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Abstract

Background: The ability to conduct genome-wide association studies (GWAS) has
enabled new exploration of how genetic variations contribute to health and disease
etiology. However, historically GWAS have been limited by inadequate sample size
due to associated costs for genotyping and phenotyping of study subjects. This has
prompted several academic medical centers to form “biobanks” where biospecimens
linked to personal health information, typically in electronic health records (EHRs), are
collected and stored on a large number of subjects. This provides tremendous
opportunities to discover novel genotype-phenotype associations and foster
hypotheses generation.

Results: In this work, we study how emerging Semantic Web technologies can be
applied in conjunction with clinical and genotype data stored at the Mayo Clinic
Biobank to mine the phenotype data for genetic associations. In particular, we
demonstrate the role of using Resource Description Framework (RDF) for
representing EHR diagnoses and procedure data, and enable federated querying via
standardized Web protocols to identify subjects genotyped for Type 2 Diabetes and
Hypothyroidism to discover gene-disease associations. Our study highlights the
potential of Web-scale data federation techniques to execute complex queries.

Conclusions: This study demonstrates how Semantic Web technologies can be
applied in conjunction with clinical data stored in EHRs to accurately identify
subjects with specific diseases and phenotypes, and identify genotype-phenotype
associations.
Introduction
In the past decade, there has been a plethora of discoveries in genomic sciences involving

complex, non-Mendelian diseases that relate single-nucleotide polymorphisms (SNPs) to

clinical conditions and measurable traits. This has become feasible due to the advances in

high-throughput genotyping technologies and genome-wide association studies (GWAS)

that allow studying the entire human genome in thousands of unrelated individuals

regarding genetic associations with different diseases. However, unlike Mendelian traits,

effect sizes of genetic variants associated with common diseases are relatively small, and

thus large sample sizes are required for discovery.

To address this research need, several academic medical centers are forming bioreposi-

tories or biobanks that collect and store individual biospecimens from which DNA for
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conducting genetic research can be extracted. Additionally, these biobanks are often

linked to electronic health records (EHRs) that support retrieval and querying for vast

amounts of phenotype data [1,2]. The Electronic Medical Records and Genomics

(eMERGE [3]) consortium—a network of ten academic medical centers, of which Mayo

Clinic is a member—has demonstrated the applicability of “EHR-derived phenotyping

algorithms” for cohort identification to conduct GWAS for several diseases, including

peripheral arterial disease [4], red blood cells [5] and atrioventricular conduction [6]. A

common thread across the library of algorithms [7] is access to different types and modal-

ities of clinical data for algorithm execution, which includes billing and diagnoses

information, laboratory measurements, patient procedure encounters, medication and

prescription management data, and co-morbidities (e.g., smoking history, socio-economic

status). While on one hand these approaches with EHR-linked biorepositories have suc-

cessfully facilitated GWAS, such studies typically focus on a narrow phenotypic domain,

such as presence or absence of a given disease and ignore the potential power that can be

gained through intermediate and sub-phenotypes, as well as considering pleiotropic asso-

ciations. Furthermore, most existing GWAS results are based on populations with

European descent, thereby limiting the understanding of genetic contribution to diseases

and traits for other racial and ethnic populations. To this end, there has been an emerging

interest in mining the human phenome via a “reverse GWAS” or a PheWAS (Phenome

Wide Association Scan)—for a given genotype, the goal is to identify the set of associated

clinical phenotypes. By using clinical data from EHRs, a PheWAS allows systematic study

of associations between a number of common genetic variations and variety of large num-

ber of clinical phenotypes. Recent studies by Denny et al [8]. and Pendergrass et al [9].

demonstrated the potential for PheWAS to replicate previously published genotype-

phenotype associations, as well as, identify novel associations using patient EHR data.

However, to extract phenotype data from EHRs, one is posed with the challenge of repre-

senting and integrating data in a form that would allow federated querying, reasoning,

and efficient information retrieval across multiple sources of clinical data and information.

The work proposed in this study is an attempt to address this challenge by exploring

and experimenting with Semantic Web technologies for enabling a PheWAS. A key as-

pect of Semantic Web is a rigorous mechanism for defining and linking heterogeneous

data using Web protocols and a simple data model called Resource Description Frame-

work (RDF). By representing data as labeled graphs, RDF provides a powerful frame-

work for expressing and integrating any type of data. As of March 2012, under the

auspices of an initiative called the Linked Open Data (LOD [10]), more than 250 public

datasets from multiple domains (e.g., gene and disease relationships, drugs and side

effects) are available in RDF, and have been integrated by specifying approximately 350

million links between the RDF graphs. Not only do such efforts provides tremendous

opportunities to devise novel approaches for combining private, and institution-specific

EHR data with public knowledgebases for phenotyping, but they also present several

challenges in representing EHR data using RDF, creating linkages between multiple dis-

parate RDF graphs, and developing mechanisms for executing federated queries analy-

zing information spanning genes, proteins, pathways, diseases, drugs, and adverse

events.

In this paper, we describe our efforts in representing real patient data, both clinical

and genomic, from Mayo Clinic’s EHR systems [11] and the biobank, respectively as
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RDF graphs. In particular, we leverage open-source tooling and infrastructure devel-

oped within the Semantic Web community to extract phenotype and genotype infor-

mation on subjects with Type 2 Diabetes Mellitus (T2DM) or Hypothyroidism, and

conduct a phenome-wide scan to discover new genetic associations, as well as, replicate

existing ones. As a proof of concept, we present our results on eight SNPs associated

with T2DM and Hypothyroidism within an EHR population at the Mayo Clinic

biobank. Our approach highlights the potential of using Semantic Web technologies for

exploring a variety and large range of clinical phenotypes derived from EHRs for

genomics research in a very high-throughput manner.

Background
Mayo Clinic Biobank and the genome consortia

The Mayo Clinic biobank is an institutional resource for biological specimens, patient

provided risk factor data, and clinical data on patients recruited to the biobank. Oper-

ational since 2009, the biobank has enrolled more than 22,000 subjects in an effort to

support a wide array of health-related research studies throughout the institution.

Study participants provide a blood sample for DNA and serum/plasma research,

complete a health risk questionnaire, allow access to medical records, and consent to

prospective follow-up for health outcomes. Within this biobank, Mayo Genome

Consortia (MayoGC [12]) is a large cohort of Mayo Clinic patients with clinical data

(linked via their EHRs) and genotype data. Formed as a voluntary collaboration of

investigators across disciplines at Mayo Clinic, eligible participants in MayoGC include

those who gave general research (i.e., not disease-specific) consent to share high-

throughput genotyping data with other investigators. The MayoGC cohort is being

built in 2 phases. Phase I, which has been completed, includes participants from 3 stud-

ies funded by the U.S. National Institutes of Health (NIH) which sought to identify gen-

etic determinants of peripheral arterial disease, venous thromboembolism, and

pancreatic cancer, respectively, with a combined total sample size of 6,307 unique parti-

cipants (Table 1). Phase 2 is currently underway with the goal of expanding MayoGC

by recruiting eligible patients from several additional studies funded by the NIH and

other governmental and non-profit agencies at Mayo Clinic. For this study, we

extracted clinical and genotype data on all 6,307 subjects from Phase I (Table 1).

Genetics of type 2 diabetes mellitus

The prevalence of T2DM has been increasing rapidly in recent years with an estimated

438 million adults suffering from diabetes by the year 2030 [13]. While there are nu-

merous non-genetic factors that contribute to the development of diabetes prevalence,

recent studies indicate the importance of genetic findings for the pathophysiology, pre-

diction, and treatment of T2DM [14]. Furthermore, association studies focusing on

quantitative traits such as fasting glucose, fasting insulin, and glycated hemoglobin A1C

(HbA1c) have shed further light on the genetic susceptibility of T2DM. To date, at least

36 gene loci have been identified that contribute to the genetic risk of T2DM, although

this number is expected to increase in the future with larger cohorts being assembled.

In particular, current estimates indicate that the gene loci that are associated with

T2DM, explain only approximately 10% of the disease heritability. This raises the



Table 1 MayoGC Phase I studiesa,b (used with permission from Bielinski et al [12])

Characteristics eMERGE Network (PAD) [2] GENEVA (VTE) [6] PANC [7,8]

Cases
(n = 1612)

Controls
(n = 1585)

Cases
(n = 1233)

Controls
(n = 1264)

Controls
(n = 613)

Age (y), mean ± SD 66.0 ± 10.7 61.0 ± 7.4 55.0 ± 16.2 56.0 ± 15.8 66.0 ± 10.0

Female (%) 36 40 50 52 45

Medical record length (y)

Mean ± SD 23.4 ± 20.0 26.1 ± 20.3 13.7 ± 16.3 21.1 ± 15.4 30.2 ± 16.5

Median ± (range) 18.7 (1.0–78.6) 23.0 (1.0–79.2) 6.3 (1.0–71.8) 17.8 (1.0–70.2) 29.8 (1.0–75.0)

White (%) 94 94 96 99 100

Geographic location, No. (%)c

Olmsted Country 328(20) 590(37) 7(1) 10(1) 64(10)

Southeast Minnesota 191(12) 62(4) 205(17) 378(30) 107(17)

Greater Minnesota 393(24) 343(22) 314(25) 371(25) 135(22)

Iowa 212(13) 97(6) 176(14) 191(15) 65(11)

South and North Dakota 50(3) 31(2) 79(6) 71(6) 19(3)

Wisconsin 128(8) 68(4) 121(10) 138(11) 32(5)

Other states or international 309(19) 394(25) 330(27) 159(13) 191(31)
aeMERGE=Electronic Medical Records and Genomics; GENEVA=Gene Environment Association Studies; MayoGC=Mayo
Genome Consortia; PAD=peripheral arterial disease; PANC=Mayo Clinic Molecular Epidemiology of Pancreatic Cancer
Study; VTE=venous thromboembolism.
bPercentages may not total 100% because of rounding.
cSoutheast Minnesota includes 7 counties in the southeast corner of Minnesota: Dodge, Goodhoue, Wabasha, Winona,
Houston, Fillmore, and Mower, Olmsted County, Minnesota, is a mutually exclusive category.
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challenge for finding the remaining heritability as well as identification of additional

diabetes-related gene loci that can be expected to lead to creation of clinically relevant

disease prediction models. While a detailed discussion on genetics of T2DM is beyond

the scope of this paper (interested readers can refer to Herder et al [14].), Table 2 below

lists some of the gene loci and SNPs that are associated with T2DM or related traits.

Genetics of hypothyroidism

Hypothyroidism is characterized by deficiencies of thyroid hormones T3 (triiodo-

thyronine) and T4 (thyroxine) that are responsible for regulation of metabolic ac-

tivities as well as growth and development. Primary hypothyroidism is the most

common thyroid disorder affecting 1%–5% of the population [15], and up to 12%

of the elderly express subclinical phenotypes of hypothyroidism [16]. Often

marked by high thyroid-stimulating hormone (TSH), several GWA studies have

found novel loci associations with TSH levels [17,18]. In a more recent thyroid

cancer GWAS, Gudmundsson et al [19]. discovered associations between two

SNPs and TSH levels near the genes FOXE1 (forkhead box E1; also known as

TTF-2 thyroid transcription factor 2) and NKX2-1 (NK2 homeobox 1; also known

as TTF-1 thyroid transcription factor 1). The predominant cause of hypothyroidism in

the United States is an autoimmune disorder called—Hashimoto thyroiditis—where

several candidate-gene analysis and linkage studies suggest that loci contributing to the

pathogenesis of hypothyroidism include CTLA4 (Cytotoxic T-Lymphocyte Antigen 4),

PTPN22 (Protein tyrosine phosphatase, non-receptor type 22) and TG (thyroglobulin)



Table 2 Examples of gene loci associated with T2DM, Hypothyroidism and related traits

Gene
locus

Full gene name SNP Associated
phenotype

Odds ratio
(95% CI)

p-value Reference

PPARG Peroxisome
proliferator-activated
receptor gamma

rs1801282 T2DM 1.14 (1.08-1.20) 1.7 × 10-6 Scott et al [44].

KCNJ11 Potassium inwardly
rectifying channel,
subfamily J, member

11

rs5219 T2DM 1.14 (1.10-1.19) 6.7 × 10-11 Scott et al [44].

TCF7L2 Transcription factor
7-like 2

rs7903146 T2DM, glucose,
HbA1c

1.37 (1.31-1.43) 1.0 × 10-48 Sladek et al
[45].

rs12255372

SLC30A8 Solute carrier family 30
[zinc transporter],

member 30

rs13266634 T2DM, HbA1c 1.12 (1.07-1.16) 5.3 × 10-8 Zeggini et al
[46].

FTO Fat mass and obesity
associated

rs8050136 T2DM, BMI 1.17 (1.12-1.22) 1.3 × 10-12 Scott et al [44].

FOXE1 Forkhead box protein
E1

rs965513 Thyroid cancer,
TSH levels

1.75 (1.49-2.01) 1.7 × 10-27 Gudmundsson
et al [18].

FOXE1 Forkhead box protein
E1

rs7850258 Hypothyroidism 0.74 (0.67-0.82) 3.96 × 10-9 Denny et al
[47].

PTPN22 Protein tyrosine
phosphatase, non-
receptor type 22

rs2476601 Hashimoto’s
thyroiditis

1.77 (1.31-2.40) 4.6 × 10-13 Criswell et al
[20].

VAV3 Guanine nucleotide
exchange factor

rs4915077 Hypothyroidism 1.397 (1.27-1.54) 8.3 × 10-11 Eriksson et al
[48].

Pathak et al. Journal of Biomedical Semantics 2012, 3:10 Page 5 of 17
http://www.jbiomedsem.com/content/3/1/10
genes [20–22]. Table 2 provides additional information about gene loci and SNPs that

are associated with hypothyroidism and related traits.

Semantic web and related technologies for clinical and translational research

A key benefit of using Semantic Web technologies is its simple data model—RDF—that

provides a rigorous mechanism of defining and linking data using Web protocols in a

way, such that, the data can be used by machines not just for display, but also for auto-

mation, integration, and reuse across various applications. Furthermore, the availability

of standard languages such as RDFS [23], OWL [24], and SPARQL [25] for creating

ontologies as well as modeling and querying data, provides a very powerful framework

for heterogeneous data integration. While most clinical and research data is typically

stored using relational databases (e.g., Oracle, MySQL) and queried using Structured

Query Language (SQL), such technologies have several inherent limitations compared

to RDF: (i) First, when database schemas are changed in a relational model, the whole

repository, table structure, index keys etc. have to be reorganized—a task that can be

quite complex and time-consuming. RDF, on the other hand, does not distinguish be-

tween schema (i.e., ontology classes and properties) and data (i.e., instances of the

ontology classes) changes—both are merely addition or deletion of RDF triples, making

such a model very nimble and flexible for updates. (ii) Second, RDF resources are iden-

tified by (globally) unique IRI’s (international resource identifiers), thereby allowing

anyone to add additional information about the resource. For example, via RDF links, it

is possible to create references between two different RDF graphs, even in completely
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different namespaces, enabling much easier data linkage and integration. This is rather

difficult to achieve in the classical relational database paradigm. (iii) Third, a relational

data model lacks any inherent notion of a hierarchy. For instance, simply because a par-

ticular drug is an angiotensin receptor blocker (ARB), a typical SQL query engine

(without any ad-hoc workarounds) cannot reason that it belongs to a class of anti-

hypertensive drugs. Such queries are natively supported in RDFS and OWL. (iv) Finally,

due to the lack of a formal temporal model for representing relational data, SQL pro-

vides minimal support for temporal queries natively. Such extensions are already in

place for SPARQL [26].

In summary, Semantic Web and its enabling technologies such as RDF, provide a

more robust, flexible, yet scalable model for integrating and querying data, thereby

warranting investigation as to how such technologies can be applied in a clinical and

translational research environment. However, while on one hand, such a huge integrated-

network dataset provides exciting opportunities to execute expressive federated queries

and integrating and analyzing information spanning genes, proteins, pathways, diseases,

drugs, and adverse events, several questions remain unanswered about its applicability to

high-throughput phenotyping of patient data in EHR systems.

Methods
System architecture: representing patient records and MayoGC genotype data as RDF

graphs

Figure 1 shows our proposed architecture for representing patient health records and

genotype data from MayoGC using RDF, linked data and related technologies. It com-

prises of three main components: (1) data access and storage, (2) RDF virtualization

and ontology mapping, and (3) SPARQL-based querying interface. Here we provide a

brief overview of these components, and more details were described in our prior work

[27]. Where the prior work focused utilizing Semantic technologies to retrieve data

from multiple tables within the same database, our current research expands that focus

to retrieving data from multiple remote databases in order to add breadth and depth to

the resultsets.

Data access and storage

This component comprises the patient demographics, diagnoses, procedures, la-

boratory results, and free-text clinical and pathology notes generated during a clin-

ical encounter as well as SNP genotype data for all the 6,307 subjects from

MayoGC (Table 1). For accessing the phenotype data, we leverage the Mayo Clinic

Life Sciences System (MCLSS [28]) which is a rich clinical data repository main-

tained by the Enterprise Data Warehousing Section of the Department of Informa-

tion Technology at Mayo Clinic. MCLSS contains patient demographics, diagnoses,

hospital, laboratory, flowsheet, clinical notes, and pathology data obtained from

multiple clinical and hospital source systems within Mayo Clinic at Rochester,

Minnesota. Data in MCLSS is accessed via the Data Discovery and Query Builder

(DDQB) toolset, consisting of a web-based GUI application and a programmatic

API. Investigators, study staff, and data retrieval specialists can utilize DDQB and

MCLSS to rapidly and efficiently search millions of patient records. Data found by

DDQB can be exported into CSV, TAB delimited, or MicrosoftW Excel files for



Figure 1 System architecture for representing patient electronic health records and MayoGC data
using RDF.
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portability. It implements full data authorization and audit logging to ensure data

security standards are met.

Note that while DDQB provides graphical user and application programming inter-

faces for accessing the warehouse database, our goal is to represent the data stored in

MCLSS as RDF. In particular, our goal is to create “virtual RDF graphs” which essen-

tially wraps one or more relational databases into a virtual, read-only RDF graph. This

will allow us to access the content of large, live, non-RDF databases without having to

replicate all the information into RDF. Consequently, for this study, we obtained appro-

priate approvals from Mayo’s Institutional Review Board (IRB) for accessing patient in-

formation in the MCLSS database using programmatic API and JDBC calls (see more

details below). Similarly, for accessing the SNP genotype data from MayoGC, we cre-

ated virtual RDF graphs.

RDF virtualization

The RDF virtualization component is based on the freely available Spyder [29] toolkit

which acts as mediator in the creation of virtual RDF graphs as well as provides a

SPARQL endpoint for querying the graphs. In particular, a declarative language—called

the Relational to RDF mapping language (R2RML [30]), an emerging standard under

development by the W3C R2RML working group—is used to describe the mappings

between the relational schema and RDFS/OWL ontologies to create the virtual RDF

graphs. This language generates a mapping file from table structures of the databases

in MCLSS and MayoGC, which can then be customized by replacing the auto-

generated mappings with concepts and relationships from standardized ontologies. In
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our case, we replaced the custom ontology mappings with mappings to standardized

and community based biomedical ontologies (see below).

SPARQL endpoint

The virtual RDF graphs created from MCLSS and MayoGC using the above approach

were exposed via a SPARQL endpoint in the Spyder server. This allows software appli-

cation clients to query the MCLSS and MayoGC RDF graphs using SPARQL. Given

that our overarching goal is to integrate the MCLSS and MayoGC RDF graphs, our ob-

jective is to execute federated queries across both the SPARQL endpoints. We discuss

the details of SPARQL-based federated querying in the subsequent sections.

Mapping to standardized biomedical terminologies and ontologies

In its simplest form, any relational schema can be rendered into RDF by converting all

primary keys and foreign keys into IRI's, assigning a predicate IRI to each column, and

an rdf:type predicate for each row linking it to a RDF class IRI corresponding to the

table. Then, a triple with the primary key IRI as subject, the column IRI as predicate

and the column's value as object is considered to exist for each column that is neither

part of a primary or foreign key. To achieve this goal, we use R2RML and the Spyder

toolkit. In particular, for the RDF virtualization and ontology mapping component of

our system, we manually create mappings between the MCLSS and MayoGC relational

schemas and existing biomedical ontologies, including Translational Medicine

Ontology (TMO [31]) and Sequence Ontology (SO [32]), and represent them using

R2RML. Of particular relevance to this study is TMO (developed and maintained by a

task force of W3C’s Health Care and Life Sciences working group) that aims to model

terminological concepts covering several aspects of translational science, including clin-

ical research and drug development. While it provides an overarching structure for

representing informational entities from the translational sciences domain, our investi-

gation identified that TMO’s coverage for several core clinical concepts was severely

lacking. For example, concepts relevant to a subject’s vital measurements (e.g., body

mass index), interventions and procedures, laboratory measurements etc. were not spe-

cified as part of the current release of TMO (version 1.0). Consequently, leveraging

existing ontologies, namely the Ontology for Biomedical Investigations [33] and

Prostate Cancer Ontology [34], we created several new concepts and properties that

were subsequently mapped to the NCI Thesaurus [35] and extended the current release

of TMO. These extensions can be downloaded from: http://informatics.mayo.edu/LCD.

Figures 2 and 3 show a sample of the mappings that were done via R2RML.

SPARQL-based federated querying for T2DM and Hypothyroidism phenotype-genotype

data extraction

As shown in Figure 1, our goal is to federate between two main data sources: MCLSS

and MayoGC, where the former is a DB2 database containing patient clinical and

demographic data, and the latter is a MySQL database containing genomic information

(SNP data) about patients who have volunteered their DNA information to be stored

for medical research. Since participation in the Mayo Clinic biobank (and hence, in the

MayoGC project) is voluntary, the total number of patients in the MayoGC database is

a subset of MCLSS. In its current form, one would have to execute a multiple separate

http://informatics.mayo.edu/LCD


Figure 2 Sample mapping between MCLSS and MayoGC database schemas and existing biomedical
ontologies.
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SQL queries across both these databases, for example, to find out the diagnoses for all

patients who have a particular SNP genotype, to retrieve an appropriate resultset. In-

stead, by creating RDF views for MCLSS and MayoGC, we demonstrate how this can

be achieved using a single SPARQL query (Figure 4).

In particular, to achieve this goal, two endpoints were created and the SPARQL 1.1

SERVICE keyword was used to access each endpoint. In the first SERVICE stanza, the

MayoGC SPARQL endpoint is being queried to provide the MayoGC Identification

number for each patient along with their SNP identifiers (rsID) and genotypes. Since

clinicId and patientId are primary keys in the relational databases where the informa-

tion is being stored, the FILTER part of the SERVICE stanza joins the two tables for

the query. In the second SERVICE stanza, the MCLSS endpoint is queried to provide

the unique Mayo Clinic Identification number for the patient along with their diagnosis

data. For the tables in MCLSS, the internalKey relationship joins the two tables where

their internalKeys are equal. The final part of the federated query joins the information

retrieved from the two endpoints. The first FILTER statement joins the MayoGC data

with the MCLSS data based on the clinicNumber and the patientId. The final two

FILTER statements limit the results for this query to only those patients who, for ex-

ample, have the SNP “rs2476601” with the genotype “A:A”.

Results
Phenome-wide scan for type 2 diabetes mellitus

For evaluating our approach, we first identified the “case” and “control” statuses for all

MayoGC subjects by executing the T2DM phenotype criteria defined within the

eMERGE consortia [36]. (A “case” status indicates that a subject has been diagnosed



@prefix rr: <http://www.w3.org/ns/r2rml#>. 
@prefix mayogc: <http://mayogc/>. 
@prefix snomedct: <http://purl.bioontology.org/ontology/SNOMEDCT#>. 
@prefix so: <http://purl.org/obo/owl/SO#>. 
mayogc:PatientsMap a rr:TriplesMapClass; 
    rr:tableName "patients_hypothyroidism"; 
    rr:subjectMap [ rr:template "http://patients/{clinicId}" ]; 
    rr:predicateObjectMap [  
     rr:predicateMap [ rr:predicate snomedct:3982250]; 
                rr:objectMap    [ rr:column "clinicId" ] ]; 
    rr:predicateObjectMap [  
         rr:predicateMap [ rr:predicate mayogc:mayogid ]; 
                rr:objectMap    [ rr:column "mayogid" ] ]. 
mayogc:GenesMap a rr:TriplesMapClass; 
    rr:tableName "patient_genotypes"; 
    rr:subjectMap [ rr:template "http://genes/{patientId}" ]; 
    rr:predicateObjectMap [  
          rr:predicateMap [ rr:predicate snomedct:3982250]; 
                 rr:objectMap    [ rr:column "patientId" ] ]; 
    rr:predicateObjectMap [  
          rr:predicateMap [ rr:predicate so:SO_0000694 ]; 
                 rr:objectMap    [ rr:column "rsId" ] ]; 
    rr:predicateObjectMap [  
          rr:predicateMap [ rr:predicate so:SO_0001027 ]; 
                 rr:objectMap    [ rr:column "genotype" ] ].
Figure 3 Sample Spyder relational database to RDF mapping file using R2RML.
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with T2DM, whereas a “control” status indicates otherwise). This step was followed by

executing the federated SPARQL query illustrated above between the MCLSS and

MayoGC endpoints to determine all the subjects having the T2DM SNP genotypes

(from Table 2), and retrieving the entire set of ICD-9-CM billing and diagnoses codes

for each eligible subject. The reasoning behind using the billing and diagnoses codes

was two-fold: (1) these codes are universally used within the U.S. healthcare system,

and thereby enables future implementation of our approach at other institutions and

multiple EHRs, and (2) the disease, signs and symptoms ICD-9-CM codes can be used

as a surrogate for approximating the clinical disease phenotype. However, given that

ICD-9-CM was primarily developed for billing and administrative applications and does

not necessarily imply a well-defined robust and logical hierarchy for the codes, we used

AHRQ’s Clinical Classification Software (CCS [37]) for clustering the billing and diag-

noses data into a manageable number of clinically meaningful categories. In particular,

CCS classifies over 14,000 diagnoses and 3,900 procedures from ICD-9-CM into 285

and 231 mutually exclusive diagnoses and procedure categories, respectively, that are

assigned an unique identifier. This tool is continually updated by AHRQ and the

current version used in this study is based on ICD-9-CM codes that are valid from

January 1980 till September 2012.

Figure 5 shows the SNP-disease associations for four T2DM SNPs (see Table 2; ICD-

9-CM diagnoses codes clusters having less than 25 subjects are not included). There



PREFIX gc:<http://edison.mayo.edu:8890 /mayogc/>. 
PREFIX mclss:<http://hsrdev02:8890 /mclss/>. 
PREFIX rr: <http://www.w3.org/ns/r2rml#>. 
PREFIX foaf: <http://xmlns.com/foaf/0.1/> . 
PREFIX so: <http://purl.org/obo/owl/SO#>. 
PREFIX tmo: <http://purl.bioontology.org/ontology/TMO#>. 
PREFIX snomedct: <http://purl.bioontology.org/ontology/SNOMEDCT#>. 

SELECT  ?clinicNumber ?mayogcId ?rsId ?genotype ?diagnosis 
WHERE  { 
SERVICE <http://edison.mayo.edu:8890/sparql>  { 
?s1 snomedct:3982250 ?clinicId . 
?s1 gc:mayogcid ?mayogcId . 
?s2 snomedct:3982250 ?patientId . 
?s2 so:SO_0000694 ?rsId . 
?s2 so:SO_0001027 ?genotype . 
FILTER (?patientId =?clinicId ) 
} 
SERVICE <http://hsrdev02:8890/sparql>  { 
?s3 mclss: internalKey ?table1Key . 
?s3 tmo:TMO_0031 ?diagnosis . 
?s4 mclss: internalKey ?table2Key . 
?s4 snomedct:3982250 ?clinicNumber. 
FILTER (?table1Key = ?table2Key ) . 
} 
FILTER(?clinicNumber = ?patientId) . 
FILTER(regex(str(?rsId), "rs2476601", "i")) . 
FILTER(regex(str(?genotype), “A:A", "i")) . 
} 
Figure 4 Sample Federated SPARQL query for MCLSS and MayoGC datasets.
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are several observations that are noteworthy. First, for all the four SNPs, we observe a

significant association with diabetes and related traits, such as disorders of lipid metab-

olism. This replicates a finding by Warodomwichit et al [38]. where high (n-6) polyun-

saturated fatty acids intakes were associated with atherogenic dyslipidemia in carriers

of the minor T allele at rs7903146 SNP in the TCF7L2 gene and may predispose them

to Metobolic Syndrome (MetS), diabetes, and cardiovascular disease. Second, while pre-

vious studies have positively associated the SNP rs12255372 (Figure 5(c)) with breast

cancer [39] and prostate cancer [40], our findings did not replicate the same associ-

ation. We believe that this lack of replication is an artifact of the small population size

studied in this work. Third, for all the four SNPs, there was a significant association

with skin and tissue related diseases (e.g., “Other Skin Disorders”) that included pheno-

types such as systemic sclerosis, corns, and seborrhoeic dermatitis. However, further in-

vestigation of the literature did not lead to any existing studies where such an

association was reported earlier, and thus corroboration of this finding is needed to

help rule out a false-positive finding. Finally, since our analysis was done only on 6,307

MayoGC subjects, it is unknown at this time what SNP-disease association patterns will



Figure 5 SNP-disease associations for T2DM SNPs obtained via phenome mining: (a) SNP rs5219
within the gene KCNJ11; (b) SNP rs7903146 is within the gene TCF7L2; (c) SNP rs12255372 is within
the gene TCF7L2; (d) SNP 13266634 is within the gene SLC30A8.
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be observed when considering a much larger cohort of subjects from the entire Mayo

Clinic Biobank which has approximately 22,000 participants. We discuss all these find-

ings and issues in the Discussion section.

Phenome-wide scan for hypothyroidism

Similar to T2DM, for hypothyroidism, we queried the entire MayoGC cohort of 6,307

subjects for individuals with genotypes for SNPs that have been associated with thyroid

disorders (Table 2), and clustered the query results into clinically meaningful categories.

Figure 6 shows the SNP-disease associations for four hypothyroidism SNPs (see Table 2;

ICD-9-CM diagnoses codes clusters having less than 25 subjects are not included).

Similar to the T2DM analysis from above, there are several observations that are note-

worthy. First, we observe that compared to the total number of subjects for the SNPs

rs965513, rs7850258 and rs2069561, relatively few subjects (n = 136) were identified as

having the risk alleles for the SNP rs2476601 (Figure 6 (c)). Second, unlike T2DM, we

did not observe a strong association between the four SNPs with any thyroid disorders,

including hypothyroidism, hashimoto’s thyroiditis, and congenital hypothyroidism. We

hypothesize that this unexpected result is most likely due to the fact that a majority of

the subjects in the Phase I of MayoGC cohort have cardiovascular diseases (e.g.,

n = 1612 with peripheral arterial disease (PAD), n = 1233 with venous thromboembol-

ism (VTE)). Unlike T2DM, while few studies, including one by Biondi and Klein [41],

have positively associated hypothyroidism as a risk factor for cardiovascular diseases,

compared to other “traditional” risk factors, such as hypertension, the association be-

tween thyroid disorders and cardiovascular diseases has not been widely observed. For

instance, as evident from the scatter plots in Figure 6 for all the four SNPs, even

though we observe a strong association with “essential hypertension”, such an assertion



Figure 6 SNP-disease associations for Hypothyroidism SNPs obtained via phenome mining: (a) SNP
rs965513 within the gene FOXE1; (b) SNP rs7850258 within the gene FOXE1; (c) SNP rs2476601
within the gene PTPN22; (d) SNP rs2069561 within the gene TG.
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needs further validation and verification. Similarly, the strong associations with skin

disorders and related traits require additional investigation. Finally, we see a strong cor-

relation between the hypothyroidism SNPs with blindness and vision defect disorders,

such as hypermetropia and amblyopia—a hypothesis that also warrants future studies.

As an example, a study by Todd et al [42]. established the correlation between SNP

rs2476601 and diabetic retinopathy, which is often regarded as the leading cause of

blindness and related vision defects within urban populations.

Discussion
Interpretation of results

Research in clinical and translational science demands effective and efficient methods

for accessing, integrating, interpreting and analyzing data from multiple, distributed,

and often heterogeneous data sources in a unified way. Traditionally, such a process of

data collection and analysis is done manually by investigators and researchers, which is

not only time consuming and cumbersome, but in many cases, also error prone. The

emerging Semantic Web tools and technologies allow exposing different modalities of

data, including clinic, research, and scientific, as structured RDF that can be queried

uniformly via SPARQL. Not only does this provide the capabilities for interlinking and

federated querying of diverse data resources, but also enables fusion of private/local

and public data in very powerful ways for secondary uses.

The overarching goal of this study is to investigate Semantic Web technologies for

federated data integration and querying using real clinical and genetic data from Mayo’s

EHR and biobank. Using open-source tooling and software, we developed a proof-of-
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concept system that allows representing patient clinical and genotype data stored in

Mayo’s enterprise warehouse system (MCLSS) and the MayoGC databases, respectively,

as RDF, and exposing it via SPARQL endpoints for accessing and querying. We lever-

aged existing ontologies, such as the Translational Medicine Ontology, Ontology for

Biomedical Investigations and Sequence Ontology for mapping the MCLSS and

MayoGC database schemas to standardized semantic concepts and relationships. Our

use case for doing a phenome-wide association scan for two chronic diseases, namely

T2DM and hypothyroidism, demonstrated the applicability of using such an approach

for flexibly interlinking and querying multiple heterogeneous data sources in a robust

and semantically unambiguous manner. We hypothesize that further development of such

a system can immensely facilitate, and potentially accelerate scientific findings in clinical

and translational research, including personalized medicine and systems biology.

The ultimate challenge for any PheWAS study is data interpretation. While discovery

of new genotype-phenotype associations in PheWAS is important, many of the findings

may reflect inter-relationships existing among the phenotypes, sub-phenotypes and

endo-phenotypes. As observed in the study by Pendergrass et al [9]., the “novel” results

may exemplify pleitropy. For instance, as discussed earlier, all the four SNPs that have

been previously associated with diabetes and related traits in Figure 5, also demonstrate

a significant association with skin and tissue disorders, thereby indicating the impact of

genetic variation on the genes to both phenotypes. Since PheWAS is meant to generate

hypothesese, and hence by nature is exploratory, further investigation within large co-

hort sizes is required to validate such findings.

Limitations

There are several limitations in the proof-of-concept system developed as part of this

study. First, while we demonstrated the applicability of the system via two simple use

cases for T2DM and hypothyroidism, a more robust and rigorous evaluation along sev-

eral dimensions (e.g., performance, query response, precision and recall of query results

etc.) is required before it can be deployed within an enterprise environment. Note that

since our use cases are based on federated querying of multiple SPARQL endpoints,

the system performance and query responses are dependent on the behavior of the

endpoints (e.g., the endpoints may experience latency, denial of service). Nevertheless,

we plan to perform a thorough system evaluation after the integration of additional

MCLSS sources (e.g., laboratory, clinical and pathology reports) that contain large

amounts of patient data. Second, we experimented with the recently published Transla-

tional Medicine Ontology (TMO) in this study for mapping between MCLSS database

schemas to standardized concepts and relationships. While TMO classes are mapped to

more than 60 different standardized ontologies, including SNOMED CT and NCI The-

saurus, the scope and breadth of the current TMO release (Version 1.0) is significantly

narrow for our purpose. Consequently, along with the creation new classes and rela-

tionships, we augmented TMO with Prostate Cancer Ontology and the Ontology for

Biomedical Investigation. Since these extensions are not part of the official TMO re-

lease, our goal is to work closely with the TMO curators for content enhancement in

future releases. Third, formulating the complex SPARQL queries using existing

SPARQL editors is cumbersome and error prone. Our current implementation lacks a
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more intuitive and user-friendly interface that can assist a “non-Semantic Web savvy”

user in the query building process. We plan to address this issue within the timeframe

of the project by investigating multiple open-source graphical SPARQL editors. Finally,

while in this study we only considered T2DM and hypothyoroidism as our use cases, in

the future we plan to conduct a large-scale PheWAS with the entire Mayo Clinic Biobank

population, which currently has more than 22,000 subjects enrolled as of June 2012.

Future work

In addition to addressing the aforementioned limitations, there are several activities

that we plan to pursue in the future. Firstly, in this study, we performed simple map-

pings between the MCLSS and MayoGC database schemas to classes and relationships

in several biomedical ontologies including TMO and Sequence Ontology. A more

rigorous approach will be to investigate reference information models, such as clinical

archetypes [43], that provide a mechanism to express data structures in a shared and

interoperable way. Secondly, we will investigate existing Semantic Web querying

visualization platforms such as SPARQLMotion [44] and TripleMap [45] that provide

more intuitive and user-interactive interfaces for SPARQL query formulation and exe-

cution. We also plan to provide API-based access to software clients, and for this, we

will experiment with the recently released open-source Elda [46] Linked Data API. Fi-

nally, we will investigate approaches for distributed and federated inferencing over RDF

data. Recent studies [47] have demonstrated that even simple subsumption inferences

require significant computing power when reasoning over massive RDF datasets. Since

access to extremely high-performance computers is not readily available en masse, we

will investigate distributed storage and indexing techniques using Apache Hadoop [48].

Conclusions
This study demonstrates how Semantic Web technologies can be applied in conjunc-

tion with clinical data stored in EHRs to accurately identify subjects with specific dis-

eases and phenotypes, and perform a PheWAS by integrating and analyzing the

genotype data with a range of phenotypes. Such an approach has the potential to im-

mensely facilitate the tedious, cumbersome and error prone manual integration and

analysis of data for clinical and translational research, including genomics studies and

clinical trials.
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