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Abstract

Background: The amount of available data, which can facilitate answering scientific research questions, is growing.
However, the different formats of published data are expanding as well, creating a serious challenge when multiple
datasets need to be integrated for answering a question.
Results: This paper presents a semi-automated framework that provides semantic enhancement of biomedical data,
specifically gene datasets. The framework involved a concept recognition task using machine learning, in
combination with the BioPortal annotator. Compared to using methods which require only the BioPortal annotator
for semantic enhancement, the proposed framework achieves the highest results.
Conclusions: Using concept recognition combined with machine learning techniques and annotation with a
biomedical ontology, the proposed framework can provide datasets to reach their full potential of providing
meaningful information, which can answer scientific research questions.
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Background
The amount of data becoming available is rapidly increas-
ing. Various research fields can benefit from the grow-
ing volume of information, including the biomedical
domain. Unfortunately, answering a research question
using the already available data usually requires informa-
tion which can be found in more than one dataset. More-
over, the information needed is not only spread across
sources, but also is stored in different formats such as
comma-separated values (CSV), extensible markup lan-
guage (XML) etc. Therefore data processing is usually
needed to solve the provided task. However, data process-
ing has been identified by 80% of data scientists as the
most time consuming part of a project and at the same
time, the least enjoyable one [1].
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In response to this demand, many tools involving var-
ious types of data integration and conversion are being
developed. Data2Services [2] is such a tool that pro-
vides an automatic conversion of various datatypes to the
Resource Description Framework (RDF)1 format, which
can help with data integration. The RDF format provides
a structured, standardized and machine readable data
representation.
However a structured format does not necessarily pro-

vide meaning to the data. For data to be meaningful and
understandable, additional information, such as knowing
what the columns of the dataset represent (their types)
and how they are related (interoperability), is required.
To semantically enhance the data, one could annotate
the data with existing concepts, in the form of public
ontologies.
As a use case, consider the following query that

a biomedical researcher is interested in: Which genes

1Specification available at: https://www.w3.org/RDF/, accessed on 12 January
2019
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interact with ethanol?, in order to know how ethanol,
that could be used as a component of a drug, reacts
with human genes. The answer to this question already
requires using two separate datasets, namely Hugo Gene
Nomenclature2, for gene information, and Compara-
tive Toxicogenomics Database3, for information about
ethanol. These datasets are available in two different for-
mats CSV, and tab-separated values (TSV), respectively.
The two sources share common data attributes, such as
gene symbol, and common data values such as the indexed
genes. However the gene symbol attribute is represented
using two different labels : “Symbol”, “Gene Symbol”. This
is represented in Fig. 1.
Without data integration, this would be solved through

manual analyses of the data and extraction of the cor-
rect answer, which can be a time consuming process.
Combining the two datasets can provide the answer.
Data2Services can make both datasets publicly available
in a common format. However, the tool provides generic
transformation of the data. Therefore, a manual investi-
gation is still needed to determine that the two columns
containing symbols represent the same attribute, (see
Fig. 1), therefore having the same meaning. This can be
solved through semantic enhancement. If data would also
be semantically annotated, the two columns should be
sharing the same concept.
Therefore, this project is addressing the following

research question: Can we (semi-)automate the transfor-
mation of biomedical datasets into a semantically mean-
ingful representation?, specifically addressing if we can
automatically assign the concept for a column label in a
tabular data file. In this project, we only focus on gene
datasets.
This project has the following contributions:

• methodology of using a public biomedical ontology
repository to identify relevant gene concepts

• developing two separate methods for gene concept
recognition through machine learning classification

• implementation of a framework performing
semi-automatic semantic enhancement using the
explored methods

• report of quality assessment of the resulting data

There are different tools that can provide RDF conver-
sion frommultiple data types [3–7]. However, they require
considerable amount of human input. Data2Services [2]
can automatically convert different data formats (e.g.
CSV, XML) to RDF. However, it provides a generic out-
come missing out on semantic types for entities and their
relations.

2Available at: https://www.genenames.org/, accessed on 10 December 2019
3Available at: http://ctdbase.org/, accessed on 10 December 2019

Ontology mapping tools help users map ontology
terms to their data. However, in most tools, the user
needs to provide the ontology that will be used for
the mapping [8–10] or chose from the recommended
options [11].
In [9], the task of concept recognition in biomedi-

cal data is defined as mapping a piece of text to a
previously selected terminology (or in some cases an
ontology). Two concept recognition tools are compared
in [9], using different dictionaries and data as input. The
data mostly contains free text. The results show that the
performance varies with different data as input and dic-
tionaries. Therefore, good performance of those concept
recognition tools is linked to the prior selected dictionary
and dataset. Other approaches combine machine learn-
ing techniques such as classifiers into themapping process
[12]. However, using pre-selected dictionaries and free
text input data restrain the data and concepts that can be
explored. In order to preserve the semantic characteristics
of words (linguistic meaning), low-dimensional vectors
such as word embeddings can be used as word represen-
tations, which have proven to be effective in various tasks
[13, 14].
This paper introduces a concept recognition task using

machine learning, specifically binary classification, used
for semi-automated semantic enhancement of data. In
our experiments, we have focused on gene datasets, so
the gene concept. However, our method does not depend
on pre selected data and/or preselected dictionaries as
explored in previous papers. In addition, our approach
uses word embeddings on a dataset with heterogeneous
values, therefore, the input data is also no longer limited
to free text.

Methodology
We investigated two approaches: (i) annotation with Bio-
Portal and (ii) concept recognition. We developed a
framework combining both to tackle the problem of semi-
automatic semantic enhancement. Figure 2 presents an
overview of the applied methods.
The project focuses on providing semi-automated

semantic enhancement to three datasets (Hugo Gene
Nomenclature, Comparative Toxicogenomics Database
and Pharmacogenomics Knowledgebase) which are auto-
matically converted to RDF using the Data2Services tool.
The first method, described in “Annotation with Bio-

Portal” section aims to solve the task of semantic enhance-
ment by using a biomedical ontology repository. The
repository can provide both types (classes) and attributes
(properties) for the searched term, through separate
search options. However, the results might differ for each
type of search. For example, the term “Chemical Id” has
no matches in a class search, in contrast to 30 matches in a
property search. Two separate experiments are conducted

https://www.genenames.org/
http://ctdbase.org/
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Fig. 1 Use case. Figure is showing a research question use case, where the answer is found in two different datasets

in order to establish whether the method should be used
to provide properties or classes for the task.
The second method, described in “Concept recogni-

tion model” section focuses on automatically recogniz-
ing the presence of a class in a dataset. We define “Con-
cept recognition’ section as a task where we determine
if the gene concept is present in a dataset using binary
classification. We developed two separate approaches.
The first approach uses the combination of column
names (titles) presented in a dataset and the correspond-
ing values (data) in the columns as input for the con-
cept recognition task. In the second approach, only the
column names (titles) are used as input for the same
task.

The following sections describe the method compo-
nents in detail. “Datasets” section describes the data used,
“Annotation with BioPortal” section focuses on the use of
a biomedical ontology repository and “Concept recogni-
tion model” section defines the developed concept recog-
nition method.

Datasets
In order to determine the performance of the cho-
sen methods on a smaller scale first, a small corpus
sample was chosen. We chose three datasets: (i) Hugo
Gene Nomenclature (HGNC), (ii) Comparative Toxi-
cogenomics Database (CTD) and (iii) Pharmacogenomics
Knowledgebase (PGKB).

Fig. 2Methodology diagram. The data is used for search in BioPortal in order to provide data annotation, but also pre-processed to be used as input
for the concept recognition task
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Table 1 Detailed information about the datasets used in the methodology

Data About Subset Size Column Number Column Name

HGNC Standardized nomenclature to human genes Subset of complete HGNC 382 KB 49 symbol, locus type, ena

CTD Manually curated information Chemical–gene interactions set 326 MB 11 Chemical ID, Gene Forms,

PubMed IDs

PGKB Information about how human genetic Summary of the gene information 13.6 MB 17 Ensemble Id, Chromosome,

variation affects response to medications Cross-references

• HGNC4 is a publicly available database which
contains all the curated HGNC approved
nomenclature, gene groups and associated resources.
This project uses the complete HGNC dataset file.

• CTD5 is a publicly available database which contains
manually curated information about
chemical–gene/protein interactions,
chemical–disease and gene–disease relationships.
The subset containing chemical–gene/protein
interactions was chosen for this project.

• PGKB6 is a pharmacogenomics knowledge dataset
that incorporates various curated clinical information
such as dosing guidelines and drug labels, potentially
clinically actionable gene-drug associations and
genotype-phenotype relationships. We used the
subset containing gene information used by PGKB.

Further details about the data are presented in Table 1.
These particular datasets were chosen due to their

focus on the gene terminology. The data describes differ-
ent aspects related to the gene concept such as names,
symbols and different identifiers provided by official orga-
nizations such as Hugo Gene Nomenclature, National
Center for Biotechnology Information. Apart from these
commonly found elements, each dataset contains spe-
cific elements of topics such as chemical identifiers and
interactions (chemical-gene interaction).

Annotation with BioPortal
BioPortal7 is a repository of biomedical ontologies.
Together with the meta-data, the contained classes and
properties are publicly available for each ontology [15].
There are 729 ontologies relevant for the biomedical
domain. Ontologies can be browsed via an interface or
accessed via an API8 to query using a variety of param-
eters (e.g providing a restricted ontology list, retriev-
ing exact matches of the searched term). Therefore, we
used the BioPortal annotator for our project, illustrated
in part 2 of Fig. 2. We used the column names (titles)

4Available at: https://www.genenames.org/, accessed on 10 December 2019
5Available at: http://ctdbase.org/, accessed on 10 December 2019
6Available at: https://www.pharmgkb.org, accessed on 10 December 2019
7Available at https://bioportal.bioontology.org/, accessed on 11 January 2019
8BioPortal Rest API available at: http://data.bioontology.org/documentation,
accessed on 11 January 2019

as search terms in BioPortal. Considering the available
search options in BioPortal, we conducted two separate
search types: (i) class search and (ii) property search. The
experiments were executed on a laptop9 which imposed a
restriction in doing them at a big scale (BioPortal has over
9 million classes).

Class search
Since we performed the experiments at a small scale, we
restricted the class search by using the parameter longest
matches (LM). This parameter returns matches only if
the full searched term is found in the matched class in
BioPortal.

Property search
The unrestricted property search generated an infeasible
amount of matches to be analyzed. For each dataset, the
column name with the highest amount of matches from
the property search can be observed in Table 2. In total,
there were 25 columns which had over 1000 matches.
Therefore, to restrict the number of results, we chose

to provide a list of relevant ontologies for the search.
To choose the most relevant ontologies, we selected the
ones that were most popular (had the highest amount
of matches) in the initial search. We computed a fre-
quency distribution of the number of matches, by count-
ing the number of matches per ontology, for each dataset.
We built the distribution based on the initial matches
that resulted from the unrestricted property search. We
observed that there are fewer ontologies with a high num-
ber of matches, with most having around three matches.
The list of ontologies is filtered such that only the topmost
popular remain by choosing a threshold represented by
the mode of the distribution, which is different for each
dataset. (e.g. at least eight matches per ontology in the
case of the CTD dataset).
A threshold value of 8 was chosen for CTD, 30 for

HGNC and 12 for PGKB. This analysis was needed due
to high number of ontology matches:475 unique ontolo-
gies for CTD, 561 unique ontologies for HGNC and
593 unique ontologies for PGKB. Therefore, we created
a representative top of ontologies using the threshold
restriction.
9Model: Laptop Dell Inspiron 5570, Intel processor i7 7th generation, 8 GB
RAM

https://www.genenames.org/
http://ctdbase.org/
https://www.pharmgkb.org
https://bioportal.bioontology.org/
http://data.bioontology.org/documentation
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Table 2 Examples of high numbers of property search matches
per dataset

Dataset Columns Matches

CTD Gene Id 1681

PGKB Has Variant Annotation 15923

HGNC date name changed 2075

After evaluating the number of matches that each of
these ontologies have, a shorter list of ontologies was cho-
sen for the search restriction, according to the highest
number of matches present in the graph. A list of three
ontologies was chosen for the HGNC and PGKB dataset.
CTD had a special situation where only 2 ontologies were
distinctive in their number of matches, the rest having the
same number. Two ontologies, Neuroscience Information
Framework Standard Ontology (NIFSTD) and Orthology
Ontology (ORTH), are shared by two datasets, PGKB and
CTD.
A property search was conducted using BioPortal, using

as a restriction a list of ontologies to be used in the search,
which were discovered in the process described above.
The resulting matches were manually analyzed in order
to establish if they are relevant (have the same semantic
meaning as the column label). Thematches were classified
into three categories to show how semantically relevant
they are to the searched term:

• “Full Match” consists of terms that have an exact
name match with the column name, or terms which
have a description that is appropriate for the column.
(e.g. “Horde_ID” for the column ‘horde_id’ of the
HGNC dataset)

• “Semi-Match” contains properties that have common
terms in the property’s name and meaning with the
column name, although it does not define the exact
same relation.(e.g. “id” for the column “horde_id” of
the HGNC dataset; the “id” match can be used to
represent an id relation, but it does not point to a
specific id type like the column name “horde_id”)

• “No Match” represents properties that are completely
unrelated with the column name. (e.g.“GDB_ID
_mapped_data_” for the column “horde_id” of the
HGNC dataset)

Concept recognition model
As we focused on gene datasets, we aimed at recognizing
the gene concept in a dataset. We chose a binary clas-
sification approach. We chose two separate approaches
for the binary classification. The first approach
presented, “Column name approach” section, aims to
recognize a concept only by the column names(titles)
used by a dataset. In contrast, in the second approach,

“Column name and value approach” section, we use both
the column name and the values found in respective the
column to recognize the concept.

Column name approach
As the first approach focuses on using only column names
(titles), the amount of names offered by the data were
insufficient for a successful machine learning approach.
We extracted a total of 93 names from the three datasets.
Therefore, to perform binary classification and to pro-
vide the machine learning algorithm sufficient examples
to learn from, we needed to expand the total number
of column names. Two separate processes of expanding
the list of names were applied: (i) heuristic expansion
and (ii) Recurrent Neural Network (RNN) [16] genera-
tion expansion. This decision was taken in order to be
able to preserve the consistency between both approaches
by giving them the same starting point, the same three
datasets.
The heuristic expansion was developed in five steps:

• generate all the existing titles in lowercase
characters(e.g.:“HGNC ID”)

• generate all the existing titles in uppercase
characters(e.g.:“hgnc id”)

• generating title by replacing the white space with
underscores(e.g.:“hgnc_id”)

• generating titles by replacing the underscores with
white space(e.g.:“hgnc id”)

• splitting all strings separated with underscore or
white space and their random re-concatenation (e.g.:
column titles “gene family” and “prev symbols” are
split into a list [“gene”, “family”,“prev”, “symbol”] and
by random re-concatenation we can get the string
“symbolgene”)

In total, 1074 column names were generated.
The second process continues the expansion of the

obtained list of names using RNN. Since we had a list of
words, character level RNN was applied, its type being
the most appropriate in this case. Manual class labelling
was needed to prepare the data for a binary classifica-
tion task. The examples that resembled the original names
of the column were labelled as positive. The strings that
were incoherent, just formed by a random order of char-
acters were labelled as negative examples. A total of 2135
names were obtained after applying the RNN generation.
We converted the names into vectors, in which each char-
acter of a name was represented by its ASCII code. All
vectors have the same size, the size of the vector being
determined by the longest string in the list of names. The
ASCII code was used to convert each character into a
numerical value that was inserted into the vector. In the
case of the string being smaller than the vector size, the
vector is filled with 0 until it reaches the required size.
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The resulting matrix was split into a training and test set.
The training set matrix was used as training input for an
Artificial Neural Network (ANN).

Column name and value approach
In the second approach we use both the column names,
which were used in the previous approach, and the val-
ues (content) of the columns as data. This approach begins
by applying a data preprocessing method on the data. In
order to be processed by any machine learning technique,
the data needs to be transformed into a numerical format.
Apart from the difficulty created by the existing diversity
in the column name types (e.g. full words, acronyms, short
versions of words etc.), the content of the columns (data
values) generate obstacles as well. Data values can range
from words, numerical values to a mix in between (sym-
bols). The following method was inspired by an existent
approach10.
A sample of 17 columns (presented in Table 3) out of

93 in total were chosen from all three datasets. Several
columns are common across the datasets, therefore they
were chosen as part of this sample as positive examples.
These columns are considered distinctive for the gene
concept (e.g. hgnc id, gene symbol). The columns which
were not common throughout the datasets were consid-
ered negative examples (location sortable, date). Pairs of
the form “column name, data” (e.g [symbol,A1BG]) were
constructed with all the chosen columns. For each col-
umn name, the number of pairs was given by the size of
that particular column. Each column name was assigned a
numerical value from 0 to 16.
Two different methods were used to index the data val-

ues. The values that belong in the same category (e.g.
gene symbols) are indexed within the same range (e.g
from 0 to 200). However, the values that belong into a
different category (e.g. gene names) start the indexing at
0. The second method, using character-level RNN, con-
tinues increasing the indexation number when handling
different categories.
The machine learning model chosen to perform the

classification is a Neural Network with embeddings
(NNE). The embeddings are represented by the weights of
the network which are adjusted during training. Two par-
allel embedding layers map the column and the value to
vectorial representations. Table 4 contains the details of
the NNE.
At first, the NNE was trained with all the data available

(145050 pairs) in order to test the quality of the embed-
dings, through a similarity measure between columns.
Table 5 shows the most similar columns that were recom-
mended for the column “hgnc_id” using the first method.

10https://github.com/WillKoehrsen/wikipedia-data-science/blob/master/
notebooks/Book%20Recommendation%20System.ipynb, accessed on 15
November 2018

Table 3 Data used for neural network embedding

Column Dataset File Class Label

hgnc id HGNC hgnc.tsv 1

HGNC id pgkb genes.tsv 1

Name HGNC hgnc.tsv 1

name PGKB genes.tsv 1

symbol HGNC hgnc.tsv 1

Symbol PGKB genes.tsv 1

Gene Symbol CTD CTD_chem_ gene_ixns.csv 1

location HGNC hgnc.tsv 0

location sortable HGNC hgnc.tsv 0

date approved
reserved

HGNC hgnc.tsv 0

date modified HGNC hgnc.tsv 0

Chromosome PGKB genes.tsv 0

Chromosomal
Start -
GRCh37.p13

PGKB genes.tsv 0

Chromosomal
Stop -
GRCh37.p13

PGKB genes.tsv 0

Chromosomal
Start - GRCh38.p7

PGKB genes.tsv 0

Chromosomal
Stop - GRCh38.p7

PGKB genes.tsv 0

PharmGKB
Accession Id

PGKB genes.tsv 0

Even though the similar recommended columns might
seem correct, there were inaccuracies identified in the
semantics such as column“symbol” (e.g.“AABT”), repre-
senting the approved gene symbol by HGNC, treated
as being identical to “hgnc_id”(e.g“12”),representing the
unique id created by HGNC to a particular symbol.
Table 6 shows the same example, using the second
method, where the two most similar recommended
columns are hgnc id’s (column “HGNC Id” is considered
almost identical with a 99% similarity). Therefore, the sec-
ond method is more semantically accurate since it can

Table 4 Structure of the neural network with embeddings

Layer Output Shape

Columns (Input Layer) (None,1)

Data (Input Layer) (None,1)

Column Embedding (None, 1, 50)

Data Embedding (None, 1, 50)

Dot product (None, 1, 1)

Reshape (None, 1)

Dense (None, 1)

https://github.com/WillKoehrsen/wikipedia-data-science/blob/master/notebooks/Book%20Recommendation%20System.ipynb
https://github.com/WillKoehrsen/wikipedia-data-science/blob/master/notebooks/Book%20Recommendation%20System.ipynb
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Table 5 Method 1 Similarity results: Top most similar columns
with “hgnc_id”

Columns Similarity

hgnc_id 1.0

symbol 1.0

Name 0.99

name 0.99

HGNC Id 0.98

Symbol 0.97

Gene Symbol 0.94

Chromosomal Start p.13 0.58

Chromosomal Stop p.13 0.57

identify columns that represent the same attribute (hgnc
id), and can differentiate from other attributes (such as
symbol which only has a 67% similarity).
The data was then split into an 80/20 training/test set,

in order to train the neural network with the purpose
of binary classification, therefore, to discover if the Gene
concept is present in the data.

SIENA
The final proposed framework, semi-automatic Seman-
tic Enhancement of Datasets using Concept Recognition
(SIENA), combines the two methods, gene concept recog-
nition and property search, respectively. Using the devel-
oped method for concept recognition, the class of the
dataset is identified as being gene, if the prediction is
positive. In addition to this, the gene concept is used
for finding the relevant properties by performing a prop-
erty search in BioPortal. The list of ontologies used in
the search in BioPortal can be restricted using the dis-
covered Gene concept. The ontologies chosen are the
ones that containGene concepts/classes (e.g HUGO,GO).
AberOWL [17] is used to discover a list of appropri-
ate ontologies, due to its ability of retrieving ontologies

Table 6 Method 2 Similarity with continuous indexation: : Top
most similar columns with “hgnc_id”

Columns Similarity

hgnc_id 1.0

HGNC Id 0.99

Symbol 0.67

Gene Symbol 0.67

Symbol 0.66

Chromosomal Start p.13 0.50

Chromosomal Stop p.13 0.45

Chromosomal Start p.17 0.44

Chromosomal Stop p.17 0.42

that use the searched term in their description. There-
fore, AberOWL can be used to retrieve a list of Gene
ontologies.
The list provided by AberOWL is used to perform a

restricted property search in BioPortal. The discovered
matches through this search are manually curated using
the method previously described. The first full match is
chosen for each column as property.
We generate generic RDF files using the Data2Services

tool. These generic RDF files are uploaded in GraphDB.
The identified matches for class and properties (using
SIENA) are added to the file using SPARQL update
queries. The overall process is summarized in Fig. 3.

Results
Annotation with BioPortal
Due to a missing gold standard for the used datasets, we
can not establish how semantically accurate the described
methods are, rather, just in terms of its completeness
in terms of finding any match. “We define a match as
a term (depending on the search method used, either a
class or property) found in BioPortal that could be used
to replace search term from the dataset”. The results of
the BioPortal search methods are evaluated using a cov-
erage computation metric. The formula involves small
variations, depending on the search method. The cover-
age represents the ratio between the number of columns
in the dataset that was covered (replaced) by the semantic
enhancement method and the total number of columns of
the dataset.

Class search
The coverage for class search was computed using the fol-
lowing formula: the total number of columns which had
any matches divided by the total number of columns, for
each dataset. As it can be observed in Table 7, the method
performs poorly, with an average coverage of 36%.

Property search
Due to the separation of matches into the three
categories (“Full Match”,“Semi-Match”,“No Match”), the
coverage for this method is computed differently com-
pared the one in the previous section. For each dataset,
the coverage is computed using the formula: divide the
number of columns which have any property matches as
“Full Match” category from BioPortal, with the total num-
ber of columns. The results are presented in Table 8. In
Table 9, the search was additionally restricted to a longest
matches search (the results are the exact match of the
keyword used for searching). As it can be observed from
both tables, the coverage of the search without the longest
match restriction is higher (40.3%) compared to the one
using longest match (13%) . In addition, the results for
the property search are better in the case of the HGNC
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Fig. 3 SIENA framework. Overview of the SIENA framework showing the combination of the concept recognition and restricted property search in
BioPortal methods

dataset, compared to the class search. The average cover-
age improved in the property search (40.3%) compared to
the class search (36%).

Concept recognition
The concept recognition through binary classification
model uses coverage and accuracy as metrics for the
evaluation.

Column name
The results are presented in the confusion matrix in
Table 10. The results of the classification are not high,
with the accuracy reaching only 58% as its highest value.
Furthermore, the classification seems biased to recognize
class zero which represents the gene concept not being
present. The percentages of mislabeling are fairly high
(over 40%). Due to the artificial nature of the expanded
dataset and the limitation of using only column names, the
method performs poorly overall.
We performed a manual analysis of false positives

and false negatives over a random data sample. A
common pattern in the set of false positives is column
names formed of a random set of characters such as
“idchromoSOMD”, “chromosoMARIANICHANAL”,
“CHRGURSHACHACHALCHIC”, “GENARENAC-
CENACCESENACE”, “acceSSioNPSEMEB”, which can
resemble to column names representing . In contrast, the
set of false negatives includes examples where full words
are part of the column name such as “Gene_Forms”,
“Gene ID”, “intermediate_filament_db”.

Table 7 Class search

Dataset Matches Coverage

HUGO 18 37%

CTD 4 36%

PGKB 6 35%

Average coverage 36%

Column name and value approach
Figure 4 shows the variation of the precision during 100
test iterations, using ANN. For each separate iteration, a
different random sample of the test set was selected. The
method performswell, given that the precision in each test
set never drops below 50%. The mean precision, consider-
ing all the performed tests is equal to 85%. This shows that
both the value and column name perform well in concept
recognition for a dataset.

SIENA
The results using the proposed framework are presented
in Table 11. Apart from the HGNC dataset, the coverage
improved for the CTD and PGKB datasets.
In Table 12, we can observe that, compared to the

other presented methods of annotation in this paper, the
proposed framework achieves the highest coverage.

Data quality assessment
Data quality is an important step in deciding the com-
patibility of datasets for certain tasks. Depending on the
task at hand, the required data quality might be differ-
ent, therefore a high data quality is not necessary for all
tasks [18]. For the purpose of a thorough data quality
assessment, the generic RDF files were enhanced using
(i)match results from the BioPortal Property Search, and
(ii) match results from the proposed framework. There-
fore each dataset was converted and stored in two separate
files.

Table 8 Property Search: Search performed in BioPortal with no
restrictions

Dataset Matches Coverage

HGNC 31 63%

CTD 3 29%

PGKB 5 29%

Average coverage 40.3%
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Table 9 LM Property Search: Restricted search using the longest
match option in BioPortal

Dataset Matches Coverage

HGNC 13 27%

CTD 0 0%

PGKB 2 12%

Average coverage 13%

Syntactic validity
The syntactic validity of the data was measured by the
errors present in the RDF syntax [19]. The used encoding
format, chosen through the Data2Services tool [2], was N-
Quads. During the uploading of the graphs on GraphDB11

(which is part of the Data2Services framework), they were
checked for syntax errors. The generic generated files did
not present any syntax errors. Likewise, the modification
of the graphs through SPARQL queries using the col-
lected terminology (either from the BioPortal Search or
the framework), did not cause any syntax errors. Table 13
presents the datasets overview collected from GraphDB.
Since the number of instances, classes and properties do
not change while using the two methods the numbers are
consistent, varying by dataset only.

Semantic accuracy
The semantic accuracy was analyzed through different
types of issues, concerning the reasoning aspect, one of
which is described in [19], specifically Ontology Hijack-
ing. Apart from this issue two others considerable ones are
added due to being present in the analyzed datasets and
relevant for semantic validity: (i) broad terminology and
(ii) poorly defined terminology from public ontologies.
Table 14 presents the results for each resultant dataset
from the two approaches (property search in BioPortal
and final framework). Broad terminology refers to prop-
erties found in public ontologies with a broad description.
The property “identifier”12 has the following definition:
“Recommended best practice is to identify the resource
by means of a string conforming to a formal identification
system.”. There are no other constraints on how or where
this property should be used. Therefore, both “gene id”
and “organism id” columns, belonging to the same dataset,
fit with the matched description. If the property is used in
both cases in the same dataset, there will be no distinction
between the types. As a result, instead of gaining semantic
meaning, the data is loosing a part of it.
Ontology hijacking , described in [19], is defined as the

usage of a property (or class) contrary to its description,
thus, affecting the reasoning process. These are presented

11Available for download at: https://www.ontotext.com/free-graphdb-
download, accessed on 11 January 2019
12Ontology available at: http://dublincore.org/2012/06/14/dcelements#
identifier, accessed on 11 January 2019

Table 10 Classification results using column names

True labels Accuracy

1 54% 46%

0 42% 58%

Predicted labels 1 0

in the column Ontology Hijacking in the Table 14. As
an example, property “symbol”13 has its range defined as:
parameters, species, species reference or compartment.
However, its role in the HGNC dataset was to represent
gene symbols.
The error of using undefined classes and properties is

presented in column Undefined terminology in Table 14.
This column refers to the terms that were created by
Data2Services during conversion, using column names to
create properties. Whenever the tested method could not
find a new suitable match to replace the generic property,
the original ones were preserved. As these properties were
automatically created by Data2Services, they do not exist
in any public ontology.
The lack of definition in some properties, or even any

other information, besides their label, makes some of the
retrieved properties, hard to assess and use. Although
they are part of a publicly available ontology and have a
suitable name for the task, assessing their correct usage
seems impossible. These are presented in columnMissing
definition.

Completeness
Property completeness, described in [18], was computed
as the total number of full matches divided by the total
number of matches. This was computed individually
for each dataset and for both annotation methods. The
results are presented in Table 15. In two out of the three
datasets, the trend followed in general is that complete-
ness is increased when the SIENA framework is used.
Even though the property search method retrieved more
matches, the majority of them were classified as “No
Matches”. Using the framework method, the relevancy of
the search is increased, therefore the gap between the “Full
matches” and the total number of resulting matches is
narrowing, improving the semantic accuracy.

Discussion
Although annotation through a biomedical ontology
repository might seem sufficient to find appropriate
matches when annotating a dataset, the method showed
poor results on its own in our experiments. Unrestricted
search on the portal generated an unfeasible number of
results to be analyzed. Therefore, restrictions through

13Ontology available at: http://identifiers.org/biomodels.vocabulary#symbol,
accessed on 11 January 2019

https://www.ontotext.com/free-graphdb-download
https://www.ontotext.com/free-graphdb-download
http://dublincore.org/2012/06/14/dcelements#identifier
http://dublincore.org/2012/06/14/dcelements#identifier
http://identifiers.org/biomodels.vocabulary#symbol
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Fig. 4 ANN precision results. Classification results using ANN; Precision over 100 test iterations

several parameters were introduced. Restricted search by
providing an appropriate ontology list performed best. As
ontology restriction is an important step in finding the
most relevant matches, the restriction approach plays a
crucial role in the matches’ search . The paper introduces
restriction with regard to the datatset’s concept, through
concept recognition prior to the search. Neural Network
Embeddings have proven to be successful for concept
recognition through classification on heterogeneous data.
In addition, during the training process it was discovered
that the training resulted in embeddings that could be
used as a separate method to provide column similarity
between different columns belonging to separate datasets.
However, the evaluation results show that data quality
issues are present when involving public ontologies ter-
minology. This can affect the data quality of the dataset
created using the framework’s results.
The limitations imposed by the chosen methods are

reflected in the selection of the input data. At themoment,
the classification model needs retraining in case the data
contains different attributes (not a Gene concept). There-
fore, data with unseen fields and types is unsuitable for

Table 11 Framework results

Dataset Matches Coverage

HGNC 31 63%

CTD 8 72.7%

PGKB 7 41%

Average coverage 58.9%

the model. In addition to the limited training, the model
performs binary classification of recognition of only the
gene concept, therefore other concepts can not be recog-
nized in the same dataset. The results of the methods are
missing a gold standard to be compared to, therefore their
accuracy can not be established as such.
Future work will explore additional training data to

allow the model to perform multi-classification (allow-
ing multiple concepts to be recognized), in order to cover
more biomedical concepts. Different methods of expan-
sion could be used for the artificial dataset (e.g synonyms
from WordNet14). Including the discovered measure for
column similarity in the framework might benefit the
annotation process, as similar columns could use the same
terminology. The measure could also be included in a
different framework that provides dataset comparisons.

Conclusion
In order to answer the proposed research question, a
novel semi-automated framework, SIENA, for seman-
tic enhancement of RDF data is described in the paper.
Using concept recognition combined with deep learning
techniques, which reach a mean accuracy of 85%, and a
biomedical ontology repository, SIENA achieves the high-
est results when compared to methods using only the Bio-
Portal annotator for semantic enhancement of data. The
proposed framework helps generic generated datasets to
reach their full potential of providing semantically mean-
ingful information.
14Available at: https://wordnet.princeton.edu/, accessed on 12 January 2019
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Table 12 Comparison results

Method Average coverage

BioPortal Class Search LM 36%

BioPortal Property Search 40.3%

BioPortal Property Search LM 13%

Framework 58.9%

Table 13 GraphDB data overview

Dataset Class Properties Instances

HGNC 1 49 10858

CTD 1 11 65535

PGKB 1 17 26994

Table 14 Data quality; Columns :Broad terminology (BT),
Ontology Hijacking (OH), Undefined terminology (UT), Missing
definition (MD), Total Added properties (TAP), Total Properties (TP)

Dataset BT OH UT MD TAP TAP

CTD Property Search 3 0 8 0 3 11

CTD Framework 3 0 4 0 7 11

PGKB Property Search 3 1 12 1 5 17

PGKB Framework 0 0 0 2 7 17

HGNC Property Search 0 0 18 0 31 49

HGNC Framework 3 0 18 0 31 49

Table 15 Completeness results

Dataset Completeness

CTD Property Search 22%

CTD Framework 12.8%

PGKB Property Search 2.5%

PGKB Framework 13.3%

HGNC Property Search LM 14.28%

HGNC Framework 17.94%
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