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Abstract

Background: Recent advances in representation learning have enabled large strides in natural language
understanding; However, verbal reasoning remains a challenge for state-of-the-art systems. External sources of
structured, expert-curated verb-related knowledge have been shown to boost model performance in different
Natural Language Processing (NLP) tasks where accurate handling of verb meaning and behaviour is critical. The
costliness and time required for manual lexicon construction has been a major obstacle to porting the benefits of
such resources to NLP in specialised domains, such as biomedicine. To address this issue, we combine a neural
classification method with expert annotation to create BioVerbNet. This new resource comprises 693 verbs assigned
to 22 top-level and 117 fine-grained semantic-syntactic verb classes. We make this resource available complete with
semantic roles and VerbNet-style syntactic frames.

Results: We demonstrate the utility of the new resource in boosting model performance in document- and
sentence-level classification in biomedicine. We apply an established retrofitting method to harness the verb class
membership knowledge from BioVerbNet and transform a pretrained word embedding space by pulling together
verbs belonging to the same semantic-syntactic class. The BioVerbNet knowledge-aware embeddings surpass the
non-specialised baseline by a significant margin on both tasks.

Conclusion: This work introduces the first large, annotated semantic-syntactic classification of biomedical verbs,
providing a detailed account of the annotation process, the key differences in verb behaviour between the general
and biomedical domain, and the design choices made to accurately capture the meaning and properties of verbs
used in biomedical texts. The demonstrated benefits of leveraging BioVerbNet in text classification suggest the
resource could help systems better tackle challenging NLP tasks in biomedicine.
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Background
The demand for automatic systems capable of processing
and mining the rapidly expanding body of biomedical lit-
erature is constantly growing and NLP technologies can
play a key role in facilitating the dissemination and consol-
idation of knowledge recorded in scientific papers, patient
reports, or clinical notes. The domain-specific properties
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of biomedical texts require specialised systems sensitive
to the well-defined semantics and syntactic behaviour
of the terms used in the scientific literature. This is
why high-quality, rich computational lexicons comprising
information about the meaning and combinatorial prop-
erties of words in biomedical texts can significantly boost
the performance of NLP systems in problems ranging
from information retrieval, relation and event extraction,
or entailment detection. Similarly to the general language
domain, lexicographic efforts in biomedicine have pri-
marily focused on nouns (e.g., UMLS Metathesaurus [1]),
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while the demand for rich, large-coverage verb-specific
biomedical resources has not yet been satisfied [2–6].
A number of works in general domain NLP have illus-

trated the benefits offered by databases of structured
verb-related knowledge. One such resource is VerbNet
[7], a broad-coverage, hierarchical classification of English
verbs providing detailed documentation of verbs’ seman-
tic and syntactic properties. It has been successfully
employed to boost NLP tasks such as word sense dis-
ambiguation [8], semantic role labelling [9], information
extraction [10], or text mining [11, 12]. While the util-
ity of VerbNet in the general domain has been widely
recognised, the lexicographic effort involved in its con-
struction poses a challenge to transferring its benefits to
other specialised domains.
In this work, we address the demand for a biomedi-

cal verb resource and alleviate the issue of slow manual
dataset construction by combining a data-driven auto-
matic classification approach with post-hoc expert verifi-
cation and annotation to create the first BioVerbNet. We
take the output of a highly accurate neural classification
approach of Chiu et al. [13] as a starting point and sub-
sequently manually validate the resultant classes based
on VerbNet class criteria of semantic-syntactic coherence
of member verbs. The 22 top-level and 117 fine-grained
verb classes produced in the process are then annotated
with semantic roles of the verbs’ arguments and syntactic
frames in which class members participate, thus yielding
a rich semantic-syntactic lexicon of biomedical verbs.
The creation of BioVerbNet involved the following key

stages. First, the 1149 verbs assigned to 50 classes by
the system of Chiu et al. were reviewed by a domain
expert and a linguist, to identify noisy candidates to be
eliminated from the classification. Next, each class was
individually validated by verifying each individual can-
didate member’s consistency with the rest of the class
in terms of closeness of meaning and shared structural
properties, based on the most frequent dependency con-
texts extracted from the PubMed corpus [14] by Chiu
et al. In the process, the experts decided whether mis-
classified candidates should be (a) reassigned to another
existing class, (b) assigned to a new class, or (c) dis-
carded from the classification. We examined the domain
specificity of our classification by comparing BioVerbNet
to VerbNet, which revealed a very limited coverage of
biomedical verbs in VerbNet and important discrepancies
in the dominant senses represented by the verbs shared
by both resources. Next, for each class a set of represen-
tative syntactic contexts was selected, each subsequently
annotated with syntactic descriptions, capturing the pos-
sible surface realisations of the member verbs’ arguments,
and their semantic roles. In order to better capture the
characteristic properties of the entities acting as Agents
in biomedical scenarios (e.g., cells, chemical reactions,

biological processes), we introduced a new biomedicine-
specific role of Bio-Agent, distinct from the canonical
agentive arguments (e.g., human actors) in the general
language domain.
We demonstrate the utility of the newly created verb lex-

icon to support neural approaches to two biomedical text
classification tasks. We derive verb class knowledge in the
form of pairwise constraints extracted from the BioVerb-
Net classification, which we employ to retrofit the vector
space of pretrained word embeddings to better reflect
the shared semantic-syntactic properties represented by
each verb class by pulling co-members closer together.
We input the BioVerbNet-specialised embeddings into a
convolutional neural network model and evaluate it on
document- and sentence-level classification tasks using
two established biomedical datasets, the Hallmarks of
Cancer [15] and the Exposure taxonomy [16]. The promis-
ing results achieved by the model boosted with BioVerb-
Net class information holds promise for future applica-
tions of the resource in downstream tasks in biomedicine.

Related work
Computational verb resources
English-language general domain NLP has a number of
large-scale expert-built resources at its disposal from
which to derive rich information about verb behaviour.
These include, among others, the large semantic network
WordNet [17], FrameNet [18], which organises concepts
in the so-called semantic frames, describing different
types of events, relations, entities, and their participants,
and PropBank [19], which includes information about
semantic propositions and predicate-argument structure
of verbal predicates. A lexicon focused exclusively on
verbs is VerbNet, which extends Levin’s [20] taxonomy
of English verbs and groups them into classes based
on shared semantic-syntactic properties. Each such class
is accompanied by a set of frames, including a syntac-
tic description and a semantic representation, as well as
thematic roles and selectional restrictions on the verbs’
arguments. VerbNet classes capture useful generalisations
about verb behaviour and can boost NLP systems’ predic-
tive capacity on unseen vocabulary by providing a means
of extrapolating from individual word types to classes.
For instance, by linking an unseen verb quell to its class
SUBJUGATE, a system can refine its meaning representa-
tion to align more closely with other, seen class members
with higher occurrence rates in corpora (e.g., suppress,
dampen). VerbNet has been used as a source of syn-
tactic and semantic features supporting a range of NLP
applications, including machine translation [21], semantic
parsing [22], word sense disambiguation [8, 23], infor-
mation extraction [10] and text mining [11, 12]. While
VerbNet offers vast coverage (it currently includes 9344
verbs organised in 329 main classes), its utility cannot
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be directly extended to specialised domains, such as
biomedicine, where verbs occur in domain-specific senses
and distinct contexts, different from their patterns of
behaviour in general English. This is why creation of
resources tailored to the characteristics of biomedical
texts and terminology is essential.

Biomedical lexicons
A large biomedical lexical resource available is the
UMLS Metathesaurus, the most-extensive thesaurus in
this domain, which classifies concepts pertaining to
biomedicine by semantic type and stores information
about the relationships among them. While the resource
has been used to support biomedical data mining and
information retrieval, its focus is on nouns. The currently
available verb-specific lexicons have much smaller cov-
erage and are usually limited to narrow sub-domains.
For instance, the manually-created UMLS SPECIALIST
lexicon is focused on medical and health-related termi-
nology, whereas the BioLexicon, which provides syntactic
and semantic frame information for biomedical verbs, is
extracted from the Escherichia Coli (E. Coli) corpora,
which restricts its utility to this particular subdomain.

Representation learning and text classification in BioNLP
With deep learning, representation learning has become
a standard technique in natural language processing and
also in biomedical natural language processing. The uti-
lization of representation learningmethods in BioNLP has
followed the introduction of suchmethods in general NLP,
and has usually been accompanied by efforts to adjust
and specialize these methods for a biomedical vocabulary.
In the development of BioNLP research during the past
decade, the introduction of Word2Vec [24] has prepared
the way for wider use of neural concept representations
[25].
The most common use case for word vectors has been

as input embeddings for deep learning neural networks,
but word vectors have also been used directly for analysing
concepts such as semantic similarity and relatedness [26].
Word vectors trained on general domain texts such as
news articles may not always have captured the spe-
cific semantics of biomedical concepts, so the methods
of Word2Vec, GloVe [27] and FastText [28] have been
adapted for the generation of specialized vector space rep-
resentations usually based on the PubMed collection of
millions of biomedical research articles [29–31]. In the
BioWordVec project [32] further information fromMeSH
(Medical Subject Headings) is used to augment PubMed
text resources. Wang et al. [33] have shown that training
embeddings specifically on biomedical text can produce
more relevant vector space representations.
The introduction of generalized language models like

ELMo and BERT [34, 35] with their integrated embedding

vocabularies introduced a new, more unified approach for
utilization of representation learning in language mod-
els. As with the word vector models, ELMo and BERT
were also rapidly adapted for the specifics of biomedical
language [36, 37].
With the advent of deep learning, representation learn-

ing has become a common technique in many text
mining tasks such as classification. Neural networks
based on convolutional and recurrent (especially LSTM)
approaches have achieved significantly improved results
on many biomedical text mining tasks [38–40].
Transformer models have resulted in even larger per-

formance gains [25]. The BioBERT model itself demon-
strated state of the art performance on named entity
recognition, relation extraction and question answering.
Since its publication this model has been applied to tasks
such as drug–drug interaction extraction, classification of
social media health discussions and analysis of scientific
articles related to COVID-19 [41–43].

Construction and content
Dataset design
The starting point for the construction of BioVerbNet is
the automatic classification produced by Chiu et al. [13],
which consists of 1149 verbs assigned to 50 classes. Their
qualitative evaluation of a small subset of the resource
showed that the classes were highly accurate. In this
work, we perform a complete manual verification and
restructuring of the automatically generated classifica-
tion, which produces a new, two-level taxonomy of verbs,
including 22 top-level classes and 117 subclasses, illus-
trated in Fig. 1. Next, we carry out two stages of manual
annotation, which yield VerbNet-style semantic-syntactic
classes, each described by a set of syntactic frames anno-
tated with semantic roles. In the next sections, we first
describe the methodology of Chiu et al. [13] and the
resultant automatically generated classes, followed by the
process of manual verification.

Automatic verb classification
Chiu et al. [13] proposed an automatic classification
method which combines a neural representation learning
approach with the classification step. In contrast to pre-
vious approaches to automatic induction of verb classes
[44–47], the method avoids manual feature engineering,
which is time-consuming and requires expert knowledge.
Instead, it employs features automatically learned directly
from corpora using neural networks, fine-tuned to better
capture the semantics of verbs in biomedical texts. Due
to the cost-effectiveness of the approach and its demon-
strated success in generating high-quality classification
output, as validated by human experts in Chiu et al.,
we chose to leverage its potential in our construction of
BioVerbNet.
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Fig. 1 A visual representation of the BioVerbNet semantic classes. The shaded boxes represent the top-level classes, while the unshaded boxes
represent the subclasses

The classification approach of Chiu et al. involves the
following steps. First, they use the method of Vulić et
al. [48] to identify the optimal contexts for learning verb

representations in the biomedical domain, which creates
a context configuration space based on dependency rela-
tions between words and subsequently applies an adapted
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beam search algorithm to find the verb-specific contexts
used to generate class-specific word representations. The
corpus used in this step includes the PubMed Central
Open Access subset [49] and the entire set of PubMed
abstracts and consists of approximately 10 billion tokens
and 72 million word types. The optimised representations
are evaluated on a gold standard biomedical verb similar-
ity dataset, BioSimVerb [6], and are shown to significantly
outperform the baseline model (a skip-gram model with
negative sampling (SGNS) without class-specific con-
texts).
Next, the learned representations optimised for

biomedical verbs are employed as features for verb classi-
fication. To this end, Chiu et al. [13] use a small manually
curated VerbNet-style classification of 192 biomedical
verbs [50] and expand it with 957 new candidate verbs,
assigned to the existing classes using the Nearest Cen-
troid Classifier. The new candidates are derived from
BioSimVerb based on their frequency in biomedical
journals covering 120 subdomains of biomedicine, which
guarantees wide coverage of the resultant classification.
The final resource comprises 1149 verbs assigned to
50 classes and additionally provides the most frequent
dependency contexts (and example sentences) for each
verb.

Manual verification and extension

Manual verification of the automatic classes from Chiu et
al. [13] was carried out in collaboration by two experts, a
biologist and a linguist, with postgraduate level of train-
ing in their respective fields1. They were provided with
the original class names and member verbs from the
gold standard of Korhonen et al. 2006, the new verbs
assigned to the original classes by the classifier, and the
set of 10 most frequent dependency contexts for each
verb in the sample. For each of the dependency con-
texts, three example sentences extracted from the corpora
and demonstrating the usage of the target verb were also
provided.
The goal of the verification process was to examine the

automatically generated candidates and check whether
they satisfied class membership criteria. Since the aim
of this work was to produce a VerbNet-style classifica-
tion, we adopted an analogous definition of a class as a
grouping of verbs with shared semantics and syntactic
behaviour, based on the assumption that a verb’s syntac-
tic properties, such as the types of arguments it selects,
inform its semantics. This rationale constitutes the foun-
dation of Levin’s [20] (1993) classification of English verbs,
which has been extended and refined to create VerbNet.
1Due to the complementary nature of their expertise, the two experts carried
out the verification collaboratively and all decisions were made jointly.

The verification procedure involved the following steps.
First, for each class, the automatically generated new
candidate verbs were examined with respect to the orig-
inal members to ensure semantic coherence; only verbs
with meanings similar to the original members were kept.
Then, the new candidates were reviewed in terms of their
syntactic behaviour, exemplified by the dependency con-
texts extracted from biomedical corpora, and the class was
further refined to include the subset of verbs characterised
by common syntactic patterns. Based on the examination
of semantic and syntactic properties of the new candidates
with regard to the original members, for each new candi-
date the experts decided if the verb was correctly assigned;
otherwise, it was (a) reassigned to another existing class,
or (b) a new class was created and the verb in ques-
tion was assigned to it. During manual verification, some
of the original classes were split into smaller subclasses,
defined by shared semantics and syntactic behaviour of
their members. However, we preserved the information
about overlapping semantic properties of groups of sub-
classes by adopting a two-tier classification structure, with
general top-level classes encompassing several narrower
subclasses with related semantics. At the end of this pro-
cess, any verbs which could not be correctly assigned to
any of the classes were discarded as noise. Table 1 reports
the relevant data statistics, including the number of orig-
inal classes, the number of reassignments, the number of
new classes created in the verification stage, and the num-
ber of noisy candidates which were ultimately excluded
from the classification.

Comparison with VerbNet
One of the important motivations behind the creation
of BioVerbNet is the discrepancy between the general
and biomedical domains in terms of language use and
words’ distributional properties. This concerns domain-
specific words which are frequent in biomedical texts and
absent or very rare in the general domain (e.g., deacetylate,
hydroxylate), as well as words which are common in both
domains, but are used in a very narrow, domain-specific
sense in the biomedical domain (e.g., prune, perturb). In
order to examine these discrepancies further, we compar-
atively analysed the newly created BioVerbNet classes and
the existing VerbNet, focusing on the verbs appearing in
both.
The results of this analysis support our assumptions:

most verbs present in BioVerbNet are missing in VerbNet,
and only 39 out of 117 BioVerbNet sub-classes contain
one or more VerbNet verbs. In total, 63 of 693 class-
assigned BioVerbNet verbs are also present in VerbNet.
As expected, sub-classes containing highly biomedical-
specific verbs have little or no overlap with VerbNet. For
example, sub-class 2.2.1 ‘Biochemical modification’ con-
tains 20 verbs, all of which are specific to BioVerbNet.
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Table 1 Assignment of verbs into classes and sub-classes

Top-level classes Sub-classes Verbs

Automatically assigned verbs 16 48 283 (29.4%)

Manually assigned verbs - - 410 (42.7%)

Re-assigned within original sub-classes - - 104

Assigned to new sub-classes created within original top-level classes - 30 93

Assigned to new top-level classes 6 39 213

Total assigned verbs 22 117 693 (72.1%)

Non-assigned verbs - - 268 (27.9%)

Total verbs - - 961 (100%)

Other BioVerbNet sub-classes contain a proportion of
verbs which are also present in VerbNet, for example,
9.2.2 ‘Cognitive’ contains 39 verbs of which 5 are shared
with VerbNet. In all sub-classes, shared verbs form no
more than a minority. Moreover, some verbs present in
BioVerbNet are characterised by senses that differ from
typical usage in the general domain. In Table 2 we provide
selected examples.

Semantic and syntactic annotation
In the original VerbNet classification, each class is accom-
panied by a set of syntactic descriptions (i.e., syntactic
frames), which illustrate the possible surface realisations
of a verb’s arguments. For each type of syntactic frame,
a sentence example of usage is provided, along with the
semantic roles of the verb’s arguments and correspond-
ing semantic predicates (e.g., ‘motion’, ‘has_state’) with
temporal and causal subevent structure. In this work,
we focus annotation efforts on two main components:
semantic roles and syntactic frames. For each BioVerbNet
class generated in the manual verification stage, we iden-
tify the subset of shared syntactic contexts licensed by all
members. Next, we annotate the class-specific syntactic
structures with semantic roles and syntactic constituents.
We describe the methodology adopted in each step in the
following sections.

Context selection
To identify the subset of shared argument structures and
syntactic contexts for each class we utilise the dependency
contexts extracted from the PubMed corpus by Chiu et
al. [13], which were used in the Manual Verification stage
as class membership criteria. Since the dependency con-
texts of Chiu et al. [13] were automatically generated, they
sometimes contained noise and parsing errors. Addition-
ally, some of the contexts were redundant or uninfor-
mative with regard to the verb’s argument structure. For
example, context types obj and subj#obj provided redun-
dant information about the verb’s transitive behaviour.
Moreover, some dependency contexts included conjunc-
tions (e.g., and) or adjunct adverbial and prepositional
phrases (e.g., Physiologic mechanisms regulate hemody-
namics during exercise and in heart failure), which are
optional elements and therefore are not considered as
characteristic of a given verb’s behaviour. We adopted
an iterative context identification protocol, in which for
each class, for each class member, we examined the set of
10 most frequent dependency contexts and filtered those
redundant or uninformative; then, the remaining contexts
were checked against the class members by substituting
them one by one into a given context. Only the contexts in
which all the class members could participate were kept.
After the set of 10 most frequent dependency contexts

Table 2 Examples of common verbs with senses specific to the biological sciences

Sense Example

silence To inactivate expression of a gene. Eukaryotic cells express small noncoding RNAs to silence target genes

dampen To suppress the immune response. Propathogenic cells dampen the early T cell response

scavenge To combine with and remove reactive oxygen species. Antioxidant properties of plants scavenge reactive oxygen species

prime To present antigen to naïve lymphocytes, causing them These antigens may prime an immune response

to differentiate.

reprogram To transform one cell type into a different cell type. Mash1 and Brn2 reprogram fibroblasts into neurons

imprint To inactivate expression of a gene through methylation. A period of stimulation could imprint on a T cell a “biochemical memory”

divide To undergo cell division into two or more daughter cells. Cultures of Tetrahymena pyriformis were induced to divide synchronously

isolate To extract a cell population or substance in a pure form. We used soft agar to isolate phototrophic bacteria
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was reviewed for the first verb belonging to a given class,
the procedure was repeated for all the remaining class
members.

Semantic role labeling
The first step of the manual annotation process involved
annotating the class-specific syntactic contexts identified
in the previous step with semantic roles. Also known as
thematic or theta roles, semantic roles describe the under-
lying relationship between a participant of an event and
the main verb in a clause. They capture the differences in
verb meaning as reflected in the expression of its argu-
ments and thus provide important generalisations about
the interplay of verbs’ semantic and syntactic behaviour,
which contribute to the semantic-syntactic mapping.
While consensus has not been reached on the semantic

role inventory [51–53], most approaches agree on a num-
ber of principal roles and their corresponding definitions,
such as Agent, the instigator of the action denoted by the
predicate, or Patient, the entity undergoing the effect of
the event [7, 18, 54, 55]. To ensure alignment with Verb-
Net, we adopted the same set of roles and definitions.
However, the discrepancies between the verbs’ common
usages in the general and the biomedical domains posed a
number of challenges, which required a careful revision of
the role assignment criteria, in view of the characteristic
properties of biomedical verbs.

Challenges and domain-specific roles
The first important difference between the two domains,
and consequently the two lexicons, lies in the nature
of typical arguments. In VerbNet, the annotated exam-
ples predominantly feature canonical role-argument pair-
ings, e.g., animate, intentional Agents, inanimate, con-
crete objects as Instruments, or human Experiencers. In
the biomedical domain, the typical event participants are
biological and chemical entities, such as cells, chemical
reactions, or hormones. In the sentence NKT cells medi-
ate autoreactivity, cells are not only animate, but they also
interact with each other and their environment. However,
they are not intentional, which is one of the criteria of

agency in VerbNet: Actor in an event who initiates and
carries out the event intentionally or consciously, and who
exists independently of the event. Similar considerations
involve organs, tumours, or bacteria, which commonly
take on the agentive role in biomedical texts. In light
of the widespread nature of this phenomenon, we pro-
pose a new role, Bio-Agent. We posit it as a subtype of
Causer, i.e., an Actor in an event that initiates and effects
the event and that exists independently of the event, con-
strained to being a biological process, event or entity as
a selectional restriction. A Bio-Agent may deploy a bio-
chemical messenger as an inanimate Instrument, as in the
sentence Endothelial cells release substances that hyper-
polarize vascular smooth muscle, where ‘Endothelial cells’
are Bio-Agents and ‘substances’ are Instruments. In the
sentence Poxviruses deploy genomic accordions to adapt
rapidly, ‘Poxviruses’ are Bio-Agents and ‘genomic accor-
dions’ constitute a biological mechanism functioning as
an Instrument. Given the co-presence of canonical Agents
(e.g., human actors) in biomedical texts, adopting the
role of Bio-Agent helps capture important differences in
the characteristic properties of these two types of argu-
ments. Consequently, it allows discrimination between
verbs which only permit one type of Agent, thus enabling
a more fine-grained classification.
A second difference is that some verbs present in both

VerbNet and BioVerbNet are characterised by differences
in their typical usage and corresponding semantic roles
(Table 3).
In VerbNet, settle either describes cognitive agreement

and is classified with verbs such as communicate, concur
and compromise in the Settle class, or belongs to the Lodge
class in the sense ‘to go and live somewhere’ with mem-
bers such as dwell, reside and stay. In the sentence The
couple settled there, ‘the couple’ takes on the role of Agent
as the instigator of the action. In biomedical texts, the
first (cognitive) sense occurs in analogous contexts, while
the second describes the physical movement of objects
towards a stationary state. However, these objects are no
longer agentive. In BioVerbNet, settle is placed in sub-class

Table 3 Examples of differences in semantic roles of the arguments of the same verb (underlined) in VerbNet and BioVerbNet

Source Example sentence Verb Frame

VerbNet The couple settled there Agent V Location

BioVerbNet Most parasites settle within this area Patient V {in} Location

VerbNet The gardener grew that acorn into an oak tree Agent V Patient {into} Product

BioVerbNet Alga-free paramecia and symbiotic algae can grow independently Agent {and} Co-Agent {can} V ADV

VerbNet He responded to my call Agent V Theme

BioVerbNet Plants respond to damage Agent V Source

VerbNet The secretary transcribed the speech Agent V Theme

BioVerbNet These viruses transcribe their genomes in the nuclei of infected cells Bio-Agent V Patient {in} Location
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19.2.1 ‘Condense’, containing 16 members that include
sediment, coalesce and agglutinate. In the sentence Most
parasites settle within this area, the phrase ‘Most para-
sites’ takes on the role of Patient since it experiences the
effect of the event.
The usage of the verb transcribe also differs between

VerbNet and BioVerbNet. In VerbNet, transcribe
describes the copying of speech or text and is placed in a
group of 20 members that includes the verbs chronicle,
photocopy and record. In biomedical texts, however,
transcribe is typically used in the sense of DNA transcrip-
tion, an active process whereby the DNA double helix is
unzipped and a complementary strand of mRNA syn-
thesized. In BioVerbNet, transcribe is placed in sub-class
17.2.1 ‘Upregulate gene expression’, containing 6 mem-
bers that include transactivate, upregulate and derepress.
The usage of transcribe in VerbNet involves a human
Agent and the object of the verb is unchanged, therefore a
Theme, as in The secretary transcribed the speech (Agent
V Theme). In BioVerbNet, the agentive role is taken by
either a cellular Bio-Agent or a biochemical Force, and
the object of the verb is materially altered, therefore a
Patient, as in These viruses transcribe their genomes in the
nuclei of infected cells (Bio-Agent V Patient {in} Location).

Syntactic frame annotation
The second step of the annotation process consisted in
annotating the characteristic frames for each subclass
with syntactic constituents. For each frame, we identified
word groups functioning as a single unit in the syntactic
structure of the sentence (e.g., NP, VP, AdjP). These syn-
tactic patterns largely overlap with those used in VerbNet.
However, unlike in VerbNet, we have included for cer-
tain classes passive constructions and dependent clauses
containing the target verb when those syntactic patterns
typify the use of those verbs in biomedical text. Table 4
provides examples of syntactic annotation selected from
the complete resource.

Utility and discussion
Evaluation
The objective of this evaluation is to apply a standard
retrofitting method to change the vector-space of the pre-
trained word embeddings to better capture the semantics
represented by the BioVerbNet classes [56]. We apply
retrofitting to our pretrained embeddings (we use the
embeddings pre-trained by Chiu et al. [57]). We base our
retrofitting approach on the method proposed by Faruqui
et al. [58]. Given any pretrained vector-space representa-
tion, the main idea of retrofitting is to pull words which

Table 4 Examples of syntactic annotation (verb class members underlined)

Verb sub-class Example sentence Syntactic annotation

1.1.2 Suppress Amine groups quench the excited fluorophore NP V NP

1.3.0 Increase/Decrease Hormonal stimuli decline NP V

Antibody levels decline rapidly NP V ADVP

2.2.2 Cleave The activated caspases truncate procaspase-3 NP V NP

The conjugated salts chop the cell membrane into pieces NP V NP PP

2.3.0 Interact Both drug classes synergize NP V

Estrogen may synergize with nonaromatizable androgens NP V PP

4.1.1 Wash Subepithelial mucous gland secretions clean the valvular crypts NP V NP

4.2.0 Precipitate Specific antisera coprecipitate IGFBP-5 NP V NP

VITF-A and the viral capping enzyme copurify to near homogeneity NP V PP

8.1.2 Chemically combine Nonfunctional receptors could not dimerize NP V

Curcumin can chelate metal ions NP V NP

Lomefloxacin can chelate with heavy metals NP V PP

9.5.0 Decipher We comprehend NP V

We decipher the molecular determinants NP V NP

10.2.0 Score We classify these diseases as immunodeficiencies NP V NP PP

Clinicians classify the patient correctly NP V NP ADVP

17.2.2 Downregulate gene expression HDAC4 and MEF2C downmodulate c-jun promoter activity NP V NP

MicroRNAs silence the expression of target genes post-transcriptionally NP V NP PP ADVP

20.1.3 Repair Hematopoietic stem cells can reconstitute the bone marrow NP V NP

Adult zebra fish regenerate their caudal fin following partial amputation NP V NP PP
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Table 5 Summary statistics of the Hallmarks of Cancer (HOC) and the Chemical Exposure Assessment (CEA) datasets

HOC CEA

Document Sentence Document Sentence

Train 1,303 12,279 2,555 25,307

Dev 183 1,775 384 3,770

Test 366 3,410 722 7,100

Total 1,852 17,464 3,661 36,177

are connected in relation to the provided semantic lexicon
closer together in the vector space. The main objective
function tominimize in the retrofittingmodel is expressed
as

|V |∑

i=1

⎛

⎝αi

∥∥∥�vi − �̂vi
∥∥∥ +

∑

(i,j)∈S
βij

∥∥�vi − �vj
∥∥

⎞

⎠ (1)

where |V | represents the size of the vocabulary, �vi and
�vj correspond to word vectors in a pretrained repre-
sentation, and �̂vi represents the output word vector. S
is the input lexicon represented as a set of linguistic
constraints—in our case, they are pairs of word indices,
denoting the pairwise relations between member verbs
in each BioVerbNet class. For example, a pair (i, j) in S
implies that the ith and jth words in the vocabulary V
belong to the same verb class.
The values of α i and β ij are predefined and control the

relative strength of associations between members. We
follow the default settings for these values as stated in the
authors’ work by setting α = 1 and β = 0.05 in all of
the experiments. To minimize the objective function for a
set of starting vectors �v and produce retrofitted vectors �̂v,
we run stochastic gradient descent (SGD) for 20 epochs.
An implementation of this algorithm has been published
online by the authors;2 we used this implementation in
this evaluation.
We evaluate our word representations using two estab-

lished biomedical datasets for text classification: the Hall-
marks of Cancer (HOC) [59, 60] and the Chemical Expo-
sure Assessment (CEA) taxonomy [16]. We evaluate each
based on their document-level (Pubmed abstract) and
sentence-level classifications, where zero or more prede-
fined labels can be assigned for both of these tasks.
The Hallmarks of Cancer depicts a set of interrelated

biological factors and behaviours that enable cancer to
thrive in the body. Introduced by Weinberg and Hanahan
[15], it has been widely used in biomedical NLP, includ-
ing as part of the BioNLP Shared Task 2013, “Cancer
Genetics task” [61]. Baker et al. [59, 60] have released
an expert-annotated dataset of cancer hallmark classifica-
tions for both sentences and documents in PubMed. The
data consists of multi-labelled documents and sentences
using a taxonomy of 37 classes.
2https://github.com/mfaruqui/retrofitting

The Chemical Exposure Assessment taxonomy, intro-
duced by Larsson et al. [16], is an annotated dataset for the
classification of text (documents or sentences) concern-
ing chemical risk assessments. The taxonomy of 32 classes
is divided into two branches: one relates to assessment of
exposure routes (ingestion, inhalation, dermal absorption,
etc.) and the second to the measurement of exposure bio-
markers (biomonitoring). Table 5 details basic statistics
for each dataset.
We input the retrofitted vectors into a baseline neural

network model; we use the convolutional neural network
(CNN) model proposed by Kim [62] for text classifica-
tion tasks. An implementation of this model that was used
on both the Hallmarks of Cancer task and the Chemical
Exposure Assessment task has been published by Baker
et al. [63]; we use this implementation in our experiment.
The input to the model is an initial word embedding
layer that maps input texts into matrices, which is then
followed by convolutions of different filter sizes, 1-max
pooling, and finally a fully-connected layer leading to an
output Softmax layer predicting labels for text. Model
hyperparameters and the training setup are summarized
in Table 6.
For both tasks, we use the embeddings3 by Chiu et al.

[57] without retrofitting as a control baseline, and we eval-
uate two variations of the BioVerbNet verb classes, the 22
top-level classes, and the 117 subclasses.
Performance is evaluated using the standard precision,

recall, and F1-score metrics of the labels in the model
using the one-vs-rest setup: we train and evaluate K inde-
pendent binary CNN classifiers (i.e. a single classifier per

Table 6 Hyper-parameters used in our convolutional neural
network

Parameters Values

Vector dimension 200

Filter sizes 3,4 and 5

Number of filters 300

Dropout probability 0.5

Minibatch size 50

Input size (in tokens) 500 (documents), 100 (sentences)

3https://github.com/cambridgeltl/BioNLP-2016

https://github.com/mfaruqui/retrofitting
https://github.com/cambridgeltl/BioNLP-2016
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Table 7 Evaluation results for the Hallmarks of Cancer task (HOC) text classification task

Document classification Sentence classification

Model Precision Recall F1 Precision Recall F1

Baseline (no retrofitting) 77.8 51.7 62.1 56.8 30.7 39.9

22-classes retrofitted 74.4 62.1 67.7* 49.1 35.8 41.4*

117-subclasses retrofitted 74.8 62.5 68.1* 48.6 35.2 40.8*

The Baseline model is a skip-gram model without any retrofitting. All figures are micro-averages expressed as percentages (Bold denotes the best F1-score, * denotes
statistically significant scores with respect to the baseline)

class with the instances of that class as positive samples
and all other instances as negatives). Due to their ran-
dom initialization, we repeat each CNN experiment 20
times and report the mean of the evaluation results to
account for variances in neural networks. To address over-
fitting in the CNN, we use early stopping; testing only the
model that achieved the highest results on the develop-
ment dataset. We apply a two-tailed t-test with α = 0.05
on the averaged output in comparison with the baseline
model.
The results of our valuations are summarised in Table 7

for the HOC task, and Table 8 for the CEA task. We
can observe that in both classification tasks, and at both
levels of text classification (document and sentence), the
retrofitted models outperformed the baseline models with
significant results. The more fine-grained 117 subclasses
retrofitting improved the document-level classification for
both tasks more than the top-level verb classes, whereas
for sentence classification the opposite is observed. For
the HOC task, Recall benefited substantially from the
retrofitting process, whereas for the CEA task both Preci-
sion and Recall improved slightly compared to the base-
line. The reason behind the difference is likely because the
HOC dataset contains classes that are very sparse (with
only a small number of examples), and therefore recall
would increase more substantially for these classes at the
cost of precision; this has also been observed in prior work
with the HOC task [56, 63, 64].
These results demonstrate the utility of BioVerbNet for

specialising distributional word embeddings to better cap-
ture the properties of verbs in biomedicine and reveal its
potential to aid NLP models in tackling domain-specific
tasks where accurate verb processing is important.

Conclusions
This paper introduces BioVerbNet, the first semantic-
syntactic classification of biomedical verbs. The resource
groups verbs occurring in the PubMed corpus based on
shared meaning and syntactic behaviour into 22 top-
level and 117 fine-grained classes, each described by
a set of characteristic syntactic frames, annotated with
semantic roles. To construct BioVerbNet, we started
from the output of a neural classification method spe-
cialised for biomedical verbs [13], which subsequently
underwent manual revision and refinement, as well as
semantic-syntactic annotation, by domain and linguistics
experts. The resource provides VerbNet-style information
for members of each class, including the characteristic
syntactic contexts in which they appear and the typical
semantic roles taken by their arguments.
BioVerbNet fills the gap in computational lexical

resources targeting biomedical verbs currently available
and promises to support future work in biomedical NLP.
Our evaluation experiments on the task of text classifica-
tion demonstrated that BioVerbNet can be readily used to
support natural language processing models in biomed-
ical tasks. We showed that class membership informa-
tion from BioVerbNet can be successfully leveraged by
retrofitting pretrained word embeddings so that verbs
sharing the same BioVerbnet class, and therefore seman-
tic and syntactic behaviour, are pulled closer together in
the embedding space. Our retrofitted embeddings out-
performed the baseline models by a significant margin
on two datasets, Hallmarks of Cancer and Chemical
Exposure Assessment taxonomy. Moreover, the resource
provides detailed, manually-curated semantic-syntactic
annotations for each class, which offer insights into the

Table 8 Evaluation results for the Chemical Exposure Assessment (CEA) text classification task

Document classification Sentence classification

Model Precision Recall F1 Precision Recall F1

Baseline (no retrofitting) 89.5 87.1 88.3 66.2 62.8 64.5

22-classes retrofitted 89.9 87.5 88.7* 67.3 62.1 64.6

117-subclasses retrofitted 89.2 88.6 88.9* 66.3 60.3 63.2*

Baseline model is a skip-gram model without any retrofitting. All figures are micro-averages expressed as percentages (Bold denotes the best F1-score, * denotes statistically
significant scores with respect to the baseline)
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domain-specific properties of biomedical verbs and can
support researchers in developing models capable of
nuanced handling of the syntactic and semantic properties
of verbs in biomedical texts.

Future work
BioVerbNet includes 961 biomedical verbs sampled from
PubMed corpora, making it the largest lexicon of this
kind available in biomedicine. In future work, it can
be further extended to cover less frequent verbs and
additional classes. Moreover, given that the annotation
style in BioVerbNet follows that used in VerbNet, the
two resources can be linked at the level of individual
verbs appearing in both, thus providing richer information
for each entry and enabling easier comparisons of verb
behaviour in both domains.
In future work, we will further explore the potential of

BioVerbNet to support state-of-the-art NLP systems in
solving biomedical tasks. Given the success of BioBERT,
we will use our new resource to probe its ability to cap-
ture verbal meaning in biomedical texts and compare
its performance against our best performing embeddings
retrofitted to BioVerbNet class membership information.
Moreover, we will investigate the potential of injecting
knowledge about biomedical verbs from BioVerbNet into
large pretrained encoders to further boost their verbal
reasoning capacity in biomedicine. To support future
endeavours in biomedical NLP we make our resource
freely available to the community at https://github.com/
cambridgeltl/bioverbnet.
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