
SOFTWARE Open Access

ResidueFinder: extracting individual residue
mentions from protein literature
Ton E Becker1 and Eric Jakobsson1,2*

Abstract

Background: The revolution in molecular biology has shown how protein function and structure are based on
specific sequences of amino acids. Thus, an important feature in many papers is the mention of the significance of
individual amino acids in the context of the entire sequence of the protein. MutationFinder is a widely used
program for finding mentions of specific mutations in texts. We report on augmenting the positive attributes of
MutationFinder with a more inclusive regular expression list to create ResidueFinder, which finds mentions of native
amino acids as well as mutations. We also consider parameter options for both ResidueFinder and MutationFinder
to explore trade-offs between precision, recall, and computational efficiency. We test our methods and software in
full text as well as abstracts.

Results: We find there is much more variety of formats for mentioning residues in the entire text of papers than in
abstracts alone. Failure to take these multiple formats into account results in many false negatives in the program.
Since MutationFinder, like several other programs, was primarily tested on abstracts, we found it necessary to build
an expanded regular expression list to achieve acceptable recall in full text searches. We also discovered a number
of artifacts arising from PDF to text conversion, which we wrote elements in the regular expression library to
address. Taking into account those factors resulted in high recall on randomly selected primary research articles. We
also developed a streamlined regular expression (called “cut”) which enables a several hundredfold speedup in both
MutationFinder and ResidueFinder with only a modest compromise of recall. All regular expressions were tested
using expanded F-measure statistics, i.e., we compute Fβ for various values of where the larger the value of β the
more recall is weighted, the smaller the value of β the more precision is weighted.

Conclusions: ResidueFinder is a simple, effective, and efficient program for finding individual residue mentions in
primary literature starting with text files, implemented in Python, and available in SourceForge.net. The most
computationally efficient versions of ResidueFinder could enable creation and maintenance of a database of residue
mentions encompassing all articles in PubMed.

Keywords: Amino Acid Residue, Mutation, Point Mutation, Natural Language Processing, Text Mining,
MutationFinder, Bioinformatics
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Background
The sequence of amino acids in a protein is known to
affect the functioning of the protein. Sometimes the
identity of an individual amino acid may have a dramatic
effect. This is true for some diseases such as sickle cell
disease [1], cystic fibrosis [2], and Huntington’s Disease
(repeat of a single amino acid) [3]. A major change in
the function of a protein is exemplified by switching the
selectivity of an ion channel between sodium and cal-
cium[4] or inducing lithium sensitivity in an important
enzyme[5]. While these cited effects are particularly dra-
matic, it is likely that many other effects of identities of
single amino acids, or groups of amino acids, are simi-
larly important. However, the importance may not yet
be recognized. In many cases identities of individual
amino acids are indicated in research papers. While da-
tabases such as UniProtKB [6] contain comprehensive
complete amino acid sequences of proteins, no such
comprehensive database exists of amino acid mentions
in research papers, which would have the added advan-
tage of context provided in the body of the papers. Our
study presents a protocol, implemented in Python code,
for identifying individual amino acid mentions in papers.
The protocol may be used for searching the PMC
(PubMed Central®) database for amino acid mentions
and could be used in construction of a comprehensive
database of such mentions.
Automated mining of biological literature for signifi-

cant facts and concepts is a challenging area of bioinfor-
matics, due to the variation in terminology and syntax
[7]. Yet such mining is vital to progress, as the corpus of
literature is constantly expanding, while the brains of re-
searchers who must take prior results into account are
not. Thus, we are in danger of losing, or wasting re-
sources rediscovering, old knowledge. One particular
type of knowledge whose volume has exploded in recent
decades consists of the effects of individual amino acids
on function of biomolecules. These effects are revealed
in different forms of evidence, including variation and
conservation patterns throughout protein evolution, and
site-directed mutagenesis experiments.
Much of the work describing the efforts to mine lit-

erature on individual amino acids is reviewed by [8],
and the reader is referred to that work for detailed
background. Klein et al. [9] proposed an infrastruc-
ture for evaluation of programs that identify muta-
tions. Much of the previous work involves identifying
mutations. MutationFinder (MF) is a prime example
of a tool for such identification by Caporaso et al.
[10] and has been used by multiple authors [11–17].
As an example, the tool SETH integrates MF with
other complementary protocols for identifying muta-
tions and adds modules for normalization to dbSNP
and UniProt [18].

Other researchers have developed their own tools and
suggested standards for identifying mutations [19–32] A
few researchers have developed and described the oper-
ation of tools for identifying individual amino acids with-
out regard to mutations [33, 34].
Our goal in the present work is (1) to construct and

present an open readily modifiable program for identifi-
cation of individual amino acids extracted from the lit-
erature, and (2) to explore choices that affect precision,
recall, and speed. The program is built on MF, with
modifications to search for residue mentions rather than
mutations.
This work expands the capabilities of MF in three di-

rections. (1) It extends recognition from mutations to all
residue mentions, (2) it has an expanded regular expres-
sion(regex) that covers more variations in the style of
amino acid mentions that occur in scholarly articles, and
therefore scores well on complete articles as well as ab-
stracts, and (3) it includes a choice of regex (“cut”) that
permits computational speedup by a factor of several
hundred for finding mutation or residue mentions, with
only a modest loss of recall. The user may select from a
number of regexes depending on the desired type of
output.
Another source of individual amino mentions in pro-

teins is the UniProtKB database. To do a search in PMC
for amino acid mentions centered around a particular
protein (each UniProtKB entry is centered around a sin-
gle protein) we add the protein identifiers to the filter
term to search for amino acid mentions. To illustrate
this, we used the search term ‘P07900’ to find papers
about heat shock protein. The very first paper [35] was
not mentioned in the UniProtKB entry; ResidueFin-
der(RF) found 13 true positive amino acid mentions in
that paper alone. The UniProtKB entry includes only five
mentions from four articles, none of which are in the
above-cited paper.
In a more extensive evaluation of a UniProtKB search,

we consider our previous work [36], in what we discov-
ered from the Shaker channel (UniProtKB P08510).
There were 299 amino acid mentions in the literature
while the UniProtKB page only contains 11.
We conclude that, in at least some cases, our methods

will uncover amino acid mentions that would not be re-
vealed by searching the UniProtKB database.

Implementation
The program utilizes the same implementation as MF,
command line Python 2.7 across all platforms.
The MF code was modified in the following ways:

� Changing the basic format of the search object from
a mutation to a residue.
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� Accepting single digit as well as multiple-digit se-
quence numbers. This change improves recall, but it
reduces precision substantially. We judge that this
trade-off well worth while because otherwise we
would be systematically throwing away mentions of
a class of amino acids; that is, those near the begin-
ning of the protein sequence.

� Production of a simplified output file. The simplified
file only reports one entry for each unique residue or
mutation mention in the article, rather than including
each mention as a separate entry, and is thus easy to
read quickly and to use for scoring the performance
of the program. The fact that a residue is mentioned
in an article provides a good reason to read the article,
so as a default we report full statistics for unique
mentions only. However, we retain as an option the
ability to report all instances of a particular mention
in each document, as a user choice.

� Adding regular expression (regex) files to
accommodate a broad range of residue mention
formats.

� A choice of regular expression files to accommodate
user preferences for precision versus recall, and for
recall versus computational efficiency. All regexes
used in this study are provided in Additional
Materials as .txt files.

.
We adopt a performance standard based on the full

text of journal articles, in addition to the abstracts-only
text that was reported in Reference [10]. The behavior of
the program is tested on different sets of papers, as
follows:
Paper Set I: We report a detailed performance on 20

complete articles that are obtained in PDF format ran-
domly selected from 1278 papers describing voltage
gated potassium channel proteins [36]. These 20 papers
were examined in exhaustive detail for all mentions of
specific residues. Automated performance was compared
to manual inspection informed by deep familiarity on
the part of the authors with this protein family.
Paper Set II: Development set, these were abstracts

used by MutationFinder to develop that program [10].
Paper Set III: Test set, these were abstracts used by

MF to do a blind test on the performance of MF [10].
Paper Set IV: 100 complete articles were derived by

the following procedure: All PMCID entries in the PMC
database were searched automatically using the key-
words “amino acid”, “residue”, “motif”, “sequence”, “pro-
tein”. Entries returned by one or more of those
keywords were shuffled into a random order. They were
scanned manually for at least one mention of an amino
acid until 100 amino acid mentioning articles were re-
trieved. This required manually searching 489 articles.

(We found that the keyword screening was necessary to
reduce the search space. Without such screening, only 3
out of 100 randomly selected PMCID’s were found to
represent research articles mentioning amino acids.)
Paper Set V: 20 randomly selected articles from Set IV

to measure the relative performance of a full count of all
mentions of residues in a paper, as opposed to verifica-
tion that a residue is mentioned at least once in a paper.
Paper Set VI: The corpora underlying Verspoor et al.

[34], for purpose of comparing our results with theirs.
Other data sets in addition to Paper Sets I through VI

were also tested and the results can be seen in Add-
itional Materials. Also, for Paper Set I, the exact reasons
and samples of False Negatives, True Positives, and False
Positives are shown in Additional Materials, in the high-
lights tab of Additional File 2.xlsx.
The regexes tested were as follows:

� Regex 1 was analogous to the regex used in MF. MF
finds the equivalent of a residue identifier followed
immediately by a number indicating the location in
the protein immediately followed by a second
residue (the mutation) identifier. Regex 1 in RF is
identical except that the second residue identifier is
not required for a positive identification. Regex 1
was tested in Paper Sets I, II, and III.

� Regex 2 is Regex 1 plus allowing a space between
the first residue identifier and the number indicating
the location in the protein. Regex 2 was tested in
Paper Set I. Recall was improved and precision
degraded relative to Regex 1. Performance was in
every way intermediate between Regex 1 and Regex
3. Results for Regex 2 available in additional data.

� Regex 3 adds an allowance of essentially any
expression that includes a capitol letter followed by
a number with no consideration for what is
immediately before the capitol letter or after the
number. Regex 3 was tested in Paper Sets I, II, III,
IV, V, and VI. A modified Regex 3 voided out 3
individual patterns to avoid excessive redundancy of
return when reporting full count was tested on
Paper Sets V and VI.

� “Cut” versions of several of the above, formed by
removing all components of each regex except those
which reflect the most common nomenclature for
residue and mutation mention. The “cut” regexes
provide a several hundredfold speedup with only
modest penalty in recall. Cut versions were tested on
Test Sets I, II, III, and IV. We also created and tested
a cut version of the MF regex and tested that version
on the published MF development and test sets.

This simulation protocol is designed to explore the
tradeoffs in speed, recall, and precision resulting from
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choices of how many and which expressions to include
in each regex. Compute time for each run of the pro-
gram is, to a good approximation, directly proportional
to the length of the documents searched and to the
number of expressions in the regex used to search the
documents. Because the expressions chosen for the “cut”
versions of each regex are selected to be the most-used
expressions, the “cut” versions provide an advantage not
only in speed but also precision. On the other hand, the
more complete regexes, while causing the program to
run more slowly, provide greater recall, albeit at the cost
of returning more false positives. As a specific example
of speedup, the cut version of Regex 3 has six

expressions whereas the full Regex 3 has 1518. The run
times for a full text corpora (from Table 1, lines 21 and
22) are 259m12.181 s for Regex 3 vs. 48.696 s for Regex
3 cut for a speedup ratio of 317, while the ratio of the
number of expressions is 1518/6 or 253.
Table1 shows the performance of the major paper sets

and regexes used. The trade-offs between using a full
regex versus a “cut” regex are shown; the latter runs up
to a couple hundred-fold faster with only a minimal loss
of recall. The value of running full text articles versus
just abstracts through the program is shown; the gain of
recall from processing full papers more than compen-
sates for the increased computer time. These trade-offs

Table 1 Performance of different regexes with different datasets

Program and Version Paper Set TP FP FN P R F1 F2 time

1 MF(Full text) (20) (Mutations) I 66 3 102 0.957 0.393 0.557 0.445 13m22.452s

2 MF cut(Full text)(20) I 66 3 102 0.957 0.393 0.557 0.445 0m1.600s

3 MF (Only Abstracts)(20) I 9 0 5 1.000 0.643 0.783 0.692 0m33.612s

4 MF cut(Only Abstracts)(20) I 9 0 5 1.000 0.643 0.783 0.692 0m0.120s

5 RF Regex 1(Full text)(20) I 144 64 264 0.692 0.353 0.468 0.391 11m21.468s

6 RF 1 (Only Abstracts) (20) I 15 13 8 0.536 0.652 0.588 0.625 0m32.240s

7 RF Regex 3 (Full text)(20) I 385 602 23 0.390 0.944 0.552 0.735 56m30.868s

8 RF Regex 3 cut(Full text)(20) I 370 569 38 0.394 0.907 0.549 0.720 0m8.896s

9 RF 3 (Only Abstracts)(20) I 22 27 1 0.449 0.957 0.611 0.780 2m5.648s

10 RF 3 cut(Only Abstracts)(20) I 21 27 2 0.438 0.913 0.592 0.750 0m0.440s

11 MF devo set (Only Abstracts) II 201 4 26 0.980 0.885 0.931 0.903 4m51.408s

12 MF devo set cut (Only Abstracts) II 175 0 52 1.000 0.771 0.871 0.808 0m0.748s

13 MF test set (Only Abstracts) III 305 13 64 0.959 0.827 0.888 0.850 8m27.164s

14 MF test set cut (Only Abstracts) III 257 0 112 1.000 0.696 0.821 0.741 0m1.208s

15 RF Regex 1(Full text)(100) IV 661 378 520 0.636 0.560 0.595 0.573 56m7.653s

16 RF Regex 1 cut(Full text)(100) IV 566 373 615 0.603 0.479 0.534 0.500 0m16.747s

17 RF Regex 1(no bib)(100) IV 661 338 520 0.662 0.560 0.606 0.577 43m21.403s

18 RF Regex 1 cut(no bib)(100) IV 561 341 620 0.622 0.475 0.539 0.499 0m13.200s

19 RF 1 (Only Abstracts) (100) IV 59 12 45 0.831 0.567 0.674 0.606 1m15.552s

21 RF Regex 3 (Full text)(100) IV 1030 2969 151 0.258 0.872 0.398 0.590 259m12.181s

22 RF Regex 3 cut(Full text)(100) IV 878 2938 303 0.230 0.743 0.351 0.514 0m48.696s

23 RF Regex 3(no bib)(100) IV 1027 2407 154 0.299 0.870 0.445 0.629 190m45.317s

24 RF Regex 3 cut(no bib)(100) IV 876 2385 305 0.269 0.742 0.394 0.549 0m37.872s

25 RF 3 (Only Abstracts)(100) IV 81 143 23 0.362 0.779 0.494 0.633 5m31.332s

26 RF 3 cut(Only Abstracts)(100) IV 71 142 33 0.333 0.683 0.448 0.564 0m1.379s

27 RF 1 Single Count(20) V 152 53 141 0.741 0.519 0.610 0.552

28 RF 1 Full Count(20) V 590 240 766 0.711 0.435 0.540 0.472

29 RF 3 Single Count(20) V 212 607 44 0.259 0.828 0.394 0.575

30 RF 3 Full Count(20) V 1199 3657 157 0.247 0.884 0.386 0.583

31 Results from Verspoor et al. VI 2463 412 245 0.857 0.910 0.882 0.898

32 R3 Single Count Verspoor data VI 1345 1230 31 0.522 0.977 0.681 0.832

33 R3 Full Count Verspoor data VI 3123 4558 94 0.407 0.971 0.573 0.760
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are illustrated with processing six different sets of pa-
pers. The importance of providing this table allows a
user to have an informed decision of which regex will
deliver the optimal results for their desired needs, and
the extent to which that choice might vary based on the
particular set of documents to be processed. More de-
tails relevant to understanding this table are provided in
the text.

All regexes as well as the program itself are download-
able from Additional Material as well as from
SourceForge.net.
The performance test was based on the following

rules:
True Positive (TP) - the program returns a mention of

a residue and the residue is in fact mentioned.
False Positive (FP) - the program returns a mention of

a residue, but the residue was not mentioned.
False Negative (FN) - the program doesn’t return a

mention of a residue, but the residue was mentioned.
There also is such an entity as a True Negative (the

program does not return a mention and the residue was
not mentioned) but in the context of this study that was
deemed not a useful concept and it is not used in evalu-
ating performance.
We evaluate the performance by considering RF as a

binary classifier; i.e., each residue is either found, or not
found, in a particular article. A traditional performance
measure for binary classifiers is F-measure [37], as dis-
played below:

Fβ ¼
β2 þ 1
� � � precision � recall

β2 � precision� �þ recall

For information retrieval from text, it has been sug-
gested that recall should be weighted more heavily than
precision, leading to F2 rather than the traditional F, also
called F1. We note that the F-measure provides for flexi-
bility in the importance attached to precision relative to
recall through adjustment of the parameter β. When β
equals 1(a common choice) there is a balance between
precision and recall. The higher the value of β the more
importance is placed on recall, and vice versa. At the ex-
treme, when β equals zero, the expression for F reduces
to the precision end, while when β equals infinity, the
expression for F reduces to the recall end. We tend to
favor β > 1 because false positives can readily be identi-
fied and filtered out by subsequent manual inspection of
papers of exceptional interest, whereas false negatives
are permanently lost.
The choice of regex within RF should be considered a

term-weighting scheme [38]. Each amino acid represen-
tation included in a regex represents a high weight es-
tablishment for that representation; each possible amino

acid representation not included represents a zero
weight for that representation.

Results and Discussion
The results of a large number of investigations are sum-
marized in Table 1. The results in Table 1 are based on
the spreadsheet “Additional file 2.xlsx”, provided in Add-
itional Material. A readme file for navigating Additional
file 2.xlsx is provided in Additional File 1.doc The
regexes used in the calculations underlying Table 1 are
given in Supplementary Material. Specifically, the Muta-
tionFinder regex is given in Additional File 3.txt; A cut
version of the MutationFinder regex is given in Add-
itional File 4.txt; Regex 1 is given in Additional File 5.txt;
A cut version of Regex 1 is given in Additional File 6.txt;
Regex 2 is given in Additional File 7.txt; A cut version of
Regex 2 is given in Additional File 8.txt; Regex 3 is given
in Additional File 9.txt; a cut version of Regex 3 is given
in Additional File 10.txt.
For a detailed guide to interpreting analysis for one of

the papers in the study, we choose Paper #6 in Tab
“highlights” in the Spreadsheet “RF Excel Supplement”
available as Additional File 2.xlxs This paper is PMID
10370099 Höllerer-Beitz, Gerhild, Roland Schönherr,
Michael Koenen, and Stefan H. Heinemann. “N-terminal
deletions of rKv1. 4 channels affect the voltage depend-
ence of channel availability.“ Pflügers Archiv 438, no. 2
(1999): 141–146. We show results from analyzing the
full text of the paper. This text has 6 residue mentions
based on a close manual inspection.
Columns B-D show results from original MutationFin-

der. Two mutations are found, four residue mentions
are not found (as expected, because MutationFinder
does not look for mention of residues not associated
with mutations). Columns E-G show results from a “cut”
version of the MutationFinder regex where it is shown
that the speedup of the “cut” version is achieved at no
cost in recall.
Columns H-J show results from Regex 1, revealing that

4 residue mentions are found, 2 residue mentions are
not found. Columns K-M for the “cut” version of Regex
1 shows that only 2 of the 6 residue mentions are found.
For both the full and cut versions of Regex 1, one false
positive is returned.
Columns N-S show that for both the full and cut ver-

sions of Regex 2, 4 of the 6 residue mentions are found,
and that one false positive is returned.
Columns T-Y show that for both the full and cut ver-

sion of Regex 3, all 6 of the residue mentions are
returned (for a recall of 100 %) but that 9 false positives
are also returned.
Column AD provides annotation giving the nature

of the false positives (bibliography, equipment de-
scription, etc.).
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Column AE shows the context in the paper for all the
returned expressions, both true and false positives.
Other papers mentioned in the spreadsheet may be in-

terrogated in analogous fashion.
In order for the reader to evaluate the timings in

Table 1 we note that the computer used an Ubuntu op-
erating system, the processor was an AMD Athlon 64 ×
2 at 1GHz, with access to 2.8 GB RAM. Because of the
modest performance of the machine, we expect the tim-
ings to be better on newer machines.
The first set of investigations summarized in Table 1

was done on a set of 20 papers all of which were on po-
tassium channels (a particular interest of ours) that men-
tion individual amino acids, randomly selected from a
much larger set of over a thousand research articles. The
first two rows show the performance of MF on this set.
(The regex for MF is provided in Additional File 1.txt)
We see from rows 1 and 2 that the full text provides a
significantly more severe test of the program than ab-
stracts alone, especially with respect to recall. Compari-
son of rows 2 and 4 with rows 1 and 3 shows that it was
possible to improve the efficiency of MF dramatically
without compromising performance at all (for this par-
ticular set of papers) by eliminating from the regex all
patterns except the most common. This is described in
the Implementation section and is provided in detail in
the Additional Material 2.xlxs. This would be recom-
mended for using MF to process a large number of pa-
pers, with the caveat that the particular regexes to be
removed should be checked for other sets of papers than
this particular set.
Comparing rows 1 and 3 with rows 5–6 shows the ef-

fect of simply using the analogous filters of MutationFin-
der in ResidueFinder (Regex 1). This comparison reveals
that there are many more formats for a residue mention
than for a mutation mention, so the performance of RF
with this regex is statistically far worse than the per-
formance of MF for the same set of papers.
To compare rows 5–6 with rows 7 and 9, one should

understand the differences between Regex 1 and Regex
3. This expansion was in two steps, (1) addition of two
patterns that were responsible for the largest number of
false negatives with Regex 1, and step (2) for each of the
pattern addition of a version that includes a space be-
tween the amino acid identifier and the location number.
While standard nomenclature suggests not to include a
space [39] we found numerous examples of insertion of
a space in the text, warranting inclusion of that variation
in the regex. There are different classes of errors that
cause a FP. These error types are broken down in Table 2
whereas the two different types of FN are shown in
Table 3.
Table 2 Gives the classes of error resulting in FPs, for

Paper Set I. Since some mentions leading to FPs have

more than one contributing cause, the total number of
incidences of causes adds up to more than the total
number of FP identifications.
Table 3 Shows causes of FN errors in Paper Set 1 as

residue not found because they were embedded in a
non-readable image or the regex did not have the cor-
rect pattern match to identify as a residue. In principle
the FN errors in the images could be overcome with
OCR technology.

In rows 8 and 10 we see the results of introducing a
“cut” version of Regex 3. The cut version is created by
eliminating all notations except (1) single capitol letter
amino acid code or three letter amino acid followed with
no space in front of the location number, (2) single cap-
itol amino acid letter or three letter amino acid followed
by one space and then the location number. MF and RF
regexes include many other possibilities that turn out to
be relatively rare, so the “cut” version runs hundreds of
time faster with only minor degradation of performance.
Comparing rows 11 with 13 and rows 12 and 14 show

the results of creating a “cut” version of MutationFinder
as measured by performance on the development and
test corpora used by those authors. We see that MF, as
is the case with RF, is dramatically improved in speed
with only minor degradation of performance as indicated
by precision, recall, and F-measure. Note that these cor-
pora are represented by abstracts.
Beginning with row 15 and continuing through row

26, we introduce results on a random set of 100 papers.
The papers were screened to mention “amino acid” or
“residue” in either a MeSH or text in a search of
PubMed Central. Following screening, the 100 were
chosen from all that passed the screen by a random
number generator operating on PMC identifying

Table 2 Classes of FP Errors in RF using Regex 3 on full text

Type Number Percent

Motif Name 94 15.1

Equipment/Substrate 73 11.8

Bibliography/Reference 180 30

Protein or Ground Name 104 16.7

Short Name 12 1.9

PDF2text Artifact/proximity 26 4.2

Formula/other nomenclature 132 21.3

Table 3 Classes of FN errors in RF using Regex 3

Type Number Percent

In an image 15 68.2

Regex not found 7 31.8
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numbers. By comparing rows 5–10 with 15–26 we show
the effects of moving from a set of papers selected ran-
domly from a particular field (potassium channels, rows
5–10) to a set of papers selected randomly from all fields
of protein science (rows 15–26). We find that perform-
ance on the randomly selected papers does not seem
systematically different from the performance on the po-
tassium channel papers. The fact that the K + channel
papers were selected by intensive manual search pro-
vided an opportunity to estimate the recall for the key
word search for “amino acid” and “residue”. We found
that this key word search retrieved 265 out of 329 K +
channel papers that we had previously ascertained con-
tained amino acid mentions, for a recall of 0.805. Based
on other comparisons between the K + channel set and
the more general set, we see no reason to expect the re-
call for the more general papers to be significantly differ-
ent from the K + channel papers.
Rows 15–19 show results for variants on Regex 1

(similar to MutationFinder) and Regex 3, which is some-
what streamlined as described in Implementation.
By doing pairwise comparison between rows 15–16,

17–18, 21–22, and 23–24 we see that the “cut” version
of each regex suffers only marginal degradation of per-
formance compared to the full versions but is speeded
up by a factor of hundreds, in most cases over 200-fold.
Thus, we would recommend the “cut” version to process
a very large number of papers.
By pairwise comparison between rows 15 and 17, 16

and 18, 21 and 23, and 22 and 24, we see the effect of
removing the bibliography from the text. We find pro-
cessing time reduced by a factor of approximately ¾, a
moderate deterioration in precision, and essentially no
deterioration in recall. The underlying phenomenon is
that the regex found almost no true positives in the
bibliography, so perusing the bibliography is essentially
wasted computer time. Also, culling the bibliographies
from PMC articles is readily automatable, so this is rec-
ommended in this context. On the other hand, for arti-
cles not available in PMC, the variety of formats makes
culling the bibliography more difficult.
Rows 19 and 25 show performance on abstracts only.

Statistically the performance on the abstracts looks bet-
ter than performance on the full texts, but this is mis-
leading because there are many more amino acids
mentions in the text than in the abstract. Comparing
row 15 with 19 and 21 with 25 shows that inspecting
only the abstracts misses over 90 % of the amino acid
mentions. By comparing 15 with 16, 17 with 18, 21 with
22, 23 with 24, and 25 with 26, we see that the “cut” ver-
sion of each regex loses only 12.3–15.1 % of true positive
amino acid mentions but achieves a much better
speedup than keeping the full regex and scanning only
abstracts. Because document preparation for PMC

papers is only marginally more effort than the abstracts
alone, and because an increasing fraction of papers are
available in PMC, it does not seem to us to be a useful
strategy to scan abstracts alone unless inspecting collec-
tions that include a large fraction of papers not available
as PMC.
Rows 27 through 30 represent calculations designed to

compare our work with that of Verspoor et al. [34], which
motivates us to shift from evaluation based on “at least
one mention of an amino acid in a paper” to “all mentions
of an amino acid in a paper”. In order to facilitate manual
verification of program performance by the “all mentions”
criterion, we randomly chose 20 papers out of the set of
100 that was the subject of the calculations in rows 15
through 26. Comparison of row 21 with 29 shows that
RF’s performance on the 20 papers was essentially the
same as on the 100, suggesting that the 20 is a representa-
tive sample. Comparison of row 29 with 30 shows that the
statistical performance of our program by the “at least one
mention” versus the “any mentions” criteria was essen-
tially the same. We note that the program output includes
all mentions for future reference regardless of whether the
performance is calculated on an “at least one mention” or
an “any mentions” basis. With this equivalence in mind,
we apply RF to the Verspoor et al. [34] corpus of papers,
with the results shown in row 32 (single count) and 33
(full count). Comparing row 27 to row 31 and row 28 to
33 we see that our program performs significantly better
on the Verspoor et al. corpus than on randomly selected
papers. We ascribe this to the mode of selection of the
Verspoor et al. papers, which were chosen to have as sub-
ject proteins for which PDB structures were known. We
hypothesize that papers thus selected will also have more
standardized nomenclature for amino acids, and therefore
be more amenable to an automated search for amino acid
mentions by regular expressions than our papers selected
by keyword search. Comparing rows 30 and 31, we see
that RF, while performing better on the Verspoor corpus
than on randomly selected papers, does not perform as
well as the Verspoor program based on the F1 measure.
Close inspection shows that the difference is due to the
larger number of false positives, and hence lower preci-
sion, from RF. On the other hand, RF showed better recall
than Verspoor, so that the F2 measure, which emphasized
recall, showed the two programs to be closely matched.

Conclusions
RF is a robust command line-driven Python program for
finding mentions in the scientific literature of individual
amino acids contained in peptides and proteins. The
added regexes allow a user to choose the combination of
computational efficiency, precision, and recall that is
most appropriate for that user’s needs.
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The very limited “cut” regex allows an extremely rapid
result (cutting the compute time several hundred-fold
compared to the full regex) with a relatively small in-
crease in false negatives. Using our relatively modest 1
GHz processor, we extrapolate from our admittedly lim-
ited sample that the time using our “cut” regexes to
process a million abstracts would be approximately 3.3
CPU-hrs, and a million full texts would be approxi-
mately 168 CPU-hrs. Assuming approximately 24 million
readily accessible abstracts and articles at the time of
this writing and approximately one million per year be-
ing added, a first draft mutation and residue mention
database could be created using “cut” regexes at a cost
of 4027 CPU-hrs and could be maintained at an annual
cost of 168 CPU-hrs. These numbers are very approxi-
mate, but their order of magnitude indicates clearly that
such a project would be feasible.
Examples provided in the body of this paper suggest

that search of the sort we have developed can provide a
more comprehensive listing of residue mentions for a
particular protein than is available in the UniProtKB
database. To extend this potential capability further we
are extending the approach in this paper to analyze
Pubmed-indexed articles for linked protein and residue
mentions and will report on this work in the future.
The approach described in this paper is limited in that

it will never achieve both perfect precision and also per-
fect recall. Rather we are left with tradeoffs between
computational efficiency, precision, and recall, all
dependent on the choice of expressions in the regex.
The fundamental limitation is that the approach does
not consider context, except in a very limited way, in
contrast to a careful human reader, who does under-
stand context. Thus, assessing performance of the soft-
ware still involves human review of the papers in the
corpora. At the end of the day for example, it is only by
a human understanding the context of the scientific
paper that one can know whether the expression “T7” in
a paper refers to “threonine in position 7”, as opposed to
a reference to Bacteriophage T7. Thus, to make signifi-
cant further progress it will be necessary to embed Resi-
dueFinder in an Artificial Intelligence environment that
can make these distinctions. Beyond this (relatively)
straightforward task of distinguishing false positives from
true positives will be the greater challenge of linking
each true positive to entries in databases that provide
additional biological meaning and global context, espe-
cially UniProt but also others.

Availability and requirements

� Project name: ResidueFinder.
� Project home page: https://sourceforge.net/

projects/residuefinder/.

� Operating system(s): Platform independent.
� Programming language: Python 2.7.
� License: MIT (Slightly modified to extend to

regexes).
� Permission is hereby granted, free of charge, to any

person obtaining a copy of this software and
associated documentation files (the “Software”), to
deal in the Software without restriction, including
without limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell
copies of the Software (including regexes), and to
permit persons to whom the Software is furnished
to do so, subject to the following conditions:

� The above copyright notice and this permission
notice shall be included in all copies or substantial
portions of the Software.

� THE SOFTWARE IS PROVIDED “AS IS”,
WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHA
NTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO
EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMA
GES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE
USE OR OTHER DEALINGS IN THE SOFTWARE.

Abbreviations
PMC: PubMed Central®; MF: MutationFinder; RF: ResidueFinder; regex: Regular
expression; FN: False Negative; FP: False Positive; TP: True Positive;
P: Precision; R: Recall; OCR: Optical Character Recognition
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Additional file 1 This document guides the reader through the
interpretation of Additional file 2.

Additional File 2 Computed Performance Data. This spreadsheet
directly shows the numbers underlying the tables presented in the
manuscript, including the PMID’s for documents analyzed.

Additional file 3 Part of archive containing the regexes used and
analyzed in this study. This part of the archive is the MutationFinder
regex. It is also in the SourceForge web site.

Additional File 4 Part of archive containing the regexes used and
analyzed in this study. This part of the archive is the cut version of the
MutationFinder regex. It is also in the SourceForge web site.

Additional file 5 Part of archive containing the regexes used and
analyzed in this study. This part of the archive is the full version 1 RF
regex. It is also in the SourceForge web site.

Additional file 6 Part of archive containing the regexes used and
analyzed in this study. This part of the archive is the cut version of the
version 1 regex. It is also in the SourceForge web site.
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Additional file 7 Part of archive containing the regexes used and
analyzed in this study. This part of the archive is the full version 2 RF
regex. It is also in the SourceForge web site.

Additional file 8 Part of archive containing the regexes used and
analyzed in this study. This part of the archive is the cut version of the
version 2 regex. It is also in the SourceForge web site.

Additional file 9 Part of archive containing the regexes used and
analyzed in this study. This part of the archive is the full version 3 RF
regex. It is also in the SourceForge web site.

Additional file 10 Part of archive containing the regexes used and
analyzed in this study. This part of the archive is the cut version of the
version 3 regex. It is also in the SourceForge web site.
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