
JOURNAL OF
BIOMEDICAL SEMANTICS

Egaña Aranguren et al. Journal of Biomedical Semantics 2013, 4:2
http://www.jbiomedsem.com/content/4/1/2

SOFTWARE Open Access

OPPL-Galaxy, a Galaxy tool for enhancing
ontology exploitation as part of bioinformatics
workflows
Mikel Egaña Aranguren1,2*, Jesualdo Tomás Fernández-Breis3, Chris Mungall4, Erick Antezana5,
Alejandro Rodŕıguez González2 and Mark D Wilkinson2

Abstract

Background: Biomedical ontologies are key elements for building up the Life Sciences Semantic Web. Reusing and
building biomedical ontologies requires flexible and versatile tools to manipulate them efficiently, in particular for
enriching their axiomatic content. The Ontology Pre Processor Language (OPPL) is an OWL-based language for
automating the changes to be performed in an ontology. OPPL augments the ontologists’ toolbox by providing a
more efficient, and less error-prone, mechanism for enriching a biomedical ontology than that obtained by a manual
treatment.

Results: We present OPPL-Galaxy, a wrapper for using OPPL within Galaxy. The functionality delivered by OPPL
(i.e. automated ontology manipulation) can be combined with the tools and workflows devised within the Galaxy
framework, resulting in an enhancement of OPPL. Use cases are provided in order to demonstrate OPPL-Galaxy’s
capability for enriching, modifying and querying biomedical ontologies.

Conclusions: Coupling OPPL-Galaxy with other bioinformatics tools of the Galaxy framework results in a system that
is more than the sum of its parts. OPPL-Galaxy opens a new dimension of analyses and exploitation of biomedical
ontologies, including automated reasoning, paving the way towards advanced biological data analyses.

Background
Among the various steps that a typical life-sciences
research cycle comprises, information extraction from
raw data (and its dissemination to the community)
remains as one of the most relevant ones. New biological
insights are generated by combining information from dif-
ferent sources with the expertise of scientists. Neverthe-
less, integrating information and generating knowledge
out of it is still a challenging task, as the information is fre-
quently captured in computationally opaque formats and
dispersed over the Web in resources with idiosyncratic
schemas.
The Semantic Web [1] aims to overcome the issue of

computationally opaque and disperse information in the

*Correspondence: mikel.egana.aranguren@upm.es
1Ontology Engineering Group, School of Computer Science, Technical
University of Madrid (UPM), Boadilla del Monte, 28660, Spain
2Biological Informatics Group, Centre for Plant Biotechnology and Genomics
(CBGP), Technical University of Madrid (UPM), Pozuelo de Alarcón, 28223, Spain
Full list of author information is available at the end of the article

Web with a set of technologies and standards defined by
the W3C: RDF [2], SPARQL [3] and OWL [4]. Therefore,
these standards are increasingly used by the Life Sciences
community to integrate information (RDF), to query it
(SPARQL), and to axiomatically encode consensus knowl-
edge about such information in ontologies (OWL), in the
so-called Life Sciences Semantic Web [5].
Biomedical ontologies are essential for the Life Sciences

Semantic Web since they offer computationally process-
able and often Web-oriented representations of agreed-
upon domain knowledge. The Gene Ontology (GO) [6]
stands out as one of the most intensely curated and
used biomedical ontologies; other important biomedi-
cal ontologies can be found at the Open Biological and
Biomedical Ontologies Foundry [7], a project that hosts
biomedical ontologies that follow certain design prin-
ciples (reusability, orthogonality, etc.). Additionally, the
National Center for Biomedical Ontology (NCBO) offers
access to biomedical ontologies through BioPortal [8],
including a set of Web Services.

© 2013 Egaña Aranguren et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Egaña Aranguren et al. Journal of Biomedical Semantics 2013, 4:2 Page 2 of 16
http://www.jbiomedsem.com/content/4/1/2

Current biomedical ontologies support a broad range of
tasks: axiomatically rich ontologies are used for intense
automated reasoning [9], axiomatically lean ontologies
act as vocabularies for Linked Data [10], and typically
other functions in between [11]. In order to fulfill such
functions, biomedical ontologies should be adapted to
fit scientists’ requirements, especially when reusing pre-
existing ontologies: addition or removal of axioms and
entities, inference in relation to external ontologies, selec-
tive materialisation of inferred axioms, complex querying,
and so forth.
Manipulating biomedical ontologies can be a labori-

ous task since they are regularly growing in size [12]
and axiomatic complexity [13]. Therefore, advanced tools
are needed for efficiently performing such manipulation
[14]. The Ontology Pre Processor Language (OPPL) [15]
offers the possibility of automating this kind of ontology
manipulation. By using OPPL, the ontologist can define
the intended manipulation in an OPPL script as a series
of additions or removals of axioms to be performed in a
concrete ontology. Therefore, the use of OPPL makes the
ontology manipulation process more efficient, sustainable
and less error-prone.
OPPL capabilities have already been demonstrated: it

has been used to build an ontology transformation service
[16] and for applying [17-20] or detecting [21] Ontol-
ogy Design Patterns (ODPs). Also, it is part of Populous,
an application for adding content from spreadsheets to
ontologies [22].
OPPL’s versatility and functionality cannot be exploited

directly within the typical bioinformatics analyses. Galaxy,
a Web server for combining various genomic-oriented
tools into workflows [23], offers an ideal platform for
making OPPL part of bioinformatics analyses. There-
fore, we have developed OPPL-Galaxy, a tool to execute
OPPL scripts from within Galaxy. OPPL-Galaxy enhances
OPPL’s functionality, i.e. automated ontology manipula-
tion, by providing the possibility of dynamically sending
OPPL’s output, that is, an improved ontology, to other
Galaxy tools (and making OPPL capable of consuming
ontologies as input from other Galaxy tools).
This paper presents an overview of OPPL-Galaxy’s

design and implementation, including tested use cases
that provide a basis for creating more complex analy-
ses. OPPL-Galaxy is also compared to other tools and its
benefits and limitations are discussed.

Implementation
OPPL
OPPL implements its own syntax: an extension of the
Manchester OWL Syntax (MOS) [24] that includes key-
words like ADD (to add an axiom), REMOVE (to remove an
axiom), SELECT (to select entities), and so on. An OPPL
script defines a query and some actions that should be

performed against the retrieved entities (see ‘Basic usage’
use case in Section Results). A query can combine vari-
ables (to be bound by a set of named entities) and actual
named entities of the target ontology (OWL classes, prop-
erties, or individuals). An important constraint in OPPL
specifies that every variable must resolve to a group of
named entities (or none), not an anonymousOWL expres-
sion, to ensure that queries can be answered. The follow-
ing types of queries can be defined inOPPL (all the queries
mix variables with OWL expressions):

• OWL queries that exploit automated reasoning.
• Syntactic OWL queries that only work with the

asserted axioms.
• Queries that use a regular expression to match

annotation values like rdfs:label.

The actions are based on the addition or removal of
axioms of any complexity to/from entities retrieved by
the query (OWL classes, properties, or instances). Once
an OPPL script has been defined, the OPPL engine is
passed this script and the ontology to be modified. The
OPPL engine, in turn, modifies the ontology according to
the changes defined in the OPPL script, generating a new
ontology (Figures 1 and 2).

Galaxy
Galaxy offers an open, Web-based platform for perform-
ing genomic analyses [23]. In Galaxy several tools can
be combined, ranging from simple data manipulations
(e.g. text manipulation) to complex analyses (e.g. statistical
analysis of Next-Generation Sequencing data). Such a tool
orchestration can be executed from within a single Web
interface: the output of a tool can be sent to other tools
as input, easing the construction of workflows by combin-
ing recurrent tasks. Moreover, a history of all performed
actions is stored, so the analyses can be reproduced at any
time and shared with other users. Galaxy workflows can
be built from the users’ history and shared. Finally, the
workflows can be migrated to other systems, like other
Galaxy servers or myExperiment [25].
Apart from its functionality and ease of use, another

appealing feature of Galaxy is its extensibility, allowing
a straightforward integration of command-line tools: the
only requirement is to create an XML file containing a
description of the tool’s Web interface and inputs/outputs
[26].

OPPL-Galaxy
OPPL can be executed through the graphical interface of
Protégé [27] and Populous. Despite those possible means
of manipulating ontologies, OPPL cannot be used as
part of a workflow, limiting the possibilities of including
other bioinformatics analysis tools, unless a tailored Java

Egaña Aranguren et al. Journal of Biomedical Semantics 2013, 4:2 Page 3 of 16
http://www.jbiomedsem.com/content/4/1/2

Figure 1 Toy ontology for OWL rendering convention. Toy ontology to illustrate the convention for representing abstract OWL structures in
Figures depicting use cases. Above, the ontology is rendered using MOS; below, the ontology is rendered with the same convention as in Figures 2,
5, 6, 10 and 14. In those Figures, however, names of OWL entities are not included in the ontologies, since OPPL scripts act on absract structures (any
axiomatic pattern that matches the query). Solid circle: named class; dotted circle: anonymous class; dot: named individual; solid arrow:
subClassOf axiom; dotted arrow: triple (relation between individuals); line ending in circle: restriction (the small circle points to the filler class;
there is no distinction between necessary and necessary/sufficient conditions)a.

program is written using the OPPLAPI. OPPL-Galaxy fills
that gap by offering an enhanced version of OPPL that
can be used in combination with other Galaxy tools. To
that end, an OPPL wrapper was developed as a mediator
between Galaxy and both the OPPL 2 API [28] and the
OWL API [29] (Figure 3).
OPPL-Galaxy takes as input a target ontology and an

OPPL script: both artefacts are uploaded to Galaxy by the

user or produced as output by another Galaxy tool. It gen-
erates a new ontology that has been changed according to
the instructions defined in the OPPL script, thus axioms
are added or removed. The OPPL-Galaxy Web interface
presents the following options (Figure 4):

• Target ontology: the input ontology that will be
modified by the OPPL script. Since OPPL-Galaxy

Figure 2 OPPL pipeline. The OPPL engine takes an ontology (circle group on the left) and an OPPL script (dotted square) as inputs, and performs
the changes defined by the OPPL script on the input ontology, thereby generating a new output ontology (modified ontology, on the right).

Egaña Aranguren et al. Journal of Biomedical Semantics 2013, 4:2 Page 4 of 16
http://www.jbiomedsem.com/content/4/1/2

Figure 3 OPPL-Galaxy architecture. The inner circle represents the OPPL wrapper and the outer one Galaxy. Galaxy manages the data and
parameters that will be passed to the OPPL wrapper. In order to pass, for instance, an ontology to the OPPL wrapper, the ontology must be first
uploaded to Galaxy (or passed to it from the output of another Galaxy tool). Also, Galaxy manages the output of the OPPL wrapper: it can be
redirected to other Galaxy tools or downloaded and saved as a standalone file. The OPPL wrapper coordinates the OPPL API (to parse the OPPL
script and execute it), the OWL API (to read/write ontologies from stdin/to stdout and perform changes), and the chosen reasoner (to perform
inferences).

relies on the OWL API for loading and saving
ontologies, it can load ontologies in the following
formats: OBOF [30], OWL (RDF/XML, OWL/XML,
Functional OWL Syntax, MOS), Turtle, and KRSS.

• OPPL script: a flat file containing the OPPL script
that, when executed, will perform the desired
changes in the target ontology. This file may be
created by using the Protégé OPPL plugin via the
OPPL text editor (with autocompletion), the OPPL
script builder, or the OPPL macros tab (see the OPPL
manual [31] for details on how to create OPPL
scripts).

• Output format: the format of the output ontology,
either OBOF or OWL (RDF/XML).

• Choose reasoner: the reasoner to be used for
performing the inference, Pellet [32], HermiT [33],
FaCT++ [34], or Elk [35].

The output ontology can be reused as input for other
Galaxy tools like ONTO-toolkit [36], or downloaded from
the Galaxy Web interface so that it can be used outside
Galaxy, for example with Protégé or OBO-Edit [37].
OPPL-Galaxy includes various modules with diverse

functionality, apart from executing OPPL scripts. Addi-
tionally, other tools are exploited as part of the use cases
(NCBO-Galaxy [38], SPARQL-Galaxy, GO::TermFinder).
See Table 1 for details.

Figure 4 OPPL-Galaxy Web interface. The OPPL-Galaxy Web interface is displayed in the middle pane. In the left pane, a list of standard Galaxy
tools is shown; in the right pane, a sample of a history of the executed tasks is shown.

Egaña Aranguren et al. Journal of Biomedical Semantics 2013, 4:2 Page 5 of 16
http://www.jbiomedsem.com/content/4/1/2

Table 1 OPPL-Galaxy distribution and related Galaxy tools

OPPL-Galaxy bundle

OPPL Executes OPPL scripts

OWL Query Perform DL (Description Logics) queries against OWL ontologies, returning a list of named
entities that satisfy the query

OPPL Query Perform OPPL queries, thus, queries that mix MOS with variables

Inference Add the inferred axioms to the input ontology as asserted axioms, generating a new ontology
that includes all the axioms

Merge Resolves the import axioms and adds the imported ontology to the input ontology file

NCBO-Galaxy bundle

The NCBO-Galaxy bundle includes modules for retrieving ontologies, extracting subtrees from ontologies,

search for terms in ontologies, annotate texts against ontologies, etc. using NCBO Web services. See [38] for details

SPARQL-Galaxy bundle

SPARQL-Galaxy includes a tool for performing SPARQL queries on an OWL (RDF/XML) ontology;

it can be downloaded from the Galaxy Tool Shed (http://toolshed.g2.bx.psu.edu), under ‘Ontology manipulation’.

Galaxy-OBO

Galaxy-OBO [39] is a fork of Galaxy that includes wrappers for common tools like GO::TermFinder [40]

This table provides a detailed list of the OPPL-Galaxy tools and other tools that are executed in the workflows of the use cases.

Results
This section provides use cases not only demonstrating
the utility of OPPL-Galaxy but also showing, through
examples, how to use it. The use cases are described in
detail in [41]. All the use cases are provided as Galaxy
workflows for users to be able to execute them without
having to rebuild the use case from scratch. The URLs of
the workflows are summarised at Table 2.

Basic usage
The OPPL-Galaxy bundle includes a simple OPPL script
for testing purposes that works with the test ontology
also included in the bundle (Figure 5). The OPPL script

is described as follows to help the reader understand the
remainder of the use cases (more OPPL examples can be
found at the OPPL scripts collection [42]):

1 ?agent:CLASS,

2 ?process:CLASS

3 SELECT ?agent SubClassOf participates_in

some ?process

4 WHERE ?agent != Nothing

5 BEGIN

6 ADD ?agent SubClassOf participates_in

only ?process

7 END;

Table 2 Galaxy workflows for reproducing the use cases

Name Galaxy workflow

Basic usage http://biordf.org:8090/u/mikel-egana-aranguren/w/basic-usage-1

Ontology debugging and
evaluation∗

http://biordf.org:8090/u/mikel-egana-aranguren/w/ontology-debugging-and-evaluation

Complex querying of GO http://biordf.org:8090/u/mikel-egana-aranguren/w/complex-querying-of-go

Expansion of gene product
annotations through GO
structure

http://biordf.org:8090/u/mikel-egana-aranguren/w/expansion-of-gene-product-annotations-through-go-structure

Selective extraction of modules
from GO for term enrichment

http://biordf.org:8090/u/mikel-egana-aranguren/w/selective-extraction-of-modules-from-go-for-term-enrichment

OWL TBox to ABox
transformation for assisting
SPARQL queries

http://biordf.org:8090/u/mikel-egana-aranguren/w/owl-tbox-to-abox-transformation-for-assisting-sparql-queries

The name of the use case (as per section name) is provided in the left column; the URL of the Galaxy workflow is provided in the right column. In order to execute a
workflow, the datasets (ontologies, OPPL scripts, GAFs, etc.) must be taken from the history (http://biordf.org:8090/u/mikel-egana-aranguren/h/oppl-galaxy-use-
cases-for-jbs) or the workflow can be reproduced manually with the same datasets, by uploading them. The workflow “Ontology debugging and evaluation” obtains
the ontologies directly from NCBO services. For detailed instructions, see http://wilkinsonlab.info/OPPL-Galaxy. All the workflows can be reproduced in a local Galaxy
installation; in order to do so, the workflows and datasets can be downloaded from http://biordf.org:8080/JBSusecases.tar.gz.

http://toolshed.g2.bx.psu.edu
http://biordf.org:8090/u/mikel-egana-aranguren/w/basic-usage-1
http://biordf.org:8090/u/mikel-egana-aranguren/w/ontology-debugging-and-evaluation
http://biordf.org:8090/u/mikel-egana-aranguren/w/complex-querying-of-go
http://biordf.org:8090/u/mikel-egana-aranguren/w/expansion-of-gene-product-annotations-through-go-structure
http://biordf.org:8090/u/mikel-egana-aranguren/w/selective-extraction-of-modules-from-go-for-term-enrichment
http://biordf.org:8090/u/mikel-egana-aranguren/w/owl-tbox-to-abox-transformation-for-assisting-sparql-queries
http://biordf.org:8090/u/mikel-egana-aranguren/h/oppl-galaxy-use-cases-for-jbs
http://biordf.org:8090/u/mikel-egana-aranguren/h/oppl-galaxy-use-cases-for-jbs
http://wilkinsonlab.info/OPPL-Galaxy
http://biordf.org:8080/JBS use cases.tar.gz

Egaña Aranguren et al. Journal of Biomedical Semantics 2013, 4:2 Page 6 of 16
http://www.jbiomedsem.com/content/4/1/2

Figure 5 Basic usage. The OPPL engine takes the target ontology and OPPL script as inputs, and generates a new ontology changed according to
the OPPL script. The OPPL script queries the reasoner for a class with a certain restriction (SELECT ... WHERE clause, blue) and adds another
restriction to the retrieved class (ADD clause, red).

Lines 1 and 2 show the declaration of two variables
(?process and ?agent) and their type (CLASS). These
variables represent (sets of) OWL classes. Then, line 3
introduces a SELECT clause, which is processed by OPPL
and sent to the reasoner asking for the classes that are sub-
classes of the anonymous expression participates in
some ?process: the expression is written in MOS
and it mixes named entities of the ontology (the prop-
erty participates in) with variables (?process and
?agent, representing sets of classes). Later, in line 4,
the classes retrieved as members of the variable ?agent
are checked for satisfiability (?agent != Nothing).
Finally, the axiom SubClassOf participates in
only ?process is added (ADD) to the input ontology,
resolving ?agent and ?process to all the classes that
have been bound and combinations thereof.

Ontology debugging and evaluation
Ontology debugging (the process of fixing defects in an
ontology) can be a daunting activity, especially when the
ontology the scientist is working with has not been devel-
oped in-house and/or if it presents a complex axiomati-
sation over many entities. OPPL-Galaxy can be used for
detecting and fixing certain structures that are consid-
ered bad practice (antipatterns) or at least ‘suspicious’. The
detection of antipatterns also offers a ‘picture’ of the ontol-
ogy: it can be used to evaluate the overall structure of
the ontology as one of the criteria to judge its quality.
OPPL-Galaxy provides a means of defining antipatterns as
‘test units’ that can be run automatically against a set of
ontologies, as part of Galaxy workflows.
The notion of antipatterns in ontologies has already

been introduced [43,44]. For example, [44] mentions
using the OWL universal restriction (only) without any
other restriction on the same property (e.g. some) as a
potential antipattern (exclusive universal). This is due to

the fact that, the only restriction, on its own, can be
trivially satisfied by an unsatisfiable (empty) class, e.g. A
subclassof p only (B and C) can be satisfiable
even when B disjointWith C, since the semantics of
only state that if there is a relation, it must be to (B and
C), or none: (B and C) is empty and therefore would
satisfy the none case.
The exclusive universal structure can be easily detected

in, for example, BioPAX [45], by the following OPPL script
(Figure 6):

1 ?target:CLASS,

2 ?prop:OBJECTPROPERTY,

3 ?filler:CLASS

4 SELECT ASSERTED ?target SubClassOf ?prop

only ?filler

5 WHERE FAIL ?target SubClassOf ?prop some

?filler

6 BEGIN

7 ADD ?target SubClassOf !OnlyBadPractice-

Result

8 END;

This script detects the exclusive universal structureb
and adds all the classes that present it as subclasses of
OnlyBadPracticeResult, a class created on the fly
if it does not exist in the ontology (! symbol). Note the
use of the ASSERTED keyword (only the asserted axioms,
not the inferred ones, are taken into account: the rea-
soner is deactivated for querying in order to improve
performance) and the FAIL keyword (negation as failure,
which is out of OWL semantics, is used to detect absent
existential restrictions).
The ontology can also be simply queried, without mod-

ifying it, by using the OPPL-Query tool (See Table 1 and
Figure 7):

Egaña Aranguren et al. Journal of Biomedical Semantics 2013, 4:2 Page 7 of 16
http://www.jbiomedsem.com/content/4/1/2

Figure 6 Ontology debugging and evaluation. This script detects any class that has a universal restriction without an existential restriction
(dotted blue line). It adds a subClassOf OnlyBadPracticeResult axiom (red arrow) to any matching class.

1 ?target:CLASS,

2 ?prop:OBJECTPROPERTY,

3 ?filler:CLASS

4 SELECT ASSERTED ?target SubClassOf ?prop

only ?filler

5 WHERE FAIL ?target SubClassOf ?prop some

?filler

The exclusive universal structure can also be modi-
fied by adding an existential restriction to every universal
restriction:

1 ?target:CLASS,

2 ?prop:OBJECTPROPERTY,

3 ?filler:CLASS

4 SELECT ASSERTED ?target SubClassOf ?prop

only ?filler

5 WHERE FAIL ?target SubClassOf ?prop some

?filler

6 BEGIN

7 ADD ?target SubClassOf ?prop some

?filler

8 END;

Even though the exclusive universal structure might
be considered as a legitimate modelling decision, it is
recommendable, to make sure there is no trivially sat-
isfiable classes, to add existential restrictions on the fly
(and possibly to make entities disjoint), apply reason-
ing to detect trivially satisfiable classes, and then remove
the existential restrictions again. Such procedure can be
automatically performed using OPPL-Galaxy. An alter-
native would be to check the consistency of the filler,
e.g. ?filler subClassOf owl:Nothing, with the

reasoner activated, instead of checking for the exclusive
universal structure [46].
More antipatterns can be found in the collection pre-

sented in [43]:

• Logical Antipatterns (LAP): modelling errors that are
detectable by an automated reasoner, e.g. unsatisfiable
classes.

• Non-Logical Antipatterns (NLAP): modelling errors
that are not detectable using a reasoner, usually
created by the developer due to a misunderstanding
of the language semantics (the logical consequences
of the axioms stated in the ontology).

• Guidelines (G): alternative, simpler axiomatic
expressions of the same knowledge.

Synonym Of Equivalence (SOE) is an example of a
NLAP. Such type of antipattern describes the situation in
which two classes are declared as being equivalent and
both pertain to the same ontology (i.e., they have not
been imported). Generally, that means that the devel-
oper intends to model a synonym, which should be an
rdfs:label string, as a whole class. Such structure
can be easily detected, for example, in the NIF Gross
Anatomy ontology [47], using the following script (which
also removes the non-desired structure):

1 ?target:CLASS,

2 ?filler:CLASS

3 SELECT ASSERTED ?target equivalentTo

?filler

4 BEGIN

5 REMOVE ?target equivalentTo ?filler

6 END;

Egaña Aranguren et al. Journal of Biomedical Semantics 2013, 4:2 Page 8 of 16
http://www.jbiomedsem.com/content/4/1/2

Figure 7 OPPL query tool.Web interface of the OPPL query tool.

We do not claim that these structures (exclusive uni-
versal in BioPAX and SOE in NIF Gross Anatomy) are
erroneous per se. We rather state that, according to the
experience of the authors of [43,44], and ours, they are
modelling practices that may yield unexpected results
when automated reasoning is applied downstream. There-
fore, a scientist who might reuse those ontologies should
be aware of the existence of the mentioned antipatterns.
OPPL-Galaxy is a straightforward, powerful and flexi-

ble tool to detect antipatterns en masse when executed
as a Galaxy workflow: a scientist can have a collection of
antipatterns of her choice ready to be applied in any ontol-
ogy she wants to reuse (any antipattern can be defined by
her, since OPPL is, roughly, a superset of OWL). The full
process can be automated, defining once what ontologies
to obtain and then adding antipatterns to the collection
as needed. Once the workflow has been executed and
the antipatterns detected in the target ontology, she can

decide if the ontology meets her requirements. Addition-
ally, OPPL-Galaxy can be used to modify the ontologies
that do not meet her requirements, within the same work-
flow.

Complex querying of GO
OPPL-Galaxy can be combined with other Galaxy-
enabled tools to build advanced workflows such as the one
shown in Figures 8 and 9. This workflow can be used by a
scientist to pose a complex question against GO, namely
‘What are the proteins that act on processes that involve
hepatocytes and are part of or regulate other biological
processes?’. Posing such a complex question requires dif-
ferent steps that can be performed with OPPL and stored
for further analysis with the help of Galaxy.
The workflow executes the OPPL query tool and the

Galaxy tool for comparing two data sets (included in
the standard Galaxy distribution, in ‘Join, subtract and

Egaña Aranguren et al. Journal of Biomedical Semantics 2013, 4:2 Page 9 of 16
http://www.jbiomedsem.com/content/4/1/2

Figure 8 Complex querying of GO (as shown in Galaxy). OPPL-query workflow for quering GO against GAFs. The result is a list of proteins of
interest.

group’). Thus, this workflow combines Galaxy tools to
retrieve exactly the proteins that the scientist defined in
her plain-english query, which is translated into amachine
interpretable form, as discussed below.
The OPPL script queries GO for the terms that have

‘Hepatocyte’ as part of their names and that are related,
via part of or regulates, to a biological process:

1 ?hepatocyte_process:CLASS,

2 ?hepatocyte_process_label:CONSTANT =

MATCH(".?hepatocyte.+"),

3 ?part_of_or_regulates:OBJECTPROPERTY

4 SELECT ?hepatocyte_process.IRI label

?hepatocyte_process_label,

5 ?hepatocyte_process subClassOf

?part_of_or_regulates some

GO_0008150

Then, the Galaxy tool for comparing two data sets is
used to extract the proteins involved in the resulting pro-
cesses of interest, using the GO terms as keys against
a Gene Association File (GAF) [48]. The result of this
comparison is a list of the protein identified as of interest.
This workflow demonstrates some of the main advan-

tages provided by OPPL-Galaxy: on one hand, this type
of analysis can only be performed, effectively, with OPPL
(see below). On the other hand, the unique capabilities of
OPPL are enhanced due to the fact that they are executed

Figure 9 Complex querying of GO (details). Detailed depiction of the workflow shown in Figure 8.

Egaña Aranguren et al. Journal of Biomedical Semantics 2013, 4:2 Page 10 of 16
http://www.jbiomedsem.com/content/4/1/2

within Galaxy: the process can be repeated with any new
version of GO or GAFs, it can be shared with other sci-
entists, combined with other tools, and modified or ran in
parallel with minimum effort.
OPPL enables a unique set of capabilities for

analysing ontologies. It can mix, for instance, text
manipulation (in this case the regular expression
(".?hepatocyte.+")) and automated reasoning (in
this case subPropertyOf axioms, and subClassOf
and part of transitivity) as part of the same query.
It also enables the ability to refer to groups of entities
via variables, a feature which is outside the standard
OWL semantics, unless explicit axioms are codified
into the ontology (e.g. equivalent property axioms):
part of and regulates are represented by the
same variable ?part of or regulates, includ-
ing the subproperties negatively regulates and
positively regulates, due to the OWL semantics
(subPropertyOf).

Expansion of gene product annotations through GO
structure
GO annotations are provided independently of the ontol-
ogy itself, in GAFs. However, being able to access gene
products linked to GO through annotations is a useful
feature for queries and other analyses [49]. One of the
tools that can be used to merge GAFs with GO is OORT
(OBO Ontology Release Tool) [50]: it offers, for a given
ontology version, the possibility of checking its syntactic
and semantic quality, before releasing it. It also includes
the functionality to transform GAFs into ontologies,
in doing so linking, in the same ontology, gene prod-
ucts with their GO terms. This gives the possibility of
directly exploiting the structure of GO against the gene
product data: For example, if gene product G is capable
of function F and F is part of P (as per GO structure),
then G is also capable of G. Such semantic expansion

of gene product information can be performed using
OPPL-Galaxy, providing an ontology generated by OORT
that includes the link between gene products and their
GO terms as input. For example, the relations of the
gene product Atu0514 (subClassOf has prototype
some (actively participates in some
’chemotaxis on or near host involved in
symbiotic interaction’)) can be expanded with
the following script (this use case was obtained from [51],
see Figure 10):

?process:CLASS,}

?parent_process:CLASS,

?gene:CLASS

SELECT ?gene subClassOf RO_0002214 some

(RO_0002217 some (?process and

BFO_0000050 some ?parent_process))

WHERE ?parent_process != GO_0008150

BEGIN

ADD ?gene SubClassOf RO_0002217 some

?parent_process

END;

This script queries the ontology and expands any gene
product - GO term relation according to the partonomy
hierarchy. As a result, the new axioms for Atu0514 read as
follows:

Atu0514 subClassOf

actively participates_in some interspecies

interaction between organis}

actively participates_in some multi-

organism process

actively participates_in some symbiosis,

encompassing mutualism through parasitism

This new ontology can be used for further analyses.

Figure 10 Expansion of gene product annotations through GO structure. This workllow starts from an OWL ontology that includes GAF
information, produced by OORT. The script detects the structure ?gene subClassOf RO 0002214 some (RO 0002217 some
(?process and BFO 0000050 some ?parent process)) (Simplified depiction) and adds a new restriction to every matching class.

Egaña Aranguren et al. Journal of Biomedical Semantics 2013, 4:2 Page 11 of 16
http://www.jbiomedsem.com/content/4/1/2

Selective extraction of modules from GO for term
enrichment
A typical use for GO is to perform an over-representation
analysis of genes expressed in micro-array experiments,
also known as enrichment analysis. To that end, a module
or subset from GO is usually extracted, as recommended
in [36], so that the statistical values of the analysis could be
sounder (i.e., the bias that might be introduced by consid-
ering other modules is diminished since the gene product
space is smaller).
OPPL-Galaxy can be combined with OWL-Query-

Galaxy to extract a module (Figure 11). The extent
of such module can specified with OPPL-Galaxy, for
example by adding transitivity to the regulates
object property (as a result the module holds more
terms):

1 ?regulates:OBJECTPROPERTY

2 SELECT ASSERTED negatively_regulates

SubPropertyOf ?regulates

3 BEGIN

4 ADD Transitive ?regulates

5 END;

The resulting ontology can be later queried with the
OWL-Query-Galaxy tool (also part of OPPL-Galaxy, see
Figure 12), to obtain the module, i.e. a list of GO terms,
that can be then used to perform the enrichment analysis
by using other Galaxy tools like GO::TermFinder:

(regulates some GO_0007049) or

GO_0007049

OPPL performs, in this case, the same function as
ONTO-toolkit but in a more flexible way. Another
advantage of this procedure is that it can be executed
every time GO is updated, i.e., scientists can easily extract
different modules with a few clicks, and compare them
using Galaxy tools.

OWL TBox to ABox transformation for assisting SPARQL
queries
Making SPARQL queries against TBox axioms of an
RDF/XMLOWLontology is awkward. OWLpunning (see
bellow) can be used to add an instance to every class and
be able to do succinct SPARQL queries while retaining
the original TBox semantics [52] (However, the resulting
ontology has new semantics due to the addition of ABox
assertions).
OWL punning is a feature provided by OWL 2 that

makes it possible for different entities to share the same
URI [53]. The ‘punned’ entities that share the same URI
are differentiated by the reasoner using their axiomatic
context. Punning can only be used within precisely
defined limits: for instance, the same URI cannot be
shared by both a class and a data type property.
Therefore, to have both classes (for DL or OWL syn-

tactic queries) and individuals (for more ‘comfortable’
SPARQL queries), it makes sense to add, for every class,
an individual with the same URI, i.e. to use OWL punning
in the ontology. The following OPPL script can be used for
such a task (Figures 13 and 14):

1 ?x:CLASS,

2 ?y:INDIVIDUAL = create(?x.RENDERING)

Figure 11 Selective extraction of modules from GO for term enrichment (as shown in Galaxy). In this workflow a reduced GAF is obtained by
querying GO (i.e., extracting a module) and comparing the retrieved GO terms with the GO terms from the GAF. The resulting reduced GAF is used
to perform an enrichment analysis with GO::TermFinder.

Egaña Aranguren et al. Journal of Biomedical Semantics 2013, 4:2 Page 12 of 16
http://www.jbiomedsem.com/content/4/1/2

Figure 12 OWL query tool.Web interface of the OWL query tool.

3 SELECT ?x SubClassOf Thing

4 WHERE ?x != Nothing, ?x != Thing

5 BEGIN

6 ADD ?y Type ?x

7 END;

By applying this simple script a ‘punned’ ontology can be
quickly obtained: the script adds an individual as a mem-
ber of each class, with the same URI as the class, except
in the case of owl:Thing and owl:Nothing (line 4). It
is worthy noting that the RENDERING keyword in OPPL

refers to the rendering method used in Protégé 4 for enti-
ties: URI fragment, rdfs:label, QName, etc. (OPPL-
Galaxy uses the default, URI fragment). As a result, an
ontology in which each class has an individual with the
same URI is obtained. An RDF triple for every existential
restriction can be added to the punned ontology by exe-
cuting the following script (using the punned ontology as
input):

1 ?x:CLASS,

2 ?y:INDIVIDUAL,

Figure 13 OWL TBox to ABox transformation for assisting SPARQL queries (as shown in Galaxy). In this workflow two OPPL scripts are used:
the first one adds an instance to every class with the same URI and the second one adds an RDF triple for every existential restriction.

Egaña Aranguren et al. Journal of Biomedical Semantics 2013, 4:2 Page 13 of 16
http://www.jbiomedsem.com/content/4/1/2

Figure 14 OWL TBox to ABox transformation for assisting SPARQL queries (details). Detailed depiction of the workflow shown in Figure 13.

3 ?z:CLASS,

4 ?w:INDIVIDUAL,

5 ?p:OBJECTPROPERTY

6 SELECT ASSERTED ?x SubClassOf ?p some ?z,

7 ASSERTED ?y Type ?x, ASSERTED ?w Type ?z

8 WHERE ?x != Nothing, ?x != Thing

9 BEGIN

10 ADD ?y ?p ?w

11 END;

This script will only work for existential restrictions,
i.e. it will not transform universal restrictions to triplesc.
Therefore, it will completely transform an ontology that
only presents existential restrictions, like GO. By using
such scripts sequentially in a Galaxy workflow, a ready-
to-use (OWL) RDF representation can be obtained to be
submitted to a Galaxy tool for executing SPARQL queries
(Table 1).

Discussion
One of the most important applications of OPPL is the
axiomatic expansion of an existing ontology. The defi-
nition of complex modelling made by an ontologist is
expanded, through the script execution, to different parts
of the ontology itself, saving in this way time and effort.
Such complex modelling can be stored in a script, which
can be reused at any time in order to (re)apply precisely

defined ontology patterns. Thus, OPPL abstracts away
the repetitive task of implementing common axiom pat-
terns found in ontologies and parameterising them with
concrete entities. Using OPPL when building ontologies
ensures the repeatability and style consistency of themod-
elling since such modelling is performed by executing
a script. Moreover, OPPL allows experimentation with
modelling choices: design options can be stored in a
script and by simply executing such script and inspect-
ing the results, the ontologist can rapidly try out complex
modelling and revise decisions as necessary.
OPPL provides a simple, flexible and expressive lan-

guage for maintaining ontologies as well as for keeping
track of the changes themselves. By using OPPL, in con-
trast to a direct OWL API implementation, users profit
from less complex scripting that does not require the
overhead of a Java program, yet retains the complexity
and capabilities needed to work with OWL ontologies in
a fully expressive manner. OPPL scripting is not a sim-
ple task; nonetheless, OPPL scripts do afford a unique
programmatic way to manipulate OWL ontologies in a
pattern based manner that avoids many of the issues with
manual crafting of individual axioms.
The only tool that offers a functionality similar to OPPL

is Thea [54]. Thea, however, requires the ontologist to be
able to program her axioms in Prolog. OPPL, in contrast,
requires a knowledge of its scripting syntax, which is

Egaña Aranguren et al. Journal of Biomedical Semantics 2013, 4:2 Page 14 of 16
http://www.jbiomedsem.com/content/4/1/2

an extension of MOS (which in turn is an OWL syn-
tax designed for human use and readability) based on an
intuitive set of keywords (such as ADD, REMOVE, etc.).
Therefore, the OPPL syntax learning curve is not that
steep for an ontologist who is familiar with the OWL syn-
tax. On the other hand, Galaxy enhances the mentioned
features of OPPL by embedding them in an infrastructure
that provides persistence, shareability and reproducibil-
ity of analyses, combination with other tools, etc. To the
best of our knowledge, there is no other Galaxy tool com-
parable to OPPL-Galaxy, except ONTO-toolkit. However,
ONTO-toolkit offers different, complementary function-
alities to the ones offered by OPPL-Galaxy and as a matter
of fact they can be combined to obtain meaningful results.
OPPL-Galaxy is a seminal prototype that is regularly

improved. The following list collects a set of prospective
features:

• Loading ‘local’ imported ontologies by uploading
them to Galaxy (Currently only remote URIs are
resolved).

• Load ontologies by their URI.
• Configurable querying and rendering (URI fragment,

rdfs:label, QName, etc.).
• Standalone OPPL assertions processing (e.g. ADD

phagocyte subClassOf cell).
• Support for OWLlink [55] and RACER [56] reasoners.
• Other output formats apart from RDF/XML.
• In the case of the inference module, support for more

inferences like data property assertions, different
individuals assertions, etc.

• A tool for wrapping the ontology modularisation
function of the OWL API.

Performance might be an issue while working with
OPPL-Galaxy [18], since automated reasoning on espe-
cially large, complex biomedical ontologies is usually
resource demanding [57], even considering that OPPL-
Galaxy will normally work in a server with considerable
memory. As performance typically depends on the imple-
mentation of the automated reasoners, it is expected to
improve in the future, since reasoners are becoming more
efficient. Also, Galaxy can used in a cloud computing
setting such as Amazon EC2 [58].

Conclusions
The success of the application of the Semantic Web
technologies in Life Sciences not only relies on build-
ing ontologies and fine-tuning or setting standards, but
also on augmenting the scientists’ toolbox with tools that
can be easily plugged into frequently-used data analy-
sis environments such as Galaxy. Galaxy facilitates the

combination of several bioinformatics tools within a sin-
gle Web interface. Since OPPL-Galaxy can be used as
part of the Galaxy framework as an ontology manipula-
tion tool, it can be exploited in combination with other
Galaxy tools. That is, precisely, what sets OPPL-Galaxy
apart from other ontology tools that offer similar func-
tionality: it can be used with the actual data and tools
that life scientists use on a daily-basis, rather than in iso-
lation. By embedding tools like OPPL in genomic science
frameworks like Galaxy, the user awareness of such type of
application of the semantic technologies in Life Sciences
could increase, thus enabling more sophisticated analyses
of biomedical information.
The OPPL syntax extends that of OWL with a set of

intuitive keywords; therefore, the learning curve of any
userminimally fluent inOWL should be relatively shallow.
This means that OPPL-Galaxy provides a powerful and
(indirectly) familiar tool for automating ontology curation
processes that otherwise would need considerable human
resources and/or might produce incomplete or erroneous
results. The OPPL scripts described in the results section
are relatively simple, yet they show how users could ben-
efit from this tool to enhance their ontology development
and exploitation tasks, like debugging, rewriting and per-
forming axiomatic enrichment via ODPs. Specially in the
case of ODPs, a well-known ontology engineering prac-
tice, OPPL-Galaxy offers the ideal setting for their applica-
tion, since such ODPs can be shared as ready-to-execute
Galaxy workflows, saving time and effort. More complex
OPPL scripts would undoubtedly yield even greater bene-
fits, particularly if combined in workflows (e.g. debugging
and rewriting sequentially and sending the output to other
Galaxy tools).
Examples of Galaxy workflows that combine differ-

ent OPPL scripts with other Galaxy tools are provided
in the use cases ‘Complex querying of GO’, ‘Selective
extraction of modules from GO for term enrichment’,
and ‘OWL TBox to ABox transformation for assisting
SPARQL queries’. Other sophisticated analyses can be
performed with workflows exploiting OPPL-Galaxy, like
more fine-grained axiomatic enrichment of biomedical
ontologies [18,59-61]. The diversity and functionality of
Galaxy workflows involving OPPL-Galaxy depend only on
the user.
In summary, OPPL-Galaxy offers the possibility of

automating ontology manipulations in a reproducible,
versatile, persistent and shareable fashion, within a con-
text in which the result of such manipulations can be sent
directly to other tools in order to further build or enhance
analysis workflows. Therefore, OPPL-Galaxy should, on
the one hand, be of interest for the life scientists that
exploit ontologies to analyse biomedical information, and,
on the other hand, for bio-ontologists that continuously
maintain ontologies and are concerned by their quality.

Egaña Aranguren et al. Journal of Biomedical Semantics 2013, 4:2 Page 15 of 16
http://www.jbiomedsem.com/content/4/1/2

Endnotes
aStrictly following this convention would result in restric-
tions being represented as lines going out of dotted circles
(A condition in an OWL class is the anonymous class
formed by the individuals that have the relation). However
restrictions have been simplified, omitting the anonymous
class, for the sake of clarity.
bThis script detects any case in which a universal restric-
tion is used in the absence of an existential restriction.
Therefore, it would (wrongly) flag as an instance of the
antipattern, for example, a universal restriction and an
exactly restriction used together. A more thorough
script is feasible but out of the scope of this paper.
cThe reason for not including universal restrictions is that,
in the case of GO, only existential restrictions are present
in the ontology; nothing prevents the user from adding a
further statement so as to also capture universal restric-
tions, but in the case of GO no entities would be retrieved.

Availability and requirements
• Project name: OPPL-Galaxy.
• Project home page: http://wilkinsonlab.info/OPPL-

Galaxy. We provide a public instance of Galaxy with
OPPL-Galaxy installed on it, including Galaxy tools
related to the use cases (ONTO-toolkit,
NCBO-Galaxy, Annotation, SPARQL-Galaxy):
http://biordf.org:8090. The Galaxy bundle for local
installation can be downloaded at http://toolshed.g2.
bx.psu.edu/, under the category ‘Ontology
manipulation’. The bundle includes the software itself
(along with the necessary third-party libraries and
XML tool files), sample scripts and ontologies, and
instructions on installation and usage.

• Operating system(s): it is recommended that
OPPL-Galaxy be deployed in a UNIX-based machine
(GNU/Linux, Mac OS X, BSD, etc.) since it uses
standard UNIX redirection (MSWindowsTM is not
officially supported by Galaxy).

• Programming language: Java and Python.
• Other requirements: a working Galaxy installation

is needed (http://galaxy.psu.edu/).
• License: General Public License (http://www.gnu.

org/copyleft/gpl.html). Source available at the Galaxy
tool shed mercurial repository (http://toolshed.g2.bx.
psu.edu/repos/mikel-egana-aranguren/oppl).

Abbreviations
DL: Description Logics; BioPAX: Biological Pathway Exchange; GAF: Gene
Association File; GO: Gene Ontology; KB: Knowledge Base; MOS: Manchester
OWL Syntax; NCBO: National Center for Biomedical Ontology; NLAP:
Non-Logical Antipattern; OBO: Open Biomedical Ontologies; ODP: Ontology
Design Pattern; OORT: OBO Ontology Release Tool; OPPL: Ontology Pre
Processor Language; OWL: Web Ontology Language; RACER: Renamed ABox
and Concept Expression Reasoner; RDF: Resource Description Framework;
SOE: Synonym Of Equivalence; SPARQL: SPARQL Protocol and RDF Query
Language; URI: Uniform Resource Identifier; W3C: World Wide Web
Consortium; XML: eXtensible Markup Language.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
MEA developed OPPL-Galaxy, designed some use cases, and contributed to
the text. JTFB and EA tested the use cases, created the Web for them and
contributed to the text. CM contributed to the use cases and to the text. ARG
developed SPARQL-Galaxy. MDW revised the manuscript and supervises the
Biological Informatics Group and funding. All authors read and approved the
final manuscript.

Acknowledgements
Mikel Egaña Aranguren and Mark D Wilkinson are funded by the Marie Curie
Cofund programme (FP7) of the European Union, including the charges for
publishing this manuscript. Jesualdo Tomás Fernández-Breis is funded by the
Spanish Ministry of Science and Innovation (TIN2010-21388-C02-02) and
co-funded by the FEDER Programme. Chris Mungall is funded by National
Human Genome Research Institute (NHGRI) [5P41HG002273-09]. Alejandro
Rodŕıguez González is funded by the Isaac Peral Programme.
Luigi Iannone and Ignazio Palmisano offered extensive technical help for the
development of OPPL- Galaxy. The SWAT4LS 2011 reviewers and attendees
offered helpful comments that contributed to the current version of the
manuscript and OPPL-Galaxy.

Author details
1Ontology Engineering Group, School of Computer Science, Technical
University of Madrid (UPM), Boadilla del Monte, 28660, Spain. 2Biological
Informatics Group, Centre for Plant Biotechnology and Genomics (CBGP),
Technical University of Madrid (UPM), Pozuelo de Alarcón, 28223, Spain.
3School of Computer Science, University of Murcia (UM), Murcia, 30100, Spain.
4Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, CA,
94720, US. 5Department of Biology, Norwegian University of Science and
Technology (NTNU), Høgskoleringen 5, N-7491, Trondheim, Norway.

Received: 2 April 2012 Accepted: 27 December 2012
Published: 4 January 2013

References
1. W3C: Semantic Web. [http://www.w3.org/standards/semanticweb/].

[Online; accessed 28-March-2012]
2. W3C: RDF current status. [http://www.w3.org/standards/techs/rdf].

[Online; accessed 28-March-2012]
3. W3C: SPARQL current status.

[http://www.w3.org/standards/techs/sparql]. [Online; accessed
28-March-2012]

4. W3C: OWLWeb Ontology Language current status. [http://www.w3.
org/standards/techs/owl]. [Online; accessed 28-March-2012]

5. Good BM, Wilkinson MD: The Life Sciences Semantic Web is Full of
Creeps! Brief Bioinform 2006, 7(3):275–286.

6. Gene Ontology Consortium: Gene Ontology: tool for the unification of
biology. Nat Genet 2000, 23(May):25–29.

7. Smith B, Ashburner M, Rosse C, Bard J, Bug W, Ceusters W, Goldberg LJ,
Eilbeck K, Ireland A, Mungall CJ, Leontis N, Rocca-Serra P, Ruttenberg A,
Sansone SA, Scheuermann RH, Shah N, Whetzel PL, Lewis S: The OBO
Foundry: coordinated evolution of ontologies to support
biomedical data integration. Nat Biotech 2007, 25(11):1251–1255.

8. NCBO: BioPortal. http://bioportal.bioontology.org/. [Online; accessed
28-March-2012]

9. Wolstencroft K, Mcentire R, Stevens R, Tabernero L, Brass A: Constructing
ontology-driven protein family databases. Bioinformatics 2005,
21(8):1685–1692.

10. Nolin MA, Dumontier M, Belleau F, Corbeil J: Building an HIV data
mashup using Bio2RDF. Briefings in Bioinformatics 2011, 13:98–106.

11. Stevens R, Lord P: Application of Ontologies in Bioinformatics. In
Handbook on Ontologies, International Handbooks Information System.
Edited by Staab S, Studer R; 2009:735–756.

12. Kim JW, Caralt JC, Hilliard JK: Pruning Bio-Ontologies. Hawaii Int
Conference Syst Sci 2007, 0:196c.

13. Masci A, Arighi C, Diehl A, Lieberman A, Mungall C, Scheuermann R, Smith
B, Cowell L: An improved ontological representation of dendritic
cells as a paradigm for all cell types. BMC Bioinformatics 2009, 10:70+.

http://wilkinsonlab.info/OPPL-Galaxy
http://wilkinsonlab.info/OPPL-Galaxy
http://biordf.org:8090
http://toolshed.g2.bx.psu.edu/
http://toolshed.g2.bx.psu.edu/
http://galaxy.psu.edu/
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/copyleft/gpl.html
http://toolshed.g2.bx.psu.edu/repos/mikel-egana-aranguren/oppl
http://toolshed.g2.bx.psu.edu/repos/mikel-egana-aranguren/oppl
http://www.w3.org/standards/semanticweb/
http://www.w3.org/standards/techs/rdf
[
http://www.w3.org/standards/techs/owl
http://www.w3.org/standards/techs/owl
http://bioportal.bioontology.org/

Egaña Aranguren et al. Journal of Biomedical Semantics 2013, 4:2 Page 16 of 16
http://www.jbiomedsem.com/content/4/1/2

14. Leonelli S, Diehl A, Christie K, Harris M, Lomax J: How the gene ontology
evolves. BMC Bioinf 2011, 12:325+.

15. Luigi Iannone: OPPL. [http://oppl.sf.net]. [Online; accessed
28-March-2012]

16. Šváb Zamazal O, Svátek V, Iannone L: Pattern-based ontology
transformation service exploiting OPPL and OWL-API. In EKAW’10;
2010:105–119.

17. Egaña M, Rector A, Stevens R, Antezana E, Gangemi A, Euzenat J:
Applying Ontology Design Patterns in Bio-ontologies. In EKAW 2008,
LNCS 5268; 2008:7–16.

18. Fernandez-Breis JT, Iannone L, Palmisano I, Rector AL, Stevens R:
Enriching the Gene Ontology via the dissection of labels using the
Ontology Pre Processor Language. In EKAW; 2010:59–73.

19. Iannone L, Palmisano I, Rector AL, Stevens R: Assessing the Safety of
Knowledge Patterns in OWL Ontologies. In ESWC; 2010:137–151.

20. Iannone L, Rector A, Stevens R: Embedding Knowledge Patterns into
OWL. In ESWC; 2009:218–232.

21. Mortensen JM, Horridge M, Musen MA, Noy NF:Modest use of
Ontology Design Patterns in a repository of biomedical ontologies.
InWOP. Edited by Gangemi A, Blomqvist E:2012.

22. Jupp S, Horridge M, Iannone L, Klein J, Owen S, Schanstra J, Wolstencroft
K, Stevens R: Populous: a tool for building OWL ontologies from
templates. BMC Bioinformatics 2012, 13(Suppl 1):S5+.

23. Goecks J, Nekrutenko A, Taylor J, Galaxy Team: Galaxy: a comprehensive
approach for supporting accessible, reproducible, and transparent
computational research in the life sciences. Genome Biol 2010,
11(8):R86+.

24. Horridge M, Drummond N, Goodwin J, Rector AL, Stevens R, Wang H: The
Manchester OWL Syntax. In OWLED, Volume 216 of CEUR Workshop
Proceedings. Edited by Grau BC, Hitzler P, Shankey C, Wallace E, Grau BC,
Hitzler P, Shankey C, Wallace E; 2006.

25. Goble CA, Bhagat J, Aleksejevs S, Cruickshank D, Michaelides D, Newman
D, Borkum M, Bechhofer S, Roos M, Li P, De Roure D:myExperiment: a
repository and social network for the sharing of bioinformatics
workflows. Nucleic Acids Res 2010, 38(suppl 2):W677—W682.

26. Galaxy project: Galaxy Tool XML File. [http://wiki.g2.bx.psu.edu/Admin/
Tools/ToolConfigSyntax]. [Online; accessed 28-March-2012]

27. Stanford Center for Biomedical Informatics Research: Protégé. [http://
protege.stanford.edu/]. [Online; accessed 28-March-2012]

28. Luigi Iannone: OPPL API. http://sourceforge.net/projects/oppl2/files/
OPPLAPI/. [Online; accessed 28-March-2012]

29. Matthew Horridge: OWL API. http://owlapi.sf.net. [Online; accessed
28-March-2012]

30. Mungall C, Ruttenberg A, Horrocks I, Osumi-Sutherland D, Antezana E,
Balhoff J, Courtot M, Dietze H, Day-Richter J, Ireland A, Lewis S, Manzoor S,
Tirmizi S H: OBO Flat File Format Syntax and Semantics. http://purl.
obolibrary.org/obo/oboformat/spec.html. [Online; accessed
28-March-2012]

31. Mikel Egaña Aranguren: OPPLmanual. http://oppl2.sourceforge.net/
manual.pdf. [Online; accessed 28-March-2012]

32. Clarck and Parsia LLC: Pellet: OWL 2 Reasoner for Java. http://
clarkparsia.com/pellet/. [Online; accessed 28-March-2012]

33. Information Systems Group: Hermit OWL Reasoner. http://www.hermit-
reasoner.com/. [Online; accessed 28-March-2012]

34. Dmitry Tsarkov: FaCT++. http://code.google.com/p/factplusplus/.
[Online; accessed 28-March-2012]

35. Yevgeny Kazakov: Elk reasoner. http://code.google.com/p/elk-
reasoner/. [Online; accessed 22-October-2012]

36. Antezana E, Venkatesan A, Mungall C, Mironov V, Kuiper M:
ONTO-ToolKit: enabling bio-ontology engineering via Galaxy. BMC
Bioinformatics 2010, Suppl 12:S8+.

37. Day-Richter J, Harris MA, Haendel M: Gene Ontology OBO-Edit Working
Group, Lewis S. OBO-Edit–an ontology editor for biologists.
Bioinformatics 2007, 23(16):2198–200.

38. José Antonio Miñarro-Gimenez, Mikel Egaña Aranguren, Jesualdo Tomás
Fernández-Breis, Erick Antezana: NCBO-Galaxy: bridging the BioPortal
web services and the Galaxy platform. In ICBO; 2012. [Software demo].

39. Chris Mungall: galaxy-obo. https://bitbucket.org/cmungall/galaxy-obo/
overview. [Online; accessed 22-October-2012]

40. Boyle EI, Weng S, Gollub J, Jin H, Botstein D, Cherry JM, Sherlock G:
GO::TermFinder-open source software for accessing Gene Ontology

information and finding significantly enriched Gene Ontology
terms associated with a list of genes. Bioinformatics, 20(18):3710+.

41. Mikel Egaña Aranguren, Erick Antezana, Jesualdo Tomás Fernández-Breis:
OPPL Galaxy. http://wilkinsonlab.info/OPPL-Galaxy. [Online; accessed
20-October-2012]

42. Luigi Iannone: OPPL Examples. http://oppl2.sourceforge.net/
taggedexamples/. [Online; accessed 28-March-2012]

43. Corcho O, Roussey C, Vilches Blázquez LM, Pérez IEva Blomqvist FSVS, Kurt
Sandkuhl (Eds): Pattern-based OWL Ontology Debugging Guidelines;WOP
2009.

44. Rector A, Drummond N, Horridge M, Rogers J, Knublauch H, Stevens R,
Wang H, Wroe C: OWL Pizzas: Practical Experience of Teaching
OWL-DL: Common Errors and Common Patterns. In Engineering
Knowledge in the Age of the SemanticWeb, Volume LNAI 3257. Edited by
Motta E, Shadbolt N, Stutt A, Gibbins N; 2004:63–81.

45. BioPAX group: BioPAX Level 3 ontology. http://www.biopax.org/
release/biopax-level3.owl. [Online; accessed 28-March-2012]

46. Anonymous reviewer: Comment. SWAT4LSmanuscript review 2011.
47. Bug WJ, Ascoli GA, Grethe JS, Gupta A, Fennema-Notestine C, Laird AR,

Larson SD, Rubin D, Shepherd GM, Turner JA, Martone ME: The NIFSTD
and BIRNLex vocabularies: building comprehensive ontologies for
neuroscience. Neuroinformatics 2008, 6(3):175–94.

48. Camon E, Magrane M, Barrell D, Lee V, Dimmer E, Maslen J, Binns D, Harte
N, Lopez R, Apweiler R: The Gene Ontology Annotation (GOA)
Database: sharing knowledge in Uniprot with Gene Ontology.
Nucleic Acids Res 2004, 32:D262—D266.

49. Jupp S, Stevens R, Hoehndorf R: Logical Gene Ontology Annotations
(GOAL): exploring gene ontology annotations with OWL. J Biomed
Semantics 2012, 3 Suppl 1.

50. Heiko Dietze: Obo Ontology Release Tool. http://code.google.com/p/
owltools/wiki/OortIntro. [Online; accessed 22-October-2012]

51. Gene Ontology Consortium: Ontology processing recipes. http://wiki.
geneontology.org/index.php/Ontology processing recipes. [Online;
accessed 22-October-2012]

52. Miñarro-Gimenez JA, Egaña Aranguren M, Béjar RM, Fernández-Breis JT,
Madrid M: Semantic integration of information about orthologs and
diseases: The OGO system. J Biomed Inf 2011, 44:1020–1031.

53. W3C: OWL 2Web Ontology Language New Features and Rationale.
http://www.w3.org/TR/owl2-new-features/. [Online; accessed
28-March-2012]

54. Vassiliadis V, Wielemaker J, Mungall C: Processing OWL2 ontologies
using Thea: An application of logic programming. In OWLED; 2009.

55. OWLlink Working Group: OWLlink. [http://www.owllink.org/. [Online;
accessed 28-March-2012]]

56. Racer Systems GmbH and Co KG: RacerPro 2.0. http://www.racer-
systems.com/. [Online; accessed 28-March-2012]

57. Blondé W, Mironov V, Venkatesan A, Antezana E, De Baets B, Kuiper M:
Reasoning with bio-ontologies: using relational closure rules to
enable practical querying. Bioinformatics 2011, 27(11):1562–1568.

58. Galaxy project: Galaxy on the cloud. http://wiki.g2.bx.psu.edu/Admin/
Cloud. [Online; accessed 28-March-2012]

59. Diehl AD, Augustine AD, Blake JA, Cowell LG, Gold ES, Gondré-Lewis TA,
Masci AM, Meehan TF, Morel PA, Nijnik A, Peters B, Pulendran B,
Scheuermann RH, Yao QA, Zand MS, Mungall C J: Hematopoietic cell
types: Prototype for a revised cell ontology. J Biomed Inf 2011,
44:75–79.

60. Mikel Egaña Aranguren, Wroe C, Goble C, Stevens R: In situ migration of
handcrafted ontologies to reason-able forms. Data and Knowledge
Engineering 2008, 66:147–162.

61. Mikroyannidi E, Rector A, Stevens R: Abstracting and Generalising the
Foundational Model Anatomy (FMA) Ontology. In Bio-Ontologies;
2009.

doi:10.1186/2041-1480-4-2
Cite this article as: Egaña Aranguren et al.: OPPL-Galaxy, a Galaxy tool
for enhancing ontology exploitation as part of bioinformatics workflows.
Journal of Biomedical Semantics 2013 4:2.

http://oppl.sf.net
http://wiki.g2.bx.psu.edu/Admin/Tools/Tool Config Syntax
http://wiki.g2.bx.psu.edu/Admin/Tools/Tool Config Syntax
http://protege.stanford.edu/
http://protege.stanford.edu/
http://sourceforge.net/projects/oppl2/files/OPPL API/
http://sourceforge.net/projects/oppl2/files/OPPL API/
http://owlapi.sf.net
http://purl.obolibrary.org/obo/oboformat/spec.html
http://purl.obolibrary.org/obo/oboformat/spec.html
http://oppl2.sourceforge.net/manual.pdf
http://oppl2.sourceforge.net/manual.pdf
http://clarkparsia.com/pellet/
http://clarkparsia.com/pellet/
http://www.hermit-reasoner.com/
http://www.hermit-reasoner.com/
http://code.google.com/p/factplusplus/
http://code.google.com/p/elk-reasoner/
http://code.google.com/p/elk-reasoner/
https://bitbucket.org/cmungall/galaxy-obo/overview
https://bitbucket.org/cmungall/galaxy-obo/overview
http://wilkinsonlab.info/OPPL-Galaxy
http://oppl2.sourceforge.net/taggedexamples/
http://oppl2.sourceforge.net/taggedexamples/
http://www.biopax.org/release/biopax-level3.owl
http://www.biopax.org/release/biopax-level3.owl
http://code.google.com/p/owltools/wiki/OortIntro
http://code.google.com/p/owltools/wiki/OortIntro
http://wiki.geneontology.org/index.php/Ontology_processing_recipes
http://wiki.geneontology.org/index.php/Ontology_processing_recipes
http://www.w3.org/TR/owl2-new-features/
http://www.owllink.org/
http://www.racer-systems.com/
http://www.racer-systems.com/
http://wiki.g2.bx.psu.edu/Admin/Cloud
http://wiki.g2.bx.psu.edu/Admin/Cloud

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	OPPL
	Galaxy
	OPPL-Galaxy

	Results
	Basic usage
	Ontology debugging and evaluation
	Complex querying of GO
	Expansion of gene product annotations through GO structure
	Selective extraction of modules from GO for term enrichment
	OWL TBox to ABox transformation for assisting SPARQL queries

	Discussion
	Conclusions
	Endnotes
	Availability and requirements
	Abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

