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Abstract 

Background: Intense research has been done in the area of biomedical natural language processing. Since the 
breakthrough of transfer learning-based methods, BERT models are used in a variety of biomedical and clinical appli-
cations. For the available data sets, these models show excellent results - partly exceeding the inter-annotator agree-
ments. However, biomedical named entity recognition applied on COVID-19 preprints shows a performance drop 
compared to the results on test data. The question arises how well trained models are able to predict on completely 
new data, i.e. to generalize.

Results: Based on the example of disease named entity recognition, we investigate the robustness of different 
machine learning-based methods - thereof transfer learning - and show that current state-of-the-art methods work 
well for a given training and the corresponding test set but experience a significant lack of generalization when apply-
ing to new data.

Conclusions: We argue that there is a need for larger annotated data sets for training and testing. Therefore, we 
foresee the curation of further data sets and, moreover, the investigation of continual learning processes for machine 
learning-based models.
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Background
The amount of freely available, electronic data increased 
enormously in the biomedical field. Automatic informa-
tion extraction methods have become indispensable and 
intense research has been done in the past. Whereas 
most text mining tasks were achieved with the help of 
rule-based systems in the beginning, mainly machine 
learning methods are used nowadays. The latter are 
strongly dependent on large amounts of curated data. 
However, manual curation is a complex and time con-
suming task, at least in the biomedical field, that needs 

to be done by domain experts. Hence, the availability of 
such high-quality data sets is strongly limited.

In the area of biomedical named entity recognition 
(NER), most data sets have been released for shared tasks 
and challenges open for the community. To name two 
examples, the national NLP clinical challenges (n2c2), 
formerly known as i2b2 NLP Shared Tasks, provide 
curated clinical data to researchers [1]; the organization 
Critical Assessment of Information Extraction systems in 
Biology (BioCreAtivE) organizes challenges for biological 
natural language processing (NLP) tasks and therefore 
also releases annotated data. In terms of disease entity 
recognition, to the best of our knowledge, two publicly 
available literature data sets exist that are commonly 
used: the National Center for Biotechnology Informa-
tion (NCBI) Disease corpus [2] and the BioCreative V 
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Chemical Disease Relation Task (BC5CDR) Disease cor-
pus [3]. Both of the mentioned disease data sets follow 
the same annotation guidelines which are necessary to 
ensure consistency in annotations. These guidelines have 
been published together with the NCBI Disease corpus 
[4] and are also used for the more recent one (BC5CDR)
[5]. Moreover, there are a few further data sets that con-
tain disease named entities but were originally developed 
for related tasks, such as relation extraction. For exam-
ple, Bagewadi et al. developed a corpus for the extraction 
of microRNA (miRNA) mentions and their relationships 
- thereof diseases [6]. The authors developed their own, 
simple annotation guidelines which state that disease 
terms are restricted to nouns, hence adjective terms are 
ignored. Moreover, the BioNLP13 Cancer Genetics (CG) 
data set is developed as event extraction corpus and con-
tains annotated cancer-related disease terms [7]. Next to 
the existing corpora, we recently annotated 50 COVID-
19 related articles with disease mentions [8].

Methodologically, the machine learning-based 
approaches applied to NLP have changed over time. 
First, methods like support vector machines, hidden 
markov models or conditional random fields, which all 
belong to the class of supervised algorithms, were often 
superior compared to rule based approaches. For those 
techniques, so-called features are needed to describe the 
input data. Examples of used features include general lin-
guistic features (e.g. part-of-speech (POS) tags, stems), 
orthographic features (e.g. punctuation character, capital-
ized word) or dictionary look-up features. Later, so-called 
word embeddings - vector representations of words, usu-
ally learned over large collections of unlabeled data with 
the help of neural networks - replaced this feature engi-
neering process [9]. These vectors are usually pre-trained 
with the objective to build a general language model, i.e. 
to predict the next word in a sequence. This principle 
can be understood as providing the neural network with 
prior knowledge about the nature of words and sentences 
- i.e. their semantics and syntax.

The aforementioned methods are all feature-based 
approaches: pre-trained representations (word embed-
dings) are included as features for a task-specific architec-
ture [10]. More recently, so-called fine-tuning approaches 
have gained interest, which exploit a mechanism known 
as transfer learning. An already trained model is used as 
starting point to be trained on a new task. In case of NLP, 
the model is pre-trained on a general language under-
standing task and then fine-tuned on a specific NLP task 
like NER or relation extraction. With this shift in text 
mining methodologies, the complexity of the workflow is 
drastically reduced compared to rule- and feature-based 
approaches. Rule-based approaches require several pre-
processing steps as for instance part-of-speech tagging, 

tokenization and sentence detection. Feature-based 
approaches rely on at least two different architectures, 
i.e. the creation of features and their inclusion into a (dif-
ferent) model. In contrast, fine-tuning based approaches 
only define one network architecture that is applicable 
to several different downstream tasks. The most popular 
network architecture is the bidirectional encoder repre-
sentation  from transformers (BERT) [10] that has been 
adapted to the biomedical area, called BioBERT [11], and 
shows state-of-the-art results for several different NLP 
tasks, thereof disease NER .

Based on the needs during the current COVID-19 pan-
demic, we set up the text mining-based semantic search 
engine preVIEW that automatically indexes preprints 
from several different sources [8, 12]. To recognize sev-
eral entity classes (thereof diseases), we integrated pub-
licly available ML-based models which show promising 
results of F1-scores above 85% for disease name rec-
ognition. Unfortunately, we realized a significant drop 
in performance when evaluated on a newly annotated 
COVID-19 preprint data set. With the implementation 
of an additional post-processing step1 that especially 
focuses on the recognition of COVID-19 related terms, 
their mapping to the new identifier and the removal of 
false positive entities that refer to the virus instead of the 
disease, we could achieve good results for this specific 
corpus [8].

These findings encouraged us to examine this perfor-
mance reduction phenomenon in more detail - based 
on known data heavily used by the community: To the 
best of our knowledge, all recently developed systems for 
the recognition of diseases are trained and evaluated on 
either the NCBI or the BC5CDR corpus, on both of them 
separately or on the combination of these data sets. The 
question arises whether the models trained on these data 
sets are robust and applicable to real world applications.

In the current work, we investigate the similarities and 
differences of the two data sets and, in addition, compare 
them to a random PubMed data set in order to analyze 
the characteristics/bias of the different corpora. We also 
examine different NER algorithms – both transfer learn-
ing- and non transfer learning-based methods – and 
compare the performance of the algorithms trained on 
data set A and tested on the data set B. That is, we train a 
model explicitly on only one corpus and use the test sets 
of other corpora to obtain an independent evaluation of 
the quality of the model in terms of its ability to general-
ize. This is referred to as cross evaluation in the follow-
ing. Additionally, we determine the performance of two 

1 The script is available under https:// github. com/ zbmed/ preVI EW- COVID 
19/

https://github.com/zbmed/preVIEW-COVID19/
https://github.com/zbmed/preVIEW-COVID19/
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of the algorithms trained on a merged corpus of both 
data sets (combined learning). Moreover, we evaluate 
the methods on the three above mentioned independent 
data sets: The first was developed for finding relation-
ships between miRNAs and different biomedical entities, 
thereof diseases [6]. The corpus will be named miRNA-
disease corpus in the following. Secondly, we evaluate 
the models on the BioNLP13-CG corpus which contains 
cancer-related disease terms [7]. Finally, we will use our 
own developed corpus which consists of 50 COVID-19 
related articles that contain disease mentions (referred to 
as COVID Disease corpus in the following). Whereas, the 
latter relies on the annotation guidelines released with 
the NCBI corpus [4], the two other corpora come with 
their own annotation guidelines.

Results
This section is subdivided into three different parts. First, 
we describe the results of the corpora comparison analy-
ses. Afterwards, the results of the cross evaluations are 
described and finally we present the results of the com-
bined learning approach.

Semantic and linguistic comparison of data sets
In a first step, we analyzed and compared the two main 
disease NER data sets (i.e. NCBI and BC5CDR data sets) 
in detail. We determined the overlap of both mentions 
and concepts between the training and the correspond-
ing test set. The overlap between NCBI training and its 
test set reaches 70% on concept level, compared to an 
overlap of 60% between BC5CDR training and test set. 

Second, we determined the “cross-similarity”, i.e. the 
similarity of the training set of the NCBI corpus and the 
test set of the BC5CDR corpus and vice versa. The over-
lap between NCBI training set and BC5CDR test set only 
reaches 32% on the concept level and for the opposite 
case a value of 24% is reached. An overview of all results, 
also on the mention level, is given in Fig. 1. On the men-
tion level, the overlap is lower within a corpus but we can 
also observe a drastic drop of cross similarity.

Moreover, we compared the linguistic variability of 
the different corpora using the visualization tool scatter-
text [13]. In Fig. 2a, we compared the BC5CDR training 
corpus to its corresponding test set. It shows a positive, 
linear relationship, indicating that the same words (or 
words with similar meaning) occur with similar fre-
quency. In contrast, we do not see a relationship between 
the BC5CDR training set and the NCBI training set as 
the points are scattered throughout the whole plot (see 
Fig.  2b). This means, that terms that occur often in the 
BC5CDR training set occur rarely in the NCBI training 
set and vice versa. Finally, we compared both, the NCBI 
and the BC5CDR corpus, to the random PubMed corpus 
and received similar results (see Figs. 2c and 2d): in both 
cases also no linear trend can be seen but a widely dis-
tributed scatterplot. Whereas this might be expected for 
the BC5CDR corpus, as it only covers a specific domain 
(i.e. cardiovascular, neurological, renal and hepatic toxic-
ity and their role in drug development), the NCBI corpus 
is intended to represent entire PubMed and the result is 
therefore rather unexpected.

Fig. 1 Semantic comparison of the NCBI and BC5CDR corpora on disease mention and concept level. The training sets are compared to their 
corresponding test sets. Additionally, the two different training sets are compared to the test sets of the respective other corpus
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Cross Evaluation of NER models
In summary, we tested six different state-of-the-art 
machine learning algorithms, namely BioBERT, scis-
paCy, TaggerOne, DNorm, Stanza and HUNER. 
Whereas we trained BioBERT and HUNER in this 
study, we applied the other algorithms “as is”. An over-
view about the models can be seen in Table 1. The algo-
rithms are further described in Section 5.2. All trained 
models are evaluated on both available test sets (NCBI 

and BC5CDR Disease). As can be seen in Fig.  3, the 
cross evaluation results in a significant drop for all used 
models. Whereas the BioBERT model trained on the 
NCBI training corpus achieves an F1-score of about 
87% on the corresponding test set, it drops to 68% for 
the BC5CDR Disease test set. Similarly, the BioBERT 
model trained on the BC5CDR training set reaches 
an F1-score of 83% on the corresponding test set, the 
cross-evaluation, however, results in an F1-score of 69%. 

Fig. 2 Comparison of the data sets with scattertext. On each axis, the frequency of a term is shown for the given documents. In Fig. 2a, the BC5CDR 
training set is compared to its given test set whereas in Fig. 2b, the BC5CDR training set is compared to the NCBI training set. In Figs. 2c and 2d, the 
BC5CDR training set and the NCBI training set are compared against a randomly chosen PubMed corpus of similar size

Table 1 Overview of used training data sets for the respective algorithms

Training set Algorithm
BioBERT scispaCy DNorm TaggerOne HUNER Stanza

NCBI � � � � �

BC5CDR � � � � �

NCBI+BC5CDR � �

miRNA-Disease �

BioNLP13-CG �
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The highest difference is determined for the TaggerOne 
model trained on the NCBI training set. Whereas 
an F1-score of 83% for the corresponding test set is 
achieved, only 52% are reached for the BC5CDR test 
set. Vice versa, for the TaggerOne model trained on the 
BC5CDR corpus, we realize a 20% drop for the cross-
evaluation. For trained DNorm, scispaCy, HUNER and 
Stanza models, the same trend has been determined. 
However, a slightly higher F1-score was determined 
for the HUNER model fine-tuned on the BC5CDR cor-
pus: the F1-score amounts to 73.7% for the NCBI test 
set. This could be explained by the fact that the HUNER 
disease-all model that we used was, amongst oth-
ers, pre-trained on the NCBI training corpus. Detailed 
results - including precision and recall - can be seen in 
Table  2. Interestingly, even though both precision and 
recall decrease, for all cross evaluations the drop of the 
recall is bigger than the drop of precision. For example, 
for BioBERT trained on the NCBI corpus, the recall 
drops by 22.34% whereas the precision drops by 18.52%. 
For TaggerOne trained on BC5CDR, the drop in preci-
sion amounts to 15.29%, and the difference in recall is 
24.29%.

In addition, we evaluated the BioBERT models on 
three further related corpora that contain disease 
entities. As reference model, we use BioBERT trained 
on the respective training data set (if available). The 
results can be seen in Table  3. The BioBERT model 
trained on the miRNA-disease data set achieves an 

F1-score of approximately 80% on the correspond-
ing test set. Both the NCBI and BC5CDR model per-
form only around 4% worse on the miRNA-disease 
test set. However, the BioBERT model trained on the 
NCBI corpus achieves only an F1-score of 61% on 
the BioNLP13-CG test set (in contrast to 86% when 
trained on the corresponding training set). An even 
worse F1-score can be seen when evaluating both the 
NCBI and BC5CDR model on the COVID-disease 
data set where F1-scores of 36% and 23% are achieved, 
respectively. This is mainly caused by the fact that the 
trained models are not able to predict newly evolved 
diseases, such as COVID-19.

Learning on combined data set
Finally, we trained a BioBERT model on both NCBI and 
BC5CDR training data sets simultaneously and also 
evaluated this on both corresponding test data sets. 
Also for TaggerOne such a combined model is provided 
that we evaluated. As can be seen in Table 4, the results 
are similarly high for both test data sets. For BioBERT, 
the result on the NCBI test set is only 0.07% worse 
than the model only trained on NCBI; the result on the 
BC5CDR test set is even the same (see Fig. 3).

Discussion
In order to find relevant information in literature and 
hence to generate new knowledge, text mining meth-
ods have become indispensable because of the ever 
growing amount of electronic data. Therefore, a lot 
of research has been done in the area of bioNLP and 
current state-of-the-art algorithms show promising 
results on the available data sets. BERT is on every-
one’s lips and used in a variety of biomedical and clini-
cal applications [11, 14–16].

Table 2 Precision, recall and F1-score for both the corresponding 
test set and the respective other test set (i.e., cross evaluation)

Algorithm Train set Test set Precision[%] Recall[%] F1-Score[%]

BioBERT NCBI NCBI 84.62 90.09 87.27

BC5CDR 69.77 67.75 68.75

BC5CDR NCBI 73.63 63.19 68.01

BC5CDR 82.07 85.39 83.07

TaggerOne NCBI NCBI 83.46 82.66 83.06

BC5CDR 70.01 40.75 51.51

BC5CDR NCBI 68.30 56.38 61.77

BC5CDR 83.59 80.67 82.11

scispaCy BC5CDR NCBI 65.65 57.49 61.30

BC5CDR 76.20 75.22 75.71

DNorm NCBI NCBI 80.80 81.90 81.35

BC5CDR 65.73 50.29 56.98

Stanza NCBI NCBI 86.65 88.54 87.58

BC5CDR 70.24 57.78 63.40

BC5CDR NCBI 75.57 62.50 68.42

BC5CDR 82.85 84.95 83.88

HUNER NCBI NCBI 83.82 86.35 85.07

BC5CDR 70.20 64.92 67.46

BC5CDR NCBI 77.84 69.90 73.66

BC5CDR 83.07 83.52 83.30

Table 3 Further cross evaluation results of BioBERT using related 
corpora

Train set Test set Precision[%] Recall[%] F1-Score[%]

MiRNA-
disease

MiRNA-
disease

78.63 80.60 79.60

BioNLP13-CG BioNLP13-CG 86.01 86.47 86.24

NCBI MiRNA-
disease

71.96 81.53 76.45

BC5CDR MiRNA-
disease

72.74 80.59 76.47

NCBI BioNLP-CG 50.14 79.09 61.37

BC5CDR BioNLP-CG 48.60 75.19 59.05

NCBI COVID Dis-
ease

46.24 29.66 36.13

BC5CDR COVID Dis-
ease

30.64 18.28 22.89
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Because we integrated NER models into a semantic 
search engine and realized a drop in performance when 
evaluating an algorithm on a new data set, we started 
to question the robustness of current state-of-the-art 
methods. Therefore, in this work, we investigated the 
robustness of different machine learning-based algo-
rithms on the task of disease named entity recognition. 
We chose this example because two different manually 
curated data sets are publicly available that are of simi-
lar size, basically follow the same annotation guidelines 
and are often used independently to develop and evalu-
ate new methods. Assuming that the annotated disease 
corpora are large enough to train a model which gener-
alizes and, in such a way is able to predict on new data, 
we evaluated the individually trained models on each 
other’s test set without further adjustment or training 
to test this hypothesis. Our analysis shows that none 
of the six tested algorithms performs nearly as good 
on cross evaluation as on the corresponding test set. 

Instead, we experience a significant drop in perfor-
mance - on average 19% in terms of F1-score. To our 
mind, this can have the following two reasons: (1) the 
models can be overfitted towards the training data sets 
or (2) one such available corpus is simply not enough 
to learn this kind of complex biomedical NLP task. As 
we showed in our scatterplots, the content of the two 
used data sets strongly differ in content and word-
ing and none of them represent the PubMed database 
(see Fig. 2). The specific content of a corpus is strongly 
dependent on the selection criteria, i.e. based on which 
strategy the abstracts were included. For example, the 
BC5CDR corpus was randomly selected from the CTD-
Pfizer corpus [17] that contains 88,000 manually cho-
sen and curated articles (abstracts) to investigate the 
potential involvement of pharmaceutical drugs in car-
diovascular, neurological, renal and hepatic toxicity. 
Therefore, the BC5CDR corpus is focused on drugs and 
their role in toxicity.

To further investigate the models’ generalization 
ability, we used three additional data sets, originally 
developed for related tasks such as relation or event 
extraction. Whereas the drop in performance is rela-
tively low for the miRNA-disease data set, we experi-
ence again a high drop for the BioNLP13-CG corpus. 
The lowest F1-score (amounting to 36% and 23% 
for the NCBI and BC5CDR models, respectively) is 
achieved for the COVID Disease data set that consists 
of relatively recent COVID-19 related articles.

Fig. 3 NER results for all tested ML algorithms. The F1-score is shown for the test set that belongs to the training set (corresponding test set) and to 
the test set of the respective other data set

Table 4 Evaluation of models trained on combined NCBI and 
BC5CDR data set

Algorithm Test set Precision[%] Recall[%] F1-Score[%]

TaggerOne NCBI 81.86 80.23 81.04

BC5CDR 79.61 77.69 78.64

BioBERT NCBI 85.19 88.74 86.93

BC5CDR 82.07 85.21 83.61
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As the BioBERT model trained on both the NCBI 
and the BC5CDR training sets reaches nearly the same 
results as each model trained on only one data set, 
the model is able to predict well on more variable test 
data if the training data set covers a similar variance. 
Therefore, the question arises when the model would 
be “ready” for real world applications - i.e. when we 
would have enough representative data. The model 
needs to be further tested on manually curated data 
that again covers a different area. However, such exper-
iments are hampered by a lack of high-quality labeled 
data. Therefore, we foresee to set up a crowd sourcing-
based approach in the near future and want to test 
the capabilities of transfer learning-based approaches 
for an active learning setup. Sequential fine-tuning of 
BioBERT models (i.e. re-training) experiences a mech-
anism known as catastrophic forgetting - the model 
forgets previously gathered knowledge and is biased 
towards the last data set [18]. Recently, so-called 
Adapter modules have been proposed that can be used 
for sequential learning of different tasks [19, 20]. How-
ever, it remains open how such methods perform on 
exactly the same – but highly variable and complex – 
task (i.e. disease NER in our case).

Conclusions
Even though current transfer learning-based state-of-
the-art methods for bioNLP show excellent results on 
the given training and corresponding test data, our 
analysis showed that those models are - against our 
expectations - not yet ready for real world applica-
tions because of a lack of generalization capabilities. 
Named entity recognition in the biomedical domain 
is much more complex than solving tasks on general 
domain knowledge, such as the recognition of persons 
or organizations. Moreover, a continual learning pro-
cess is of great importance as the science progresses 
not only continuously but also rapidly. Therefore, in our 
future work, we foresee both the manual annotation 
of further data sets and the investigation of continual 
learning capabilities on this task in order to be able to 
solve real world cases.

Materials and Methods
In the following, we first describe the used data sets. 
Afterwards, all six used algorithms are shortly described.

Data sets
In the following section, we first describe the two main 
disease NER data sets (NCBI and BC5CDR) that fol-
low the same annotation guidelines and are of compa-
rable size. Thereafter, the three additional data sets are 

described. Thereof only one of the data sets follows the 
same annotation guidelines. The NCBI and BC5CDR 
corpora both consist of PubMed abstracts with manu-
ally curated disease annotations. The NCBI corpus with 
detailed annotation guidelines was released first. For the 
generation of the BC5CDR corpus, the previously pub-
lished NCBI disease guidelines were re-used. The authors 
stated that “whenever possible, we will follow closely the 
guidelines of constructing NCBI disease corpus for anno-
tating disease mentions” [21].

The NCBI Disease corpus was released by the National 
Center for Biotechnology Information (NCBI) and is 
“fully annotated at the mention and concept level to serve 
as a research resource for the biomedical natural language 
processing community” [2]. It contains 739 PubMed 
abstracts with a total of 6,892 disease mentions, annotated 
by a total of 14 annotators. Two annotators were given 
the same data so that a double-annotation could be per-
formed. The inter-annotator agreement was determined 
by means of the F1-score (see Section 5.3) for each pair of 
annotators. The average F1-score amounts to 88% [2].

The BioCreative V Chemical Disease Relation 
(BC5CDR) was released by the organization BioCreative. 
The BC5CDR corpus contains 1,500 abstracts includ-
ing disease and chemical annotations at mention level 
as well as their interactions (relations). In total, the data 
set contains 12,848 disease mentions [3]. For the pre-
sent work, only the corpus containing disease mentions 
is used. Here, the inter-annotator agreement has been 
determined by means of the Jaccard distance. The Jaccard 
index divides the overlap of both sets (annotations) by 
the number in either set [22]. To determine the Jaccard 
distance, the index needs to be subtracted from one. The 
inter-annotator agreement amounts to 87.49% [3].

The NCBI training data set consists of 593 abstracts 
and the BC5CDR training data set consists of 500. In 
terms of unique mentions and concepts, they are also 
very similar. Whereas the NCBI training set contains 632 
unique concepts, 649 can be found in the BC5CDR train-
ing set. In the test sets, huge differences can be found 
concerning the amount. The NCBI Disease test set only 
consists of 100 abstracts, the BC5CDR test set, however, 
consists of 500 abstracts as well. Therefore, the latter con-
tains significantly more unique mentions and concepts. A 
detailed overview can be seen in Table 5.

In our work, we analyze and compare these data sets 
on different levels: on mention level, on concept level and 
based on the whole corpus. For the latter, we apply the 
tool scattertext to visualize the linguistic variations [13]. 
In addition, we use the randomly generated PubMed cor-
pus to perform a linguistic variation analysis between 
the annotated corpora and PubMed. This corpus was 
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generated by randomly choosing 500 abstracts from all 
PubMed abstracts with a publication date between 1990 
and 2021 (a total of 23,631,092 articles).

As three further, related data sets, we use the miRNA-
disease corpus [6], the BioNLP13-CG corpus [7] and the 
COVID Disease corpus [12]. The miRNA-disease data set 
is split into training and test set. The training set consists 
of 200 abstracts, the test set consists of 100. The train-
ing set contains a total of 461 unique disease mentions, 
whereas the test set contains 224. In contrast to the NCBI 
and BC5CDR corpora, for this corpus, different, more 
simplified annotation guidelines were released that for 
example restrict the annotation to nouns. The BioNLP13-
CG corpus consists of a total of 600 abstracts, split into 
training, development and test set. The test set contains 
260 unique mentions. The COVID Disease data set is the 
smallest, consisting of 50 annotated abstracts. It has been 
developed as an independent test set for disease named 
entity models for COVID-19 related articles. Due its focus 
on COVID-19, it only contains 68 unique mentions.

NER Algorithms
We investigated six different publicly available algo-
rithms for disease named entity recognition in this 
work, that will be described in the following. Whereas 
we trained BioBERT and HUNER in this study, we 
applied the other algorithms “as is”. We provide an 
overview about the sources in the Availability Sec-
tion. The applied algorithms will be described in the 
following.

BioBERT [11] is based on Bidirectional Encoder Rep-
resentations from Transformers (BERT) [10]. As pre-
trained model, we used BioBERT-Base v1.0 (+ PubMed 
200K + PMC 270K) published by Lee et al. [11]. For 
fine-tuning, we used the library Transformers [23] 
and pytorch. In total, we trained five different models. 
First, we used the NCBI and BC5CDR training corpora 

and trained them both individually and on the combi-
nation on them. For the latter setting, the batches were 
shuffled randomly to avoid a higher influence of one 
data set over the other. The training parameters, inves-
tigated via cross-validation, can be seen in Table  6. 
Additionally, we used default parameters to train two 
further models on the miRNA-disease and BioNLP13-
CG corpora (see also Table 6).

scipaCy is based on the python library spaCy [24] that 
includes tools for text processing in several different lan-
guages. The text processing steps include for example 
sentence detection, tokenization, POS tagging or NER. 
Therefore, a convolutional neural network is used. scis-
paCy is trained on top of spacy for POS tagging, depend-
ency parsing and NER using biomedical training data. 
The authors provide a model trained on the BC5CDR 
corpus to recognize diseases and chemicals. We used 
this model and filtered out the chemical annotations.

DNorm is a disease recognition and normalization 
tool [25]. It is a serial algorithm which uses first the 
entity recognition tool BANNER [26] based on con-
ditional random fields (CRFs) which is followed by an 
abbreviation detection tool and a normalizer. Normali-
zation is learned following a pairwise learning to rank 
approach. We apply the provided model trained on the 
NCBI Disease corpus.

TaggerOne is a joint named entity recognition and nor-
malization model consisting of “a semi-Markov struc-
tured linear classifier, with a rich feature approach for 

Table 5 Statistics of used disease entity recognition data sets

Data set NCBI BC5CDR miRNA-disease COVID Disease BioNLP13-CG

Size (# Abstracts) 593 500 201 - 300

Unique mentions training 1614 1445 461 - 349

Unique concepts 632 649 - - -

Size (# Abstracts) 100 500 - - 200

Unique mentions development 343 1343 - - 154

Unique concepts 170 589 - - -

Size (# Abstracts) 100 500 100 50 100

Unique mentions test 407 1432 224 68 260

Unique concepts 192 640 - - -

Table 6 Hyperparameters used for fine-tuning BioBERT

Corpus Batch size Learning rate # of epochs

NCBI 32 5e-5 7

BC5CDR 32 3e-5 4

NCBI + BC5CDR 32 5e-5 4

BioNL13-CG 32 5e-5 3

miRNA-Disease 32 5e-5 3
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NER and supervised semantic indexing for normaliza-
tion” [27]. The authors provide three different models: 
one trained on the NCBI Disease corpus, one trained on 
the BC5CDR Disease corpus and one trained on both of 
them simultaneously.

Stanza is a python package that allows the building of 
machine learning-based NLP pipelines (including for 
example tokenizers or POS-tagger but also NER modules) 
for 70 different languages [28]. Zhang et al. published bio-
medical and clinical English model packages [29]. Opti-
mized models for both the NCBI and the BC5CDR corpus 
exist and are used in this study.

HUNER, developed by Weber et al., makes use of an 
LSTM-CRF-based architecture that is pre-trained in an 
semi-supervised manner and afterwards fine-tuned on a 
specific corpus/entity class [30]. To apply HUNER for our 
use-case, we downloaded the disease-all model and fine-
tuned it on both the NCBI and the BC5CDR corpus, fol-
lowing the instructions of the authors (https:// github. com/ 
hu- ner/ huner).

An overview about all available and/or trained models 
can be seen in Table 1.

Evaluation Metrics
We determine precision, recall and F1-score to evalu-
ate the models. The equations are given below, where FP 
stands for false positive, FN for false negative and TP for 
true positive. To ensure consistency, we use a publicly avail-
able evaluation script (CoNLLEval script) that has been 
released by the Conference on Computational Natural Lan-
guage Learning (CoNLL) together with a shared task. The 
script is available under https:// github. com/ sighs mile/ conll 
eval. This requires the input data to be in the “IOB”-format 
where each token is labeled as B for beginning, I for inside 
or O for outside. Evaluation is only done on entity, not on 
concept level and we only take exact matches into account.

Abbreviations
BC5CDR: BioCreative V Chemical Disease Relation Task; BERT: Bidirectional 
Encoder Representations from Transformers; CoNLL: Conference on Compu-
tational Natural Language Learning; FN: False negative; FP: False positive; ML: 
Machine Learning; NCBI: National Center for Biotechnology Information; NER: 
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