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Abstract

Background: Biomedical ontologies contain a wealth of metadata that constitutes a fundamental infrastructural
resource for text mining. For several reasons, redundancies exist in the ontology ecosystem, which lead to the same
entities being described by several concepts in the same or similar contexts across several ontologies. While these
concepts describe the same entities, they contain different sets of complementary metadata. Linking these definitions
to make use of their combined metadata could lead to improved performance in ontology-based information
retrieval, extraction, and analysis tasks.

Results: We develop and present an algorithm that expands the set of labels associated with an ontology class using
a combination of strict lexical matching and cross-ontology reasoner-enabled equivalency queries. Across all disease
terms in the Disease Ontology, the approach found 51,362 additional labels, more than tripling the number defined
by the ontology itself. Manual validation by a clinical expert on a random sampling of expanded synonyms over the
Human Phenotype Ontology yielded a precision of 0.912. Furthermore, we found that annotating patient visits in
MIMIC-III with an extended set of Disease Ontology labels led to semantic similarity score derived from those labels
being a significantly better predictor of matching first diagnosis, with a mean average precision of 0.88 for the
unexpanded set of annotations, and 0.913 for the expanded set.

Conclusions: Inter-ontology synonym expansion can lead to a vast increase in the scale of vocabulary available for
text mining applications. While the accuracy of the extended vocabulary is not perfect, it nevertheless led to a
significantly improved ontology-based characterisation of patients from text in one setting. Furthermore, where
run-on error is not acceptable, the technique can be used to provide candidate synonyms which can be checked by a
domain expert.
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Background
Metadata are a fundamental feature of biomedical ontolo-
gies, describing a wealth of natural language information
in the form of labels and descriptions [1]. Ontologies for-
malized in theWeb Ontology Language (OWL) [2] imple-
ment metadata in the form of annotation properties, and
these can be used to describe multiple natural language
labels for a single term, forming a collection of words and
phrases that humans use to signify the concept. Open
Biomedical Ontologies (OBO) [3] and the Information
Artifact Ontology (IAO) [4] define a series of conventional
annotation properties that can be used for the expression
of labels and synonyms. These features are widely used: an
investigation of ontologies in BioPortal found that 90% of
classes had a label associated with them [5]. For example,
as of 2017 the Human Phenotype Ontology (HP) [6] con-
tained 14,328 synonyms for 11,813 classes [7]. The labels
associated with ontology terms constitute a controlled
domain vocabulary [1].
The domain vocabulary makes ontologies a valuable

resource for text mining, particularly in information
retrieval and extraction tasks [8]. The natural language
labels associated with ontology classes can be used to
identify where a class is mentioned in text. Furthermore,
association of entities described in text with ontologies
enables their integration with other datasets annotated by
the same ontologies, as well as caters to the application of
ontology-based analysis techniques such as semantic sim-
ilarity [9, 10], semantic datamining [11], machine learning
[12], or clustering [13].
However, due to limitations on resources for expert

curation of ontologies and the sheer scale of their con-
tents, the labels obtainable from single ontologies are
not exhaustive. Combined with the tendency for alterna-
tive presentation of semantically equivalent concepts in
biomedical text [14], ontology labels are not always a good
fit for text corpora that mention the entities described by
ontology concepts [15]. By expanding the set of synonyms
in an ontology, particularly with synonyms that provide
a better fit for text corpora, the performance of natural
language processing tasks that depend on them may be
improved.
This potential is reflected by previous work in the

field. One approach that used analysis of existing syn-
onyms across ontology hierarchy to determine new syn-
onyms reported an increase in performance for the
task of retrieving articles from a literature repository
[16]. Another rule-based synonym expansion approach
to extending the Gene Ontology showed improved per-
formance in concept recognition tasks [17]. A combined
machine-learning and rule-based approach to learning
new HP synonyms from manually annotated PubMed
abstracts improved performance of an annotation task
over a gold standard text corpus [18]. These methods

combine label components with label components from
upper level classes to generate additional candidate syn-
onyms, and search text corpora to limit those to true
synonyms.
Ontology-based annotation software such as OBO

Annotator [19], ConceptMapper [20], and the NCBO
Annotator [21] contain routines to consider rule-based
morphological and positional transformations of terms
to increase concept recognition recall. Parameters that
control the use of these features have a strong influence
on annotation performance [22]. Previous work has also
investigated synonym acquisition and derivation for the
purposes of improving the performance of lexical ontol-
ogy matching and alignment tasks [23]. Outside of auto-
mated synonym generation, organised efforts have been
made to manually extend an ontology’s synonyms for a
particular purpose. For example, HP was expanded with
layperson synonyms to enable its use in applications that
interact directly with patients [24].
However, no work to our knowledge has consid-

ered linking different ontology classes for the purposes
of vocabulary expansion. Many biomedical entities are
described by several classes in equivalent or similar
contexts across several ontologies. For example, terms
describing hypertension exist in many ontologies and
medical terminologies. The hypertension (HP:0000822)
term describes the condition in the context of a pheno-
type, while hypertension (DOID:10763) from the Disease
Ontology (DO) [25] describes it in the context of a dis-
ease (although the difference between a disease and a
phenotype is disputed). Specific-disease or application
ontologies also extend upon definitions provided by gen-
eral domain ontologies. For example, the Hypertension
Ontology (HTN) [26] extends the HP and DO hyper-
tension classes, adding additional information including
labels. Furthermore, the subtle distinctions between con-
cepts that biomedical ontologies capture, including phe-
notype versus disease, do not necessarily influence many
of the commonly applied text mining tasks, because these
contexts share the same labels.
We hypothesise that because ontologies are constructed

with different focuses, ontologies that define concepts
describing the same real-world entities will contain differ-
ent, but valid, synonyms for a particular context. These
focuses consist in contexts, domain experts, and source
material. By considering all of these terms, we can con-
struct extended vocabularies that may improve the power
of ontology-based text mining tasks.
In this paper, we describe and implement a syn-

onym expansion approach that combines lexical matching
and semantic equivalency to obtain new synonyms for
biomedical concepts. The synonym expansion algorithm
derives additional synonyms for a class by matching it
with classes from other ontologies, making use of the
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AberOWL ontology reasoning framework [27]. We use
the approach to extend several ontology vocabularies, and
evaluate them both manually, and in an ontology-based
patient characterisation task.

Results
The synonym expansion algorithm is available as part
of the Komenti text mining framework, which is avail-
able under an open source licence at https://github.
com/reality/komenti, while the files used for valida-
tion are available at https://github.com/reality/synonym_
expansion_validation.

Algorithm
The synonym expansion algorithm, including the two
matching methods and steps to prune candidate syn-
onyms, is described below. The process is performed for
every input class given (in this context, ‘every ontology’
is any of the ontologies that are included in AberOWL).
An input class is any ontology class for which we want to
obtain additional synonyms.

1 Extract the labels and synonyms of any classes in any
ontology with a label or synonym that exactly
matches the first label of the input class.

2 Run an equivalency query against every ontology
using the Internationalised Resource Identifier (IRI)
of the input class, extracting labels and synonyms for
any classes returned.

3 Of the candidate synonyms produced by the first two
steps, discard any that were:

• Defined in ontologies that were found to
produce incorrect synonyms.

• Have the form of a term identifier.
• Contain the input class label as a substring.

The algorithm uses two different methods for identi-
fying matching classes, specified in steps one and two
above. Strict lexical matching is used to identify otherwise
unlinked terms that contain a label which is the same as
the first label of the input class. Only the first label for the
input class is used, because we found that the additional
labels and synonyms were more likely to match classes
which had different meanings, and led to more incorrect
candidate synonyms.Mapping terms across ontologies via
shared labels or metadata is a well established technique
used in ontology alignment [28].
Equivalency queries are used to obtain additional can-

didate synonyms from classes that are equivalent to the
input class, but do not share the same first label. In OWL
ontologies, classes are uniquely identified by their IRIs,
and classes that share the same IRI are automatically con-
sidered equivalent by a reasoner. This can be used to
match classes in the case that another use of the same class

is not expressed with the same first label in another ontol-
ogy, occurring due to ontologies becoming out of sync, or
intentional omission of annotation properties in a refer-
encing class. In addition, equivalencies between different
classes can be directly asserted via axioms in an ontology,
or can appear as the result of a logical inference. Since
the classes are semantically equivalent, we can use the
metadata, including labels, of the other class to refer to
the original. To retrieve equivalent classes, the AberOWL
API runs an equivalency query against each ontology in
the repository, which uses the description logic reasoner
to obtain a list of matching classes, which are used to
contribute additional synonyms.
After the main matching stage, the set of labels is

pruned down to remove incorrect values. Some ontolo-
gies include term identifiers as labels which cannot be
exploited by text-mining applications. Therefore, candi-
date synonyms that contained a colon or underscore were
removed. The algorithm also removes labels sourced from
GO-PLUS [29], MONDO [30], CCONT [31], and phenX
[32], because we found these ontologies consistently pro-
duced incorrect synonyms. Incorrect synonyms could be
contained in these ontologies due to human error, or in the
case of large meta-ontologies such as MONDO, as a result
of algorithmic error in asserting equivalencies between
phenotypes across species. We also removed labels that
include the input label as a substring, as these add no
value to concept recognition systems (as the smaller string
would match, making the longer string redundant).

Ontology expansion
We applied the vocabulary expansion algorithm to all
9,908 subclasses of disease (DOID:4) in the Disease Ontol-
ogy (DO). DO itself asserts 24,878 labels and synonyms
for these classes. The expanded DO vocabulary contained
76,240 labels and synonyms. We also applied the algo-
rithm to the 14,406 non-obsolete subclasses of Phenotypic
abnormality (HP:0000118) in HP. HP itself asserts 29,805
labels and synonyms. The number of labels and synonyms
following expansion was 54,765. Therefore, the algorithm
found 24,960 additional synonyms for terms in HP.
For the DO term hypertension (DOID:10763), 28 labels

and synonyms were found. 3 of these were from DO
itself. The first two steps of the algorithm, which obtains
candidate synonyms, found 70 synonyms not including
the word ‘hypertension’ itself. Of these, 56 were obtained
via lexical matching, and 14 by equivalency query. The
sources of these synonyms are summarised in Table 1.
After making the list unique, there were 28 labels and syn-
onyms. Therefore, the algorithm found 25 new synonyms,
that were not asserted in the original DO term.
In this example, there were no synonyms uniquely found

via equivalency. However, if we use bradycardia as the
input class, we can identify two new synonyms from

https://github.com/reality/komenti
https://github.com/reality/komenti
https://github.com/reality/synonym_expansion_validation
https://github.com/reality/synonym_expansion_validation
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Table 1 Source of the 70 non-unique synonyms found for the
term hypertension (DOID:10763) per-ontology

Ontology Source Number of
Synonyms

GWAS_EFO_SKOS Lexical 16

MESH Lexical 4

HTN [26] Lexical, Equivalency 3 (2)

CRISP Lexical 1

CCTOO [33] Lexical 6

ONTONEO Lexical, Equivalency 4 (3)

NCIT [34] Lexical 6

COSTART Lexical 7

BAO Lexical, Equivalency 2

CSSO Lexical 2

ODAE Lexical, Equivalency 2

DO – 3

DTO Equivalency 2

Total – 70

Total Unique – 28

Of these synonyms, 28 were unique. The source column describes which class
matching methods were used to match classes that contributed synonyms from the
external ontology. Lexical refers to when classes were found through a matching
first label, and equivalency through a semantic equivalency query. Bracketed
numbers, where given, are the labels found by the equivalency method only

PhenomeNET [35], bradyrhythmia and reduced heart
rate, which were not otherwise obtained via lexical match-
ing. This is because PhenomeNET establishes a semantic
equivalency between decreased heart rate (MP:0005333)
and bradycardia, which does not share its first label with
the HP class.

Manual validation
To evaluate the correctness of synonyms in the expansion
of HP, a clinical expert manually evaluated 866 novel syn-
onyms found for 500 randomly selected terms. Table 2
summarises the results, which show a precision of 0.912.
195 terms were marked as ambiguous, in the case that
the synonyms were in a foreign language or the clinician
did not have enough expertise of the term to determine
whether the synonym was correct. Of these, the vast
majority (161) were non-English labels, while the remain-
ing 32 were English language synonyms the clinician could
not judge.

Annotation
To initially evaluate whether the extended vocabularies
could lead to more annotations of biomedical text, which
could lead to greater performance at information retrieval
and extraction tasks, we annotated the text associated
with 1,000 randomly sampled MIMIC-III patients. We
built a vocabulary using all non-obsolete subclasses of
Abnormality of the cardiovascular system (HP:0011025),
and compared the number of annotations before and after
vocabulary expansion using our method. HP asserts 2,205
labels and synonyms for these classes, while the expanded
set of labels numbers 5,336. The results are summarised
in Table 3.

Patient characterisation
While the annotation task showed that our method
can lead to more annotations, this does not necessarily
mean that those annotations were correct or informa-
tive. Indeed, the manual validation indicates that there is
some level of error associated with the process. To iden-
tify whether the annotations were informative and useful,
we evaluated how the increased number of annotations
affected performance on a downstream task.
In particular, we evaluated whether the additional ontol-

ogy annotations yielded by the vocabulary expansion pro-
cess led to better performance in using semantic similarity
calculated from those annotations to predict shared pri-
mary diagnosis within the MIMIC-III dataset [36]. We
annotated a sample of 1,000 patient visits using classes
from the Disease Ontology (DO) that contained cross-
references to ICD-9, both before and after label expan-
sion using the presented algorithm. We then used those
annotations to calculate a measure of semantic similarity
between the patient visits, and evaluated the rankings with
respect to whether highly ranked patient visits shared the
primary diagnosis ICD-9 code (which each patient visit
is annotated with in MIMIC), including those we did not
find through DO cross-references (and were therefore not
annotated).
The semantic similarity approach allows us to match

patients who share a primary diagnosis even if they are not
annotated directly with that disease (in this case, if we did
not have an ICD-9 mapping for that disease), under the
assumption patients who share the same diagnosis will be
more similar on the basis of auxiliary symptoms associ-
ated with the disease they share. If we can more effectively
annotate patients with the conditions that we do know

Table 2 Metrics for clinical expert validation of 866 generated synonyms for 500 terms

Terms Total Synonyms TP FP Non-English Uncertain Precision

500 866 614 59 161 32 0.912 (0.709)

Synonyms already included in HP were not included in the validation. Synonyms were either marked correct, incorrect, non-English, or uncertain. Uncertain was chosen if the
validator did not have enough expertise to confidently judge the synonym. Precision is calculated with TP and FP columns of the table, while the figure in parentheses is
calculated using the sum of the FP, Non-English, Uncertain columns as false positives, to illustrate the worst case scenario, where every unknown synonym is actually incorrect
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Table 3 Amount of labels for Abnormality of the cardiovascular
system (HP:0011025) before and after synonym expansion, and
the amount of annotations made of text associated with 1,000
MIMIC patients with these vocabularies

Vocabulary Labels MIMIC-III Annotations

HP Labels 2,205 1,104

Expanded HP Labels 5,336 1,447

about (present in our annotation vocabulary), then we
should be able to rank them together in a way that is better
predictive of a shared primary diagnosis.
We used themean reciprocal rank and themean average

precision to measure how well semantic similarity rank-
ings predicted matching first diagnoses. The results of
the ranking task are shown in Table 4, with the expanded
vocabulary leading to an increased performance in both
cases. To determine whether the result was significantly
different, we used theWilcoxon rank-sum test to compare
the ranks of patient similarity pairs with matching first
diagnoses, yielding a p-value of 0.0007063.

Discussion
The results clearly demonstrate that for two biomedi-
cal ontologies, our approach vastly increases the amount
of labels and synonyms available for their terms. Using
hypertension as an example, we demonstrated that a range
of different ontologies contribute additional synonyms,
leading to 25 new unique labels for the term. By leveraging
these we can effectively enrich vocabularies for terms.
While we only manually validated a small subset of

terms from HP, this indicated a fairly high precision
for candidate terms. Through analysis of the false pos-
itives, we found that many of them were caused by
errors in the ontologies that the synonyms were sourced
from. For example, several synonyms for motor aphasia
(HP:0002427) were marked as incorrect since they refer to
dysphasia, including “Broca Dysphasia.” Aphasia and dys-
phasia are different conditions. The first refers to a partial
loss of language, and the latter to a full loss of language. All
of these incorrect synonyms were sourced from Aphasia,
Broca (MESH:D001039) in MESH.

Table 4 Comparison of the annotations of texts for 1,000
randomly sampled MIMIC-III patient visits before and after
expansion, and their associated performance with respect to
how predictive semantic similarity scores calculated from the
annotations were of shared first diagnosis

Investigation Annotations MAP MRR

Unexpanded 1,380,216 0.88 0.947

Expanded 2,088,765 0.913 0.986

Though this is not reflected in the results, we also
found during the development of the algorithm that
certain ontologies produced consistently incorrect syn-
onyms. Several of these ontologies are meta-ontologies,
automatically constructed from several ontologies using
alignment and integration methods, and it is possible that
errors in that process were the cause of the incorrect
synonyms. Certain annotation properties were also incor-
rectly detailed by the AberOWL API as being labels, such
as europe pmc and kegg compound. Candidate synonyms
defined by problematic ontologies or matching the list of
annotation properties are automatically removed. Expan-
sion of the list of ontologies discluded from the sources
for labels might further improve the precision of the algo-
rithm, but may potentially come at the cost of correct
synonyms.
Furthermore, the manual validation revealed that many

of the returned synonyms were in non-English languages.
While OWL ontologies do allow for parameters that dis-
tinguish which language the property is in, AberOWL
does not index them. Therefore, it is not currently possi-
ble to distinguish between English and non-English syn-
onyms. These items were marked as ambiguous, and not
counted in the overall precision. This could also be con-
trolled partially by discluding additional ontologies from
results. For example, WHOFRE is a non-ontology map-
ping of French vocabulary to UMLS. For any uses where
a reduced vocabulary accuracy is not acceptable, the algo-
rithm should be used as a candidate label generator, to be
checked by a domain expert before further use.
We also demonstrated that our expansion of the HP

vocabulary increases the amount of phenotype annota-
tions produced for MIMIC-III patient visit text records.
While we did not directly validate the correctness of
these annotations, by necessity a time-consuming task, we
explored whether the additional synonyms would improve
performance in a downstream task in our final evalua-
tion. This experimental evaluation showed a clear and
significant increase for a patient stratification task over
MIMIC-III, identifying shared first diagnosis via semantic
similarity score derived from ontology annotations. This
indicates that for certain tasks, our approach can increase
the quality of entity characterisations gained by informa-
tion extraction, and in turn the power of ontology-based
analyses, even without manual validation of the produced
labels.

Limitations and future work
The most important potential limitation of the algorithm
itself is that it violates the notion that the IRI of a con-
cept uniquely identifies it, rather than its name. This is
due to the fact that OWL ontologies do not follow the
unique name assumption. False positives, in theory, could
be generated by a lexical match on a homonym, which
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then has different synonyms itself. We believe, however,
that this effect should be limited in the case of a highly
specific biomedical language. Furthermore, any such error
would be most likely be mitigated by the dataset context
limitation. For example, synonyms derived from different
contexts, incorrectly associated with a medical concept,
are unlikely to be present within clinical letters.
False synonyms could also be removed on the basis of

a corpus search. For example, if a candidate synonym
never, or, at least, rarely, appears in the same document as
another label, used for this term across a literature corpus,
it is possible that it refers to a different concept from a dis-
joint context. This could also be performed by analysing
themetadata of text corpora. For example, if two terms are
never, or, at least, rarely, associated with literature from
the same journals, the same field, or the same content
tags, it is possible they have different meanings. In a fur-
ther study, we would investigate whether synonymy can
be identified using word embeddings.
While equivalency returns fewer synonyms, and not

necessarily many that are not also obtained by lexical
matching, they can also be treated with a higher level of
confidence. For this reason, using only this method could
be considered as a parameter in the case that a higher
accuracy is required.

Conclusions
We have demonstrated that an inter-ontology approach
to vocabulary expansion is a powerful method for adding
informative labels and synonyms to terms used in text
mining. These synonyms are found with a fairly high pre-
cision, and led to a greater rate of document retrieval
in clinical and literature settings. Most importantly, we
have shown that the approach improves the power of an
ontology-based characterisation and analysis of patients
via clinical text.

Methods
All files described in the validation (excluding theMIMIC-
III data files), along with the commands necessary to
repeat the experiments are available at https://github.
com/reality/synonym_expansion_validation/.

Algorithm
We implemented the algorithm as a module in the
Komenti semantic text mining framework using the
Groovy programming language [37]. It makes use of the
AberOWL API [27] for label matching and semantic
queries, documented at http://www.aber-owl.net/docs/.
OWL ontologies use a number of conventional anno-

tation properties to define labels and synonyms. These
span a range of confidence and degree of synonymy. In
this paper, we consider frequently used annotation prop-
erties, summarised in Table 5. These are the annotation

properties consolidated into the ‘synonym’ property by the
AberOWL API. Another oboInOwl synonym, hasRelat-
edSynonym is excluded, because the labels provided by
these synonyms are too imprecise.

Manual validation
To evaluate the performance of the algorithm, we ran-
domly selected 500 classes from the expanded version
of HP for manual validation. Synonyms already asserted
by HP were removed from the set, because they were
already assumed to be correct, and would not contribute
to measuring the performance of the synonym expansion
algorithm. A clinical expert (WB) marked each synonym
as correct, incorrect, or ambiguous. The expert was asked
to answer correctly or incorrectly on the basis: “if a patient
has synonym, would it also be true that they have orig-
inal label?” Entries were marked as ambiguous if the
synonym was in a different language, or the validator oth-
erwise did not have enough knowledge of the phenotype
to determine whether or not the synonym was correct.

Annotation
We used the Komenti semantic text mining frame-
work, which implements Stanford CoreNLP’s RegexNER
[38] to annotate 1,000 randomly sampled entries from
the NOTEEVENTS table in MIMIC-III (MIMIC) [39].
MIMIC is a freely available healthcare database, contain-
ing a variety of structured and unstructured information
concerning around 60,000 admissions to critical care ser-
vices [36]. We annotated the sample with all subclasses of
Abnormality of the cardiovascular system (HP:0011025),
comparing the number of annotations before and after
synonym expansion. This investigation was performed on
17/01/2020.

Patient characterisation
We sampled 1,000 patient visits from the MIMIC-III (dis-
tinct from those used in the annotation experiment). We
then concatenated all text records for each patient visit
from the NOTEEVENTS table into one text file, and
pre-processed the text to remove newlines, improve sen-
tence delineation, and lemmatise words. We also retained
the primary diagnosis, which was the first listed ICD-9
code in the DIAGNOSES_ICD table. These codes are pro-
duced by clinical coding specialists, by examining the texts
associated with the visit.
We limited the classes considered for our annotation

vocabulary to those whichDO contained a database cross-
reference to ICD-9, of which there were 2,118. This was
to reduce noise from terms not represented in ICD-9.
We obtained the unexpanded and expanded synonyms for
these terms on 08/07/2020. Both sets of labels were also
lemmatised (both lemmatised and unlemmatised forms
were used for annotation).

https://github.com/reality/synonym_expansion_validation/
https://github.com/reality/synonym_expansion_validation/
http://www.aber-owl.net/docs/
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Table 5 Summary of conventionally used annotation properties considered in this experiment

Annotation Property Identifier Definition

label rdfs:label “a human-readable version of a resource’s name [40].”

altLabel skos:core#altLabel “An alternative lexical label for a resource [41].”

has_exact_synonym hasExactSynonym “An alias in which the alias exhibits true synonymy [42].”

has_narrow_synonym hasNarrowSynonym “An alias in which the alias is narrower than the primary class name. Example: pyrimidine-dimer repair

by photolyase is a narrow synonym of photoreactive repair [42].”

has_broad_synonym hasBroadSynonym “An alias in which the alias is broader than the primary class name. Example: cell division is a broad

synonym of cytokinesis [42].”

alternative term IAO_0000118 “An alternative name for a class or property which means the same thing as the preferred name

(semantically equivalent) [4].”

Definitions come from the description of the annotation properties in their respective top-level ontologies.

The Komenti semantic text-mining framework was used
to annotate the text associated with each patient visit. As
before, this made use of the CoreNLP RegexNER anno-
tator [38]. Negated annotations were excluded using the
komenti-negation algorithm [43]. We then used the set of
terms associated with it to produce a semantic similarity
matrix for patient visits, using the Resnik measure of pair-
wise similarity for each annotated term [10], normalised
into a groupwise measure using the best match average
method [9]. Information content was calculated using the
probability of the term appearing as an annotation in the
totality of the set of annotations [10]. The similaritymatrix
was computed using the Semantic Measures Library [44].
We evaluated the similarity matrix using mean recipro-

cal rank and mean average precision to measure perfor-
mance in predicting shared primary patient diagnosis. A
true case was considered to be whether a pair of patient
visits had the same primary diagnosis (as per the MIMIC-
III database). For mean average precision, we considered
only the 10 most similar patients for each patient. The
p-value was calculated using the built-in wilcoxon.test
function of R version 3.4.4 [45].
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