorflow – Named Entity Recognition. 2018. https://github.
com/guillaumegenthial/tf_ner. Accessed 16 Dec 2019.

40. Ma X, Hovy E. End-to-end sequence labeling via bi-directional
LSTM-CNNs-CRF. In: Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). Berlin,
Germany: Association for Computational Linguistics; 2016. p. 1064–74.
https://www.aclweb.org/anthology/P16-1101.

41. de la Iglesia Vayà M, Saborit JM, Montell JA, Pertusa A, Bustos A, Cazorla
M, Galant J, Barber X, Orozco-Beltrán D, García-García F, Caparrós M,
González G, Salinas JM. BIMCV COVID-19+: a large annotated dataset of
RX and CT images from COVID-19 patients. arXiv:2006.01174 [Preprint].
2020. https://arxiv.org/abs/2006.01174. Accessed 15 Nov 2020.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1016/j.jbi.2014.01.011
https://doi.org/10.1016/j.jbi.2014.01.011
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1508.01991
https://arxiv.org/abs/1508.01991
https://doi.org/10.3115/v1/P15-1033
https://doi.org/10.3115/v1/P15-1033
https://www.aclweb.org/anthology/P15-1033
https://doi.org/10.18653/v1/N16-1030
https://www.aclweb.org/anthology/N16-1030
https://www.aclweb.org/anthology/N16-1030
https://doi.org/10.18653/v1/N16-1029
https://doi.org/10.18653/v1/N16-1029
https://www.aclweb.org/anthology/N16-1029
https://spacy.io/
https://www.aclweb.org/anthology/W15-3904
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://bimcv.cipf.es/
https://bimcv.cipf.es/
https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736177009&menu=ultiDatos&idp=1254734710990
https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736177009&menu=ultiDatos&idp=1254734710990
https://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736177009&menu=ultiDatos&idp=1254734710990
https://www.ine.es/dynt3/inebase/es/index.htm?padre=517&capsel=525
https://www.ine.es/dynt3/inebase/es/index.htm?padre=517&capsel=525
https://www.mscbs.gob.es/ciudadanos/prestaciones/centrosServiciosSNS/hospitales/home.htm
https://www.mscbs.gob.es/ciudadanos/prestaciones/centrosServiciosSNS/hospitales/home.htm
https://www.mscbs.gob.es/ciudadanos/prestaciones/centrosServiciosSNS/centrosSalud/home.htm
https://www.mscbs.gob.es/ciudadanos/prestaciones/centrosServiciosSNS/centrosSalud/home.htm
https://datos.gob.es/en/peticiones-datos/direcciones-tel-y-cif-de-todos-los-ayuntamientosde-espana
https://datos.gob.es/en/peticiones-datos/direcciones-tel-y-cif-de-todos-los-ayuntamientosde-espana
https://github.com/guillaumegenthial/tf_ner
https://github.com/guillaumegenthial/tf_ner
https://www.aclweb.org/anthology/P16-1101
https://arxiv.org/abs/2006.01174

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Methods
	Named entities
	Corpus construction
	NE randomization
	Networks
	Evaluation metrics

	Results
	Discussion
	Conclusions
	Abbreviations
	Acknowledgements
	Author's contributions
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent to publication
	Competing interests
	Author details
	References
	Publisher's Note

