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Abstract

Background: Large quantities of biomedical data are being produced at a rapid pace for a variety of organisms. With
ontologies proliferating, data is increasingly being stored using the RDF data model and queried using RDF based
querying languages. While existing systems facilitate the querying in various ways, the scientist must map the
question in his or her mind to the interface used by the systems. The field of natural language processing has long
investigated the challenges of designing natural language based retrieval systems. Recent efforts seek to bring the
ability to pose natural language questions to RDF data querying systems while leveraging the associated ontologies.
These analyze the input question and extract triples (subject, relationship, object), if possible, mapping them to RDF
triples in the data. However, in the biomedical context, relationships between entities are not always explicit in the
question and these are often complex involving many intermediate concepts.

Results: We present a new framework, OntoNLQA, for querying RDF data annotated using ontologies which allows
posing questions in natural language. OntoNLQA offers five steps in order to answer natural language questions. In
comparison to previous systems, OntoNLQA differs in how some of themethods are realized. In particular, it introduces
a novel approach for discovering the sophisticated semantic associations that may exist between the key terms of a
natural language question, in order to build an intuitive query and retrieve precise answers. We apply this framework
to the context of parasite immunology data, leading to a system called AskCuebee that allows parasitologists to pose
genomic, proteomic and pathway questions in natural language related to the parasite, Trypanosoma cruzi. We
separately evaluate the accuracy of each component of OntoNLQA as implemented in AskCuebee and the accuracy of
the whole system. AskCuebee answers 68% of the questions in a corpus of 125 questions, and 60% of the questions
in a new previously unseen corpus. If we allow simple corrections by the scientists, this proportion increases to 92%.

Conclusions: We introduce a novel framework for question answering and apply it to parasite immunology data.
Evaluations of translating the questions to RDF triple queries by combining machine learning, lexical similarity
matching with ontology classes, properties and instances for specificity, and discovering associations between them
demonstrate that the approach performs well and improves on previous systems. Subsequently, OntoNLQA offers a
viable framework for building question answering systems in other biomedical domains.
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Background
New biomedical data is increasingly housed in resource
description framework (RDF) triple stores such as
Virtuoso [1] and AllegroGraph [2], annotated using rich
ontology schemas and queried using an RDF query lan-
guage called SPARQL [3]. The RDF data model has the
advantage of making the relationships between the data
items explicit, and provides a straightforward way for
annotating data using ontologies. An example of this
is the semantic problem solving environment for the
immunology of the parasite,Trypanasoma cruzi (T. cruzi),
which utilizes an RDF triple store for hosting the par-
asite’s genomic (microarray), proteomic (transcriptome)
and pathway data [4]. The data is annotated using the
parasite experiment ontology (PEO) and queried using
the open-source Cuebee [5] that provides an interface
for facilitating the parasitologist’s formulation of SPARQL
queries. Another example is the translational medicine
ontology and knowledge base [6], which utilizes the uni-
fying ontology to annotate integrated genomic, proteomic
and disease data, along with patient electronic records.
The data may be browsed in a RDF triple store.
Simple Web-based forms that allow choosing attributes

have been the user interface of choice for traditional
biomedical relational databases [7]. To promote ease of
querying, systems that utilize ontology-based RDF data
have experimented with various interfaces: iSparql [8],
NITELIGHT [9] and BioSPARQL [10] facilitate for-
mulating SPARQL queries by allowing the biomedical
scientists to browse ontology concepts and pinpoint a sub-
graph that pertains to the question in his or her mind.
GINSENG [11], a guided-input natural language search
engine, and Cuebee [5] progressively guide the scientists
by suggesting concepts and relationships that decompose
the question into a RDF triple based query, which is then
internally translated into SPARQL. The triples are in the
form of subject → relationship → object where sub-
ject and object represent ontology concepts. As Asiaee
et al. [12] notes, such guidance is tightly coupled to
the particular ontology structure, and query formulation
requires comfort with the structure otherwise the final
query is unintuitive to the user.
In this article, we introduce a novel framework, OntoN-

LQA, for querying RDF data annotated using ontologies.
The specific contributions of this framework are:

1. It allows posing queries as natural language questions
thereby requiring minimal translation between the
question in user’s mind and the computer query.

2. We present a new approach for answering natural
language questions on structured data that combines
machine learning with semantic computing: use of
existing ontologies, their structure and annotated
data, and triple-based queries.

3. OntoNLQA is applied in the context of parasite
immunology. The resulting system called AskCuebee
allows parasitologists to pose genomic, proteomic
and pathway questions in natural language related to
the parasite, T. cruzi, for the first time.

4. AskCuebee automatically answers 68% of a corpus of
125 questions in 5-fold cross-validation, and 60% of
the questions in a previously unseen corpus. This
latter proportion increases to 82.5 % if we allow
simple corrections by the user to the output of some
of the components.

OntoNLQA is significant due to two reasons: First, it
improves on the disadvantages of existing biomedical
data retrieval systems. In a systematic evaluation, Asiaee
et al. [12] demonstrate the benefits and limitations of
existing ontology-driven query formulation systems. A
major limitation is that scientists using these systems
require an understanding of the ontology structure in
order to quickly formulate queries. For example, queries
may require using intermediate concepts in the ontology
when there is no direct relationship between the concepts
that scientists have in mind.
To illustrate, consider this question in the context of T.

cruzi immunology using the parasite experiment ontology
(PEO) [13]:Which researchers study Neomycin drug resis-
tance? PEO formalizes the experimentation processes
in parasite research. Figure 1 illustrates the connection
between the two concepts researcher and Neomycin drug
resistance in PEO. Notice that “study” corresponds to a
path that includes two ontology properties, has agent and
has output value, and an intermediate ontology class,
sequence extraction, which is not stated in the question.
Because questions may not explicitly state how the tar-
get concepts are related, the scientist’s RDF query is tied
down to the structure of the ontology and this prob-
lem exaggerates when multiple intermediate concepts are
needed.
Second, and the more important motivation derives

from the fact that a capability to pose questions in plain
language is a natural way of obtaining answers. It involves
minimal effort expended toward translating the question
in the scientist’s mind to a query acceptable to the system,
which includes the effort involved in acquainting with the
query interface. In our informal discussions with biomed-
ical scientists, this capability was consistently identified as
the one that is most preferred.
OntoNLQA seeks to automatically translate a question

into RDF triples, and build a SPARQL query to retrieve the
answers from data stored in the RDF data model. Toward
this, the framework utilizes a design comprised of five
components working in a sequence: The first two iden-
tify important entities in the scientist’s question. These
are constituent words that are nouns and verbs, and
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Fig. 1 In order to formulate a query for the question above, the scientist needs to relate the two concepts, researcher and Neomycin drug resistance,
using the intermediate concept in the ontology, sequence extraction, that connects the two. Realizing how these are related requires an
understanding of the ontology design and its structure

relate to the concepts and relationships in the domain.
Accuracy is important here because words erroneously
deemed important get carried forward through all the
components. The third component matches the entities
identified previously to classes and properties of the ontol-
ogy. The last two components receive a set of ontology
classes and properties, and find semantic associations
between the entities. These associations could be multi-
ple paths comprised of classes and properties represented
as sequences of RDF triples, which are translated into
SPARQL to query the RDF data.
OntoNLQA is not specific to a domain with multiple

strategies and methods possible to realize each compo-
nent. We instantiate this framework in the context of par-
asite immunology, and develop a system called AskCuebee
that allows parasitologists to pose genomic, proteomic
and pathway questions in natural language related to the
parasite, T. cruzi. A significant amount of data including
internal laboratory data sets, KEGG pathway data, and
genomic data on orthologs such as Leishmania major and
Trypanosoma brucei from TriTrypDB [7] is available in a
RDF store for querying. The data is annotated using PEO.
We evaluate the accuracy of each component of

OntoNLQA as implemented in AskCuebee, and the accu-
racy of the whole system.
AskCuebee has been deployed in the Tarleton lab for

use in their day-to-day research and replaces a previous
traditional relational database system1.
While the field of natural language processing has

long investigated the challenges of designing systems that
respond to questions in natural language [14–18], these
do not make use of ontologies or the RDF data model.
Few recent ontology-based retrieval systems [19, 20] allow
queries as natural-language questions and seek to extract
subject → predicate → object triples directly from the
input question using pattern matching. However, a sig-
nificant limitation is that the extracted triples may not
be present as is in the ontology because the scientist’s
question may not be cognizant of the ontology’s struc-
ture. Furthermore, as we illustrated previously, entities
in the question may not be directly related motivating
sophisticated ways of connecting them to form an intu-
itive query. Consequently, a large subset of the questions
are challenging to answer automatically, thereby necessi-
tating user involvement to refine the triples. For example,
Aqualog [19] could not answer 42% of the questions in

its corpus automatically resorting to manual intervention
for these questions. A small subset of the systems [11, 21]
refine the question in real-time – as it is being typed – by
suggesting concepts and relationships from the ontology
to the scientist. These occupy a middle ground between
those that truly allow questions in natural language and
those in which queries are RDF triples.
Our driving biomedical domain pertains to the

immunology and pathogenesis of the parasite T. cruzi
infection, which causes the Chagas disease. This dis-
ease was recently labeled the “new HIV/AIDS of the
Americas” [22]. About 7 million people, mostly in Latin
America, are infected with this disease. Data available
for querying by AskCuebee was collected in order to
study how immune control and maintenance occurred
during a T. cruzi infection and how it managed to avoid
immune clearance. Data on DNA cloning steps for gene
knockout studies, on generation of gene knockout strains,
whole-genome transcript abundances for the four life-
cycle stages of T. cruzi, orthologous genes in related
organisms and protein identifications based on peptide
spectra are all included as RDF data.

Article outline
Next, in the Methods section, we describe the design of
OntoNLQA, discuss the details of each component and
how each component is utilized in AskCuebee in the con-
text of the parasite, T. cruzi, immunology research. We
report on the results of evaluating the methods employed
in AskCuebee as well as demonstrate the performance of
each component and the performance of the whole sys-
tem in the Results and discussion section. We also discuss
the contributions and limitations of our framework based
on our evaluation results in this section. We present a
comprehensive review of related work with a focus on
ontology-based retrieval systems in Related Works. We
conclude the article by summarizing our approach, main
findings and providing thoughts on future directions in
the Conclusion section.

Methods
OntoNLQA presents a new approach for answering ques-
tions posed in natural language to RDF data annotated
using an ontology. We begin by providing an overview
of the framework followed by details on each compo-
nent and how it is applied in the context of a driving
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biological domain, as well as its evaluation. As we discuss
below, multiple alternatives present themselves for real-
izing each component of the framework, and we discuss
their benefits and limitations.

Overview of OntoNLQA
Briefly, our approach in OntoNLQA is to identify the
important entities present in the question, which are then
found in the ontology and semantic associations between
the entities in the ontology are discovered. This approach
encounters three main challenges:

1. OntoNLQA needs to parse the question and identify
the important entities;

2. It must find the ontology classes, properties and
instances (data) in the ontology(ies) that correspond
to the identified entities; and

3. Find semantic associations involving the ontology
classes and properties, which need not be on a single
directed path. Express these in the form of RDF
triples that are translated into a computational query
for the RDF data.

While these challenges are common to some of
the previous ontology-based natural language systems,
OntoNLQA differs in its approach toward addressing them.
These challenges suggest a pipeline of operations on the

data beginning with the question in natural language, as
illustrated in Fig. 2. On receiving a question in natural
language, OntoNLQA performs linguistic pre-processing of
the question during which punctuation symbols, quota-
tion marks, parenthesis and any other character in the
question generally deemed to be irrelevant to extracting
the important information, are filtered out. This results

in a processed question. Words and phrases relevant to
the domain and of import to understanding the question
are deemed as important entities and extracted from the
processed question by utilizing entity recognition tech-
niques. These entities are then found in the ontology using
lexical matching. Ontology classes matched to the enti-
ties form the end points of any semantic associations that
are additionally constrained to include matched ontology
properties, if any. These associations are represented as a
sequence of RDF triples, which are then transformed into
SPARQL queries that retrieve the answer.
Operations on the data in Fig. 2 are performed by

the components of the system. Subsequently, OntoNLQA
is composed of five components as we show in Fig. 3.
The first two components, which include linguistic pre-
processing (box annotated 1 in Fig. 3) and entity recogni-
tion (box annotated 2) address the first challenge, which
is similar to the well-known problem of named entity
recognition [23]. Our primary goal in extracting entities
is to match them with their corresponding ontology ele-
ments. Therefore, the labels in our context is a set of
ontology classes and properties. A third component (box
annotated 3) matches each extracted entity from the pre-
vious component to a specific ontology class, property or
instance.
This component addresses the second challenge of find-

ing corresponding ontology elements for the identified
entities.
The final two components handle the challenge of find-

ing relationships between the ontology elements, repre-
senting them as RDF triples, and translating these into
a computational query. Semantic association discovery is
nontrivial when more than two ontology elements need to

Fig. 2 An illustration of the flow of data in OntoNLQA emphasizing the operation performed on the data at each step. Dotted lines show the
operation on the data. For example, lexical matching gives the ontology classes, properties and instances similar to the extracted entities. The direction
of the arrows denotes the direction of flow of the data
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Fig. 3 The design of OntoNLQA involving five general components that operate on the scientist’s question to eventually obtain the answer

be related (box annotated 4). Discovered semantic associ-
ations may be represented as RDF triples. These are used
in generating a computational query for the RDF data by
the query formulation and answer retrieval component
(box annotated 5).

Components of OntoNLQA and their Implementation in
AskCuebee
In this subsection, we describe the components of the
framework in detail. For each, we discuss various meth-
ods for realizing the component’s functionality, whichmay
be beneficial in different contexts, and its utilization in
AskCuebee.
We apply OntoNLQA to the context of T. cruzi par-

asite immunology data as illustrated in Fig. 4. We call
this application, AskCuebee (boxes annotated 2 and 3),

which is assisting parasitologists at the Center for Trop-
ical and Emerging Diseases at the University of Georgia,
and their collaborators worldwide. The parasite, T. cruzi,
is the agent of Chagas disease in humans. This disease is
prevalent throughout Latin America and is often fatal.

Linguistic pre-processing
All questions undergo linguistic pre-processing to filter
constituents that are not key toward a computational
understanding of the question. This pre-processing –
commonly utilized inmany question-answering systems –
is generally known to improve the accuracy of detecting
important entities. The pre-processing starts with tok-
enization: breaking down the string of characters into
words, phrases, symbols, or other meaningful elements.
This is followed by removing stop words such as the

Fig. 4 OntoNLQA is a general framework and its realization in the context of our driving biological problem is called AskCuebee
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definite articles, “to”, “was”, and many others. Standard
lists of stop words are available [24]. In addition, punctu-
ation symbols are removed, abbreviations are expanded,
and comparative relationships in words are identfied using
grammar dependencies [25] and parts of speech tag-
ging [26], and replaced by their mathematical symbols; for
example, “greater than 1” is replaced by “> 1”.
The accuracy of linguistic pre-processing may be

enhanced by using domain-specific lexicons or dictio-
naries such as UMLS or MeSH, if these are relevant,
though its use should be considered carefully due to
the concomitant increase in run time [27]. Much of the
previously mentioned functionality for pre-processing is
available in free computer applications such as Stanford
CoreNLP [28], LingPipe [29] and OpenNLP [30].

StanfordCoreNLP in AskCuebee Each question posed
by the user is viewed by the system as a string of charac-
ters. Therefore, common operations such as tokenization,
extracting the roots of words (stemming), and removing
the punctuation symbols are essential. AskCuebee per-
forms these using the standard operations found in the
Stanford CoreNLP library [28]. Furthermore, consider the
following two example questions:

1. Show me the 3 prime forward sequences for all genes
in metacyclic stage with log2 ratio higher than 1 and
standard deviation below 0.5.

2. Which protein group numbers have spectral values
between 40 and 50?

In question (1), notice that while there are three num-
bers mentioned, two of these are involved in comparative
relationships, 1 and 0.5. Thus, the comparative relation-
ships we seek to identify are log2 ratio > 1 and standard
deviation < 0.5. In question (2), the comparative relation-
ships are more complex as two relationships are combined
into one using a conjunction. Therefore, we seek to extract
two relationships, spectral values > 40 and spectral values
< 50. These questions illustrate that we additionally need
conversions between numbers and text, and extraction
of comparative relationships. Both these require com-
plex operations that include part-of-speech tagging such
as detecting the nouns, verbs and identifying grammar
dependencies, which are provided by Stanford CoreNLP.
In addition, we detect abbreviations from a list that we
maintain.
We introduce a simple method that uses dependency

grammar to detect the majority of the comparative rela-
tionships. The first step is to detect the comparative
phrases in the question and transform them into dis-
tinct patterns. For example, standard deviation below 0.5
from question (1) is transformed to standard deviation
less than 0.5 and spectral values between 40 and 50 from

question (2) is converted to spectral values greater than
40 and spectral values less than 50. Next step converts the
distinct patterns into a computational form by identifying
the operands (standard deviation and 0.5) and operators
(less than). Again, a dependency grammar is combined
with part-of-speech tagging to create rules for detecting
operands and operators.

Entity recognition
Given the processed question, this component in the
framework is tasked with identifying and labeling enti-
ties that are relevant to obtaining the answer. Several
approaches may be used toward entity recognition.
These include supervised learning – a branch of

machine learning – that utilizes statistical models for the
task. A classifier is trained using a large corpus of data
records, each of which is labeled with the target entity
names. Entities in new data records are then identified
and labeled by the classifiers. Potential classifiers include
the hidden Markov model [31–34], maximum-entropy
Markov model [35, 36], support vector machines [37], and
conditional random fields [38], all of which have been
utilized for entity recognition. Among these, conditional
random fields have distinguished themselves with their
comparatively more accurate performance [39–41].
Supervised learning usually requires a large training

corpus to learn a classifier that performs well. In the
absence of large data sets, the alternative method of semi-
supervised learning uses a small collection of data to train
an initial classifier, which is then used to label new and
previously unseen samples of data. These labeled data are
subsequently utilized to retrain the classifier. A common
technique for semi-supervised learning is bootstrapping,
which requires a small set of seed supervised data for the
initial learning [42].
Other approaches not based on machine learning rely

on dictionaries and rules. A simple approach is to locate
lexically similar dictionary terms for each potential entity
in the question [43–46]. The approaches differ in how they
search the dictionary with some using BLAST [47], and
the data sets that constitute the dictionary. For example,
Krauthammer et al. [43] utilizes GeneBank as the dic-
tionary. Alternately, general rules in the form of string
patterns may be available. If a rule is satisfied by a term
and its context in the question, the corresponding label is
used to annotate the term [48–51].
Between the different approaches for entity recogni-

tion, machine learning methods are currently receiving
increased attention in general [52, 53]. Regardless of semi-
or fully-supervised methods, we need a set of labels for
entity recognition. Presence of a domain ontology pro-
vides a natural source for these labels. In this regard, an
important consideration is the number of labels that are
needed, which is often proportional to the size of the data
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set. A large data set may permit better discrimination and
therefore more labels. On the other hand, a smaller data
set necessitates fewer labels. In this case, we may select
ontology classes and properties that appear at a higher
hierarchical level in the ontology graph. Let CO denote
this set from ontology, O. Such labels tend to be general,
and each is useful toward annotating several terms in the
question.

Conditional random fields for entity recognition in
AskCuebee Dictionary-based methods require domain-
specific dictionaries. While substantial overarching dic-
tionaries for biomedicine such as UMLS and MeSH are
indeed available for use, these are not designed to be spe-
cific to any particular organism. Biomedical ontologies,
if available, serve to provide another source of dictionary
terms usually specific to a domain. In addition to finding
a dictionary relevant to the domain of interest, a limita-
tion of this approach is that dictionary look up could get
expensive if the dictionary is very large and unindexed. On
the other hand, machine-learning based supervised clas-
sification may need large training data in order to achieve
reasonable performance.
Among supervised learning methods, conditional ran-

dom fields (CRF) [38] demonstrate superior performance
for biomedical entity recognition. For example, CRFs were
utilized by the best performing system on the i2b2 medi-
cal concept extraction task [41], by highly ranked systems
on BioCreAtIve gene mention recognition tasks [39, 40]
(9 of 19 highest ranked systems use CRFs) and on JNLPBA
bioentity recognition task [54]. This motivates consider-
ing CRFs in AskCuebee as well. We briefly review CRFs in
Appendix A.
AskCuebee employs a linear-chain CRF and a pop-

ular quasi-Newton method called limited memory
Broyden-Fletcher-Goldfarb-Shanno [55] for optimizing
parameters. The parameters are the feature weights, λj, in
a CRF.
Critical to the performance of CRFs is finding a set

of feature functions. The simplest features of a natural
language question are the word tokens themselves. In
addition, AskCuebee uses four different types of features
for training CRFs: orthographic, word shape, dictionary
and contextual features:

• Orthographic features: Biomedical entities often
share orthographic characteristics. These consist of
capitalized letters, include digits and possibly some
special characters as well. Thus, such features are not
only useful in detecting various types of biomedical
entities but are easily implemented using patterns or
regular expressions. Appendix A includes a list of the
orthographic features utilized in AskCuebee.

• Word shape: Words annotated with the same entity
label may have the same shape. For example, a type of
abbreviation may not have numerical digits and gene
IDs are a combination of digits and letters.

• Contextual features: These features take into account
the properties of preceding and following tokens for a
current token in order to determine the target label.

• Dictionary features: For each noun or verb phrase in
the input question we calculate their similarity scores
with all ontology elements. If the highest similarity
score is higher than a threshold (for instance, 0.6), we
find the upper-level class or property of that specific
ontology element that is a training label. Then, we
activate a dictionary feature for the identified training
label. This feature is useful when the target entities
belong to more than one label.

Ontology elementmatching
Entity labels are ontology classes and properties, which
could be general and appear at the higher levels of the
ontology hierarchy. However, the RDF data annotated by
the ontology is often linked to more specific classes and
properties. Consequently, we may search the ontology for
more specific matches with the recognized entities in the
questions. If an entity, e, is associated with a label, c ∈ CO,
where CO is the set of all classes and properties in ontol-
ogy, O, then, let Sc be the set of subclasses and properties
in the ontology hierarchy rooted at c. Labeling the entity
with c allows us to limit our search for a more specific
match to the elements of Sc. Importantly, this reduces the
computational expense when the whole ontology may be
very large as is often the case with biomedical ontologies.
A suitable approach for the matching is to use text

similarity measures to calculate the degree of similarity
between an entity and a specific ontology class or prop-
erty. A similarity measure scores the degree of similarity
between two text phrases by viewing them as sequences of
characters. Common measures that are utilized include:

• ISUB similarity [56] designed for aligning
ontologies [57]. This method identifies the longest
common substring and records its length. It removes
this substring and searches for the next longest
substring until no common substring is identified.
The sum of the common substrings scaled with the
length of the original strings is the commonality in
the two strings. ISUB subtracts this commonality
from the difference of the two strings. The difference
is based on the length of the unmatched substrings.

• Levenshtein-based similarity (also known as
Needleman &Wunsch) [58] uses the Levenshtein
distance [59] to determine the similarity of two
sequences of characters. It calculates the best
alignment between two sequences of characters as
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the fewest number of mutations necessary to build
one sequence from the other.

• Smith and Waterman based similarity [60] looks for
longest common substrings between two phrases,
and based on that produces the degree of similarity.
This measure is similar to Needleman-Wunsch, and
is commonly used in BLAST for aligning genome and
protein sequences.

• Cosine-based similarity [61] is a widely reported
measure for similarity between two vectors. This
measure models phrases as vectors of characters and
calculates the cosine between the two vectors. This
provides a score that is interpreted as the degree of
similarity between two chunks of texts.

• Jaccard-based similarity [62] calculates the degree of
similarity of two phrases by calculating the size of the
set of intersection of the terms in the two phrases
compared to the size of the set of union of the terms.

No particular measure in the above list dominates any
other measure in performance. Subsequently, we may
evaluate all of them for use in domain-specific systems
such as AskCuebee. Classes and properties in Sc that
match sufficiently well with the entity, e, become a part of
the candidate list. Based on the cardinality of the candi-
date list, three situations arise as discussed below:
Case (1): In the straightforward case where the candi-

date list has only one member, the matched subclass or
property is retained.
Case (2): If the candidate list has multiple members, we

need to retain one among them. Here, we may consider
the context: the other entities identified in the question
and how each candidate relates with the ontology classes
and properties that label the other entities. For example,
we may rank order the candidates based on how many
direct paths each has with the other labels found in the
ontology. We may retain the candidate with the most
paths, which is indicative of contextual consistency.
Case (3): Finally, the candidate list could be empty.

Because none of the ontology subclasses or properties
were a close lexical match, our next step is to identify a
match in the RDF data. We may lookup the rdfs:type of
the matched instances in the data set to obtain the corre-
sponding ontology classes or properties. If multiple such
classes obtain, the candidate list has multiple members
requiring the approach in case (2) above to retain one.

Semantic association discovery
Specific ontology classes and properties that label the
identified entities in the question now need to be related
to each other. Two ontology elements have a seman-
tic binary relationship if a directed or undirected path
connects them in the ontology graph. However, scien-
tists’ questions often include multiple entities. OntoNLQA

differs from previous systems in how it handles this sit-
uation. We must find an n-ary semantic relationship
between all of them. While pairwise binary relationships
may be found between each pair of labels, these paths
must be linked with each other.
An approach to relating them is to find the lowest com-

mon ancestor (LCA). This is the ontology class that is
the ancestor of each entity label. An ancestor is any class
that lies on the path from the root of the ontology to
the label class. If there are multiple such common ances-
tors, we pick the one that is most specific and is therefore
lowest in the hierarchy. This ancestor would coincide
with Resnik’s most informative common ancestor [63] if
attention is limited to just the subclass taxonomy of the
ontology. However, the latter requires finding the proba-
bilities of ontology classes typically using term frequencies
in domain texts. Furthermore, the LCA may be different
when named properties in an ontology are considered.
An an illustration, consider Fig. 5 which shows the

semantic relationship between labels Cell Cloning and
Gene that appear in PEO. The binary relationship between
these two labels is a direct path in PEO. In this path, there
are several intermediate ontology concepts such as drug
selection and transfection (marked differently), which are
a part of the relationship. Of course, the length of such
paths depends on the design and structure of the partic-
ular ontology. As there is one pair only in this example, a
single path is sufficient to obtain the semantic association
between the two labels.
The graphs in Figs. 6 and 7 consider examples from

questions containing more than two identified entities,
resulting in more complex semantic associations between
the ontology elements. In Fig. 6, we are looking for seman-
tic relationships between five prime forward region, spec-
tral count and proteome analysis concepts, which were
chosen as entity labels. This n-ary relationship may not
be a single path between the elements. However, there
are pairwise paths between each pair of the ontology ele-
ments. Notice that proteome analysis is present on all
these paths and is the LCA.
As a third example, consider the ontology classes, gene,

spectral count, pathway, and experiment justification in
Fig. 7. It is straightforward to find the pairwise paths
between the classes in the ontology subgraph. However,
unlike the previous example, none of these include a com-
mon ancestor. As we show in Fig. 7, the LCA, process, is
an intermediate concept and does not belong to the set of
labels for the entities in the question.
In order to find semantic associations between multiple

ontology classes or properties, we discuss two methods
below:

Method 1: Semantic association discovery based on
the LCA Notice that the presence of an LCA for the
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Fig. 5 The semantic path between the ontology concepts Cell
Cloning and Gene ID Tc00.1047053509463.30. The lowest common
ancestor is Cell Cloning

matched classes or properties in an ontology provides a
way to obtain the semantic association between them.
From the LCA, we may obtain the shortest path that
connects the LCA to each ontology class while including
any identified property. Consequently, we obtain multiple
paths each of which has the LCA at one end.
This motivates finding an efficient way to compute the

LCA. In Appendix B, we discuss an offline approach that
precomputes the LCA for each pair of classes in the

ontology at hand and is currently the fastest. Wemay then
simply look up the LCA table to find all LCAs for every
ontology entity pair. This process continues recursively
until we identify a single LCA for all of the entity labels.
Figure 8 illustrates this recursive algorithm. Note that this
recursive procedure iterates over all LCAs for every pair
until one of them leads to the final solution. If the algo-
rithm fails to find any LCA for the entities, it concludes
that there is no semantic association between the ontology
classes. In order to find the shortest path from the LCA to
each ontology class in the set of entity labels, we may use
bidirectional search [64] to speed up the path finding.

Method 2: Semantic association discovery based on
path finding An alternative approach for finding seman-
tic associations is based on path queries. For example,
SPARQL 1.1 provides facilities to find a path between two
elements in RDF data. We may use these path-finding
queries to find the semantic paths betweenmultiple ontol-
ogy classes and properties. We present a simple method
that includes finding all the paths between the ontol-
ogy elements and selecting a common node among these
paths. Specifically,

• We begin by finding pairwise paths: these are paths
between every pair of ontology elements in the set of
labels. We sort them based on their length in
ascending order.

• Note that multiple paths may exist between a pair of
ontology elements. We create a set,
{allPairwisePaths}, that contains sets of all the
pairwise paths between every pair of the elements.

• In the next step, a Cartesian product of the sets in
allPairwisePaths is obtained. Each member of the
product set is itself a set of pairwise paths between all
the ontology elements.

• For each member of the product set, we identify an
ontology class that is common to all the paths, if
available, and store these common classes in a set,
CommonNodes.

• Finally, this approach selects a class in the set,
CommonNodes, that has the shortest paths to the
ontology elements.

Both the above methods result in semantic paths, which
are then converted into sequences of RDF triples in a
straightforward way.

Association discovery in AskCuebee In order to dis-
cover the associations between the matched PEO classes
and properties, OntoNLQA suggests either precomputing
the LCA or running path queries between each pair of
matched ontology elements and finding their intersection.
While the former has an offline step of precomputing the
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Fig. 6 This graph shows the semantic paths between the ontology concepts, five prime forward regions, proteome analysis, spectral value> 40 and
spectral value< 50. The common node between all is proteome analysis, which forms the LCA

LCA between all pairs of classes in the ontology, the latter
is fully online. We evaluate the two approaches and select
one for inclusion in AskCuebee.

Query formulation and answer retrieval
The final component of OntoNLQA translates RDF triples
into a computational query in the language of SPARQL.
This translation is straightforward because the RDF
triples directly represent SPARQL graph patterns.
If the RDF triple sequences constituting the semantic

paths need to be displayed, we may utilize any modal-
ity including simply showing the sequences or marking
them on the ontology graph and displaying the subgraph.

As an example, we may utilize the display of RDF triple
sequences by a system such as Cuebee [5].
The SPARQL query is then sent to any query endpoint

such as OpenLink Virtuoso [1], OpenRDF Sesame [65] or
AllegroGraph [2], all which allow storing large amounts
of annotated RDF data and query it using SPARQL. The
answers may be displayed to end users in a tabular or any
other visual format depending on the context and scientist
preferences.

AskCuebee workflow
AskCuebee implements various components in a work-
flow that is visualized in Fig. 9. We briefly summarize the

Fig. 7 The lowest common ancestor in this example, process, is not contained in the pairwise paths. Rather, it requires tracing paths to the root from
each entity label
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Fig. 8 The recursive algorithm finds a single LCA for the ontology entities in Fig. 7. In the first recursion, the algorithm finds LCAs between every
pairs for spectral count, gene, pathway, and experiment justification nodes. In the second and third recursions, the algorithm finds the LCAs of results
of previous recursion until a single node remains, which is process

internal workflow and provide details below. Linguistic
pre-processing of the scientist’s question in natural lan-
guage (step labeled 1) is performed using a set of standard
operations implemented in the Stanford CoreNLP [28]
software library. Entities in the processed question are
identified and labeled using a machine learning classifier:
the conditional random field (step labeled 2). The labels

are further refined by matching the entities with ontology
classes or properties using a lexical matching algorithm
called ISUB (step labeled 3). The scientist may edit the
recognized entities and labels for accuracy, and the lexi-
cal matching is performed again (step labeled 4). Semantic
associations between the specific labels are obtained by
finding the shortest paths from the LCA to the ontology

Fig. 9 The workflow of AskCuebee, which implements OntoNLQA in the context of T. cruzi immunology research. Specific methods are chosen after
evaluating the alternatives
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elements (step labeled 5). The semantic paths are then
passed to an enhanced version of Cuebee [4], which
transforms the RDF triples into computational SPARQL
queries and retrieves the answers (labeled 6).

AskCuebee’s user interface
In Fig. 10, we show a snapshot of AskCuebee’s interface
for the user. The scientist may enter her question in its
original, natural language form, in section (A) of Fig. 10
followed by pressing the Build Query button to send the
question to the system. AskCuebee processes the ques-
tion over a sequence of steps, and the intermediate output
from some of the components is displayed to the user in
an intuitive manner.
Section (B) in Fig. 10 displays the output of three meth-

ods: linguistic pre-processing, entity recognition and ontol-
ogy elementmatching. The processed question is displayed
(in the green box) above the smaller (light green) boxes.
Notice that the punctuation symbols are removed and
comparative relationships are extracted and converted
into a specific format that is readable for the system. For
example, “above 1” is converted into either “greater than
1” or “> 1”. In addition, section (B) displays the identified
entities in the question and their corresponding labels,
which are ontology classes and properties (in small light
green and dark green boxes, respectively).
Importantly, AskCuebee allows the informed scientist to

revise the identified entities and ontology-based labels in
case the system has missed important entities or misla-
beled an entity. Figure 11 focuses on section (B) for clarity.
The text box containing amastigote entity turns gray when
the user selects it and enables her to revise its content.
In addition, clicking on the boxes containing the labels
(dark green under the entity boxes), drops down a list with
multiple options. This list shows all the lexically match-
ing ontology classes and properties specially tagged by an
asterisk, which is output from the ontology elementmatch-
ing component. The scientist may choose a different label
or even remove an entity by selecting NONE. All can-
didate labels are listed below the horizontal line in the
drop down list. This feature is significant because it allows
the expert scientist to correct for any erroneous labeling.
Finally, the scientist rebuilds the query using the Rebuild
Query button.
In the next step, AskCuebee applies its unique seman-

tic association discovery to the identified ontology ele-
ments. Consequently, the discovered RDF triples are
displayed using Cuebee’s visual interface. These RDF
triples are depicted in section (C) of Fig. 10. AskCuebee
seamlessly utilizes the functionality of enhanced Cuebee
from this point onwards, allowing the scientist to revise
the sequences of triples if needed. The final com-
ponent of AskCuebee, query formulation and answer
retrieval, transforms these triples into a SPARQL query

and retrieves the answer from the data sets. Section (D) of
Fig. 10 shows the answer to the original question.

Evaluation of AskCuebee
As we discussed in the previous section, multiple methods
are available for realizing each component of OntoNLQA.
We evaluate many of these methods in the T. cruzi con-
text, and make an informed choice on the method that is
finally used in AskCuebee.
The data sets and the lists of target questions utilized in

our evaluation is described next followed by the evalua-
tion methodology.

Data sources and target questions
AskCuebee forms the new question-answering interface
for the semantic parasite knowledge repository [4]. Data
in the repository utilizes the RDF data model and is anno-
tated by two OWL ontologies: PEO and the Ontology for
Parasite Lifecycle [66]. As we noted previously, PEO is
a provenance ontology and models the experimentation
processes used to generate parasite data, the description
of raw materials, and the instruments and parameter val-
ues that influence generating or processing data. Figure 12
is a snapshot of PEO, which is available at NCBO’s Bio-
Portal [67]. The other ontology describes the life-cycle
stages of parasites, T. cruzi, T. brucei, and Leishmania
major, including the host, parasitic and vector organisms,
and anatomical location corresponding to each life-cycle
stage.
Data sources accessed by AskCuebee include internal

lab data and data sets from public repositories. We list the
data sets below:
Internal lab data from the Tarleton Research Group at
UGA:

• Gene knockout : data on DNA cloning steps required
to generate gene knockout plasmids;

• Strain creation: data on creation of gene knockout
strains in T. cruzi by transfection of parasites with
gene knockout plasmids;

• Microarray: data on genome relative transcript
abundances for the life-cycle stages of T. cruzi ;

• Proteome: data on protein identification based on
peptide spectra retrieved from T. cruzi ’s life-cycle
stages.

Data from public repositories, TriTrypDB and KEGG:

• TriTrypDB

– Orthologous genes in organisms related to T.
cruzi such as T. brucei and L. major.

– Predicated signal peptide information from
sequence based predictions for T. cruzi
annotated gene regarding the likelihood of the
gene product containing a single peptide;
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Fig. 10 A snapshot of AskCuebee in action: answering a question relevant to T. cruzi research. There are four sections in the interface each of which
represents the different components of AskCuebee. Section (A) contains a large textbox for the scientist to enter her question and ask the system to
create a corresponding query and retrieve the answers by pressing the Build Query button. Section (B) is optionally shown and displays the
recognized entities in the question, allows the scientist to modify the recognized entities, and search for new labels in the ontology. Figure 11
shows further details of this section. Section (C) shows the sequence of RDF triples that represent the question. This section is integrated with an
enhanced version of the existing system, Cuebee, and uses its display and design. Section (D) similar to section (C) is the result of integration with
Cuebee and shows the final answers retrieved from the RDF data sets
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Fig. 11 AskCuebee’s interface allows the scientist to revise the recognized entities and the labels comprising of matching ontology elements

Fig. 12 An excerpt of PEO limited to showing the class-subclass hierarchy. Object- and data-type properties and restrictions on classes and
properties are not shown for clarity
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– Transmembrane domain count from
sequence-based predictions for each T. cruzi
annotated gene regarding the presence and
number, if any, of transmembrane domain
contained in the gene product.

• KEGG

– Pathway data for T. cruzi genes regarding
their presence or absence in a KEGG
annotated metabolic pathway.

These data are transformed into the RDF data model
and hosted in OpenLink Virtuoso 7, which is a fast RDF
store. The ontologies are additionally loaded in a rea-
soner called Pellet [68], which allows queries to utilize the
inferred information as well.
Several researchers from the Tarleton Research Group

and other groups investigating T. cruzi together con-
tributed two lists of 125 and 40 questions, respectively.2
These make an exhaustive set and are relevant to the day-
to-day research activities of parasitologists investigating
T. cruzi (see Additional files 1 and 2 for the lists of these
questions). While the domain of these questions is limited
to T. cruzi, they represent the type of common ques-
tions that researchers investigating other organisms may
have. A shared characteristic betweenmany of these ques-
tions is that they involve concepts and data that span over
multiple data sources. For instance consider the question:
What are the metabolic pathways related to protein

group 271 for the orthologous genes with spectral score
below 2.0?
This question requires gene knockout and proteome

internal lab data as well as orthology and pathway infor-
mation from TriTrypDB and KEGG. Table 1 shows three
example questions and the corresponding data sources
providing the answers.

Methods for evaluation
Evaluating CRF for entity recognition Identifying and
labeling entities in the natural-language questions is a
two-step method: In the first step, AskCuebee utilizes a
CRF for identifying the entities and initially labeling them.
In the second step, more specific labels are obtained by
searching portions of an ontology. An efficient implemen-
tation of CRF exists in the Mallet package [69], which was
utilized in AskCuebee. We use 8 initial labels in the train-
ing set obtained from the corpus of 125 questions relevant
to T. cruzi immunology.
In order to evaluate the performance of the CRF, we

perform 5-fold cross validation using the corpus of 125
questions. Each fold consists of 25 questions randomly
selected from the corpus. We report the recall, which is
the proportion of all entities that were correctly identified
and labeled by the method, and the precision, which is the

Table 1 Three example questions among a corpus of 125
questions for training and evaluating AskCuebee. The first
column shows the question and the second column shows the
data sets required to answer the question

Question Data sources involved

Give the KO ID, gene ID, gene
name, researcher notes, and
knockout plasmid IDs for all genes
that have orthologs in T.brucei and
leishmania.

Gene knockout from TRG
Ortholog information from

TriTrypDB and KEGG

Find 5’ forward regions and all
pathways for amastigote stages
with log2 ratio above 1.

Microarray from TRG
Gene knockout from TRG
Pathway from KEGG

What are the metabolic pathways
related to protein group 271 for the
ortholog genes with spectral score
less than 2.0?

Gene knockout from TRG
Proteome data from TRG
Strain creation data from TRG
Ortholog information from

TriTrypDB and KEGG
Pathway data from KEGG

proportion of the identified entities whose labels are cor-
rect. In other words, the latter is a measure of the false
positives. Correct classifications for the terms or phrases
in each question in the corpus were independently identi-
fied by two parasitologists in the Tarleton Research Group
and checked for agreement.

Evaluating string similarity measures for ontology
element matching Initial labeling by the CRF is followed
by a dictionary-based look up method in AskCuebee.
Instead of looking up each noun or verb phrase of the
question in PEO or the data, CRF identifies the enti-
ties and provides an initial set of labels, which are the
upper-level classes and properties in PEO. This helps by
narrowing down the search for more specific labels to the
portion of the ontology which has the initial label as the
root instead of looking up the whole ontology.
In order to select a suitable string matching technique

for use in AskCuebee, we evaluate all five text similarity
measures.
Each of these measures provides a score between 0 and

1 which is considered as the degree of similarity between
two sequences of characters.
This evaluation informs two decisions: The first is to

identify the most appropriate similarity measure for our
context. The second is to find the best threshold for the
similarity score which would then be used to distinguish
between correct and incorrect matches. Consequently, we
evaluate the five similarity measures using five thresh-
olds: 0.5, 0.6, 0.7, 0.8, and 0.9. While considering a higher
threshold may result in more confident matches, we may
fail to pick some of the possible matches; this is reflected
in the recall metric. On the other hand, utilizing a low
threshold may help us retain more possible matches but
it increases the chances of obtaining incorrect matches,
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which is reflected in the precision metric. Consequently,
we analyze the trade off that exists between finding more
possible matches while minimizing the loss of precision.
This trade off is minimized by examining the thresholds
and selecting the measure and threshold which gives the
highest F1 score.
The precision, recall and rejection rates [70] are mea-

sured as follows:

precision = number of correctly matched labels
number of all matched labels

recall = number of correctly matched labels
number of all correct labels

rejection = number of correct dissimilar matches
number of all dissimilar matches

While precision and recall are commonly measured,
the rejection rate is reported infrequently. It informs us
about the false negatives – these are the labels which were
deemed to be dissimilar matches but are correct – and is
informative about the appropriate threshold.
In addition to matching with names of ontology classes

and properties, the similarity measures are used for lexi-
cally matching the recognized entities with rdfs:comment
and rdfs:label of ontology elements as well. This is espe-
cially important for biomedical ontologies where the class
names are often identifiers with the descriptive informa-
tion contained in the label or comment tags. If no lexical
matches are identified in the ontology schema, we look
up the RDF data in the parasite knowledge repository to
find a match with instances (instance matching). As we
explained previously in case (2) for the ontology element
matching component of OntoNLQA, we rank multiple
matches based on how many paths each has with other
labels found in the ontology. The candidate with the most
paths is retained.
For example, in the question:
Find all genes with spectra score greater than 2.
The phrase spectra score is identified as an entity and

initially labeled by the CRF as DATA-COLLECTION.
Subsequently, it is straightforwardly matched to ontology
class, spectral count, using ISUB, which is within the por-
tion of the ontology rooted at data collection. However,
consider the question:
Give the KO ID for genes that are annotated as protein

phosphate.
Note that acronym KO abbreviates knockout. As we

mentioned previously, the interface allows some common
acronyms in questions. The phrase, protein phosphate, is
identified as an entity and labeled by the CRF as PARAM-
ETER. It did not match closely with any ontology class or
property under PARAMETER; instead appearing among
the instances of gene function, which is a class under
PARAMETER. Thus, in this case, AskCuebee employs
instance matching to find the matching ontology class.

An alternative method for matching with instances uti-
lized by previous approaches [21, 71] is to use Apache’s
Lucene indexing [72] to search for the classes that include
terms of the identified entities as their individuals. Lucene
may speed up the ontology instance look-up process.
However, Lucene does not access the RDF data contained
in the RDF triple store. It requires direct access to the
RDF files in order to index and search them. This requires
maintaining another copy of the entire dataset, which we
avoid in AskCuebee.
Previously, we discussed the method for evaluating

lexical matching with ontology schema elements and
instances separately. Next, we combine the two in order to
evaluate the overall performance of this step. We analyze
the precision, recall and F1 measure for matching iden-
tified entities with more specific ontology schema based
labels.

Evaluating semantic association discovery In order to
find the most suitable semantic association discovery
method for T. cruzi data, we evaluate the two approaches
that OntoNLQA suggests from two perspectives: time and
performance. The time evaluation demonstrates the aver-
age time that each approach takes to discover semantic
associations for a set of ontology elements. The perfor-
mance evaluation on the other hand, focuses on calculat-
ing the precision and recall metrics, which are computed
here as shown below. The precision as calculated below is
over all questions.

Precision = number of RDF triples generated that are correct
number of all RDF triples that are generated

Recall = number of questions for which RDF triples generated are correct

total number of all questions that can be answered

Evaluating the full system The performance of each
component in the workflow of AskCuebee affects the per-
formance of the full system. Therefore, we evaluate the
performance of the system as a whole on our corpus of
125 questions using a 5-fold cross-validation and on a new
corpus of 40 questions related to T. cruzi immunology not
made available to the system previously in any way.
As AskCuebee allows user interventions during which

the scientist maymake simple refinements to the output of
variousmethods including the RDF triple query in Cuebee
(see Fig. 11), four scenarios present themselves:

1. Evaluation without any user refinements. This takes
into account the errors of all the components;

2. User intervenes to fix errors in identifying entities.
This evaluation takes into account any error from
succeeding steps such as finding the specific labels for
the entities and discovery of semantic associations;
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3. User intervenes to correct errors in identifying
entities and obtaining correct labels. This accounts
for any error in semantic association discovery.

4. Finally, user intervenes to correct the output of all
components including the final sequence of RDF
triples. With no errors left uncorrected, AskCuebee
offers its best performance.

A disadvantage of linked components in AskCuebee is
that any error early on may propagate. For example, an
error in identifying the correct entity and its label in the
question below propagates throughout the system:
Give the experimental notes for all KO genes in which

their annotated function is protein phosphate.
Let us assume that the CRF identifies the entity,

annotated function, with the label DATA-COLLECTION
instead of PARAMETER. This error is passed on to ontol-
ogy element matching where the incorrect subclass from
PEO, peptide count, instead of gene function is matched
with the entity. Consequently, an incorrect set of ontology
elements are used for discovering semantic associations
leading to an incorrect RDF triple query.
For this evaluation, similar to others, we start with the

corpus of 125 questions. An evaluation of the full system
focuses on the correctness of the answers obtained to the
questions.While 88 of the 125 questions may be answered
based on the data in our repository, the remaining 37
questions do not have any answer in our data. Therefore,
for these we compute precision and recall by utilizing the
correctness of the generated RDF triple query as the ref-
erence standard. AskCuebee (and specifically the CRF) is
trained on 4 folds and tested on the fifth, with each fold
randomly containing 25 questions. We repeat this process
five times by rotating over the folds, to evaluate the system
against all 125 questions.
We calculate the precision as the proportion of the ques-

tions that generate correct answers or queries among the
number of questions that generate some answer or query
(correct or incorrect). The recall on the other hand is
the proportion of questions that produce correct answers
or queries for the questions. Two parasitologists in the
Tarleton Research Group independently identified cor-
rect records in the answers shown in tabular format for
each question. Usually, certain records are expected to be
present in the answer of each question, and often all such
records were present or all were absent. Evaluating the
entire system based on the four scenarios provides us with
valuable insight on how much error from the different
components is propagated throughout the system.

Evaluation of full system on unseen questions We
evaluated the performance of AskCuebee on a corpus
of 40 new questions not seen previously (see Additional
files 1 and 2 for these questions). Similar to the previous

evaluation, we calculate the precision and recall based on
the correctness of answers (if they exist in the data) or
correctness of the generated RDF triple query.

Results and discussion
AskCuebee provides a context within which to imple-
ment OntoNLQA and evaluate the various methods for
realizing each component of the framework. Overall per-
formance of AskCuebee is also evaluated, which provides
an indication of the utility of the framework.

Results from component evaluations
CRF-based entity recognition in AskCuebee obtains an
average precision of 93.29% and an average recall of
91.35%, with the F1 measure of 92.28% across all the
folds. The standard deviation across the folds for precision
is 0.0219, for recall is 0.02523, and for F1 is 0.0170.
In order to evaluate ontology element matching, we first

find the correct labels for the entities identified by the
CRF in each question in our corpus. While 149 entities
were identified, 102 of these had lexical matches with the
classes or properties in PEO.
Tables 2, 3, 4, 5, and 6 demonstrate the results of our

evaluation for different thresholds. In each table, the high-
est scores are marked in bold. The highest recall and F1
score is demonstrated by ISUB for the thresholds 0.5,
0.6, 0.7, and 0.8 though the corresponding precision is
not the best. For the threshold of 0.9 however, Smith-
Waterman based similarity produces higher scores than
ISUB. As the results in Table 3 suggest, ISUB similarity has
the highest F1 score (81.69%) across all of the thresholds
(marked with an asterisk). Therefore, ISUB with a thresh-
old of 0.6 is selected for AskCuebee’s ontology element
matching.
Among the total of 149 entities identified in our corpus

of 125 questions, 47 do not match with elements in the
ontology schema; rather they are matched with instances
using exact lexical matching provided by Virtuoso
SPARQL queries. Here, instance matching displayed a
precision of 78.37%, recall of 70.73% and a combined F1
score of 74.36%.
Next, we present the results of combining the lexical

matching with ontology elements and instances and show

Table 2 Evaluating various similarity measures with a threshold
of 0.5

Similarity measure Precision Recall F1 Rejection

ISUB 81.69 79.45 80.56 99.30

Levenshtein 87.04 64.38 74.02 98.88

SmithWaterman 70.31 61.64 65.69 99.31

Cosine 89.80 60.27 72.13 98.83

Jaccard 90.24 50.68 64.91 98.45
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Table 3 Result of similarity measure evaluation for a threshold of
0.6. The highest F1 measure appears for ISUB at this threshold

Similarity measure Precision Recall F1 Rejection

ISUB 84.06 79.45 *81.69 99.34

Levenshtein 94.87 50.68 66.07 98.46

SmithWaterman 73.77 61.64 67.16 99.18

Cosine 90.24 50.68 64.91 98.45

Jaccard 92.31 32.88 48.48 97.90

the overall performance of this step. Similarly to previ-
ous results, we report the precision, recall and F1 mea-
sure for matching the 149 identified entities with more
specific ontology schema based labels. As we show in
Table 7, ISUB-based matching with both ontology classes
and properties, and instances significantly improves the
performance to an F1 measure of 79.09% compared with
63.39% when just the classes and properties are matched,
and 38.41% when just the instances are matched. As we
may expect, this increase is due to a significant improve-
ment in the recall.
As previous systems predominantly look up the iden-

tified entities in the RDF data to form the triples, we
analyzed our corpus for those questions whose identified
entities formed a triple that could be located in the data.
We found 10 such questions indicating that less than 10%
of the questions may be answered in this simple way.
AskCuebee precomputes the pairwise LCAs for all

classes in PEO using a fast algorithm. As the algorithm
requires the graph to be acyclic while ontology graphs
could be cyclic when named properties are included (see
Appendix B), we first break any cycles in PEO’s ontol-
ogy graph by introducing new nodes using the technique
described previously in OntoNLQA. This increases the
nodes of the graph from 144 (ontology classes) to 1,386.
Transforming the cyclic graph and precomputing the all
pair-wise LCA consumes 15.21 seconds on a high-end
server having a six-core Xeon 2GHz CPU with 32GB of
RAM. Given the precomputed LCAs stored in a look-up
table, we obtain a single LCA between all labeled enti-
ties of a question and find the shortest paths from the
LCA to the ontology classes. For all 125 questions in our

Table 4 Result of similarity measure evaluation for a threshold
of 0.7

Similarity measure Precision Recall F1 Rejection

ISUB 86.15 76.71 81.16 99.31

Levenshtein 93.55 39.73 55.77 98.12

SmithWaterman 74.58 60.27 66.67 98.97

Cosine 91.18 42.47 57.94 98.20

Jaccard 94.44 23.29 37.36 97.57

Table 5 Result of similarity measure evaluation for a threshold
of 0.8

Similarity measure Precision Recall F1 Rejection

ISUB 89.47 69.86 78.46 99.01

Levenshtein 92.59 34.25 50.00 97.95

SmithWaterman 75.00 57.53 65.12 98.79

Cosine 92.31 32.88 48.48 97.86

Jaccard 92.31 16.44 27.91 97.36

corpus, the time consumed in obtaining the sequences
of RDF triples given the LCAs was 126.85 seconds. We
sum the two times and obtain the average time taken
per question, which is 1.14 seconds. Note that the offline
LCA computation is amortized over the questions, and
it’s impact on the time consumed reduces as more ques-
tions are asked. A drawback of precomputing pair-wise
LCAs offline is that if the ontology schema changes, the
pairwise LCAs may change as well and would need to
be precomputed again. When we regenerate the acyclic
ontology graph, we emphasize the relationships that exist
in the RDF data in the form of subject, predicate and
object as these have instances. Therefore, even changes in
the datasets requires recomputing pair-wise LCA.
For the alternative approach, we use AskCuebee’s RDF

store Virtuoso’s query endpoint for path queries. All paths
between each pair of ontology-based labels are found and
their intersection provides the set containing the LCA.
Then, analogously to the previous approach, the short-
est paths are obtained from the LCA to the labels. The
difference from the previous approach is that no offline
precomputation is involved. Obtaining semantic associ-
ations between entity labels in this way consumes an
average of 3.14 seconds per question in our corpus, with
a large proportion of the time consumed by path query-
ing. Clearly, the first approach is more efficient and is
subsequently utilized in AskCuebee.
Table 8 gives the results of evaluating the correctness of

the two approaches using precision, recall and a combina-
tion of the two. In addition to being the quicker of the two,
precomputing the pairwise LCAs results in significantly
better correctness performance.

Table 6 Results of similarity measure evaluation for a threshold
of 0.9

Similarity measure Precision Recall F1 Rejection

ISUB 96.88 42.47 59.05 98.16

Levenshtein 94.44 23.29 37.36 97.57

SmithWaterman 74.07 54.79 62.99 98.58

Cosine 100.00 13.70 24.10 97.28

Jaccard 100.00 15.07 26.19 97.32
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Table 7 Evaluating lexical matching of entities with ontology
schema based elements and instances. Notice the improved
recall when both are performed. We used ISUB for measuring the
similarity

Approach Precision Recall F1

Combined matching with ontology
schema and instances

82.08 76.32 79.09

Matching with ontology schema only 84.06 50.88 63.39

Matching with instances (RDF data) only 78.38 25.44 38.41

In conclusion, the precomputed LCA approach for
semantic path discovery improves over the alternative
approach in both time efficiency and accuracy in the con-
text of T. cruzi. The F1 score for LCA approach is 90.80%
which is significantly higher than the alternative approach
with 77.6% score. The higher difference between the
recall scores of 89.77% for LCA compared to 73.96% for
the alternative approach provides evidence that the alter-
native approach suffers in discovering the RDF triples.
Additionally, precomputing LCA is almost 3 times faster
than the online approach.

Results from full system evaluation
Table 9 summarizes the precision, recall and F1 mea-
sures of evaluating the full system in the four scenarios
described in the previous section. These scenarios pertain
to differing user interventions, which include editing the
entities recognized by the CRF, selecting other labels for
the recognized entities that replace those automatically
found, and editing any component of the RDF triple query
itself.
A difference in F1 measure of 24.1% between scenar-

ios 1 and 3 indicates that correctly identifying entities in
questions and matching these with labels in the ontol-
ogy schema plays a critical role in improving the system
performance. Notice that errors due to incorrectly iden-
tifying entities by the CRF contributes just 3.21% to this
difference. This motivates a focus on the lexical match-
ing component. Errors in semantic association discovery
have an impact on the correctness of answers with per-
formance improving by 4.01% due to correcting for such
errors. This occupies 28.11% of the overall improvement
in performance due to user interventions with corrections

Table 8 Results evaluating different approaches for semantic
association discovery. The F1 score shows the significantly higher
performance of LCA approach (90.80%) compared to the
alternative approach (77.6%)

Approach Precision Recall F1

LCA 91.86 89.77 90.80

Alternative 81.61 73.96 77.60

Table 9 Results of evaluating the full system in four scenarios.
The last scenario is expected to represent the best performance
of AskCuebee while scenarios 1, 2, and 3 include possible errors
from different components of the system

Scenario Precision Recall F1

Scenario 1 69.35 68.8 69.07

Scenario 2 72.58 72 72.28

Scenario 3 93.54 92.8 93.17

Scenario 4 97.58 96.8 97.18

of matched labels contributing the most. AskCuebee cor-
rectly answers 85 of the 125 questions without any user
intervention.

Results on unseen questions
Table 10 presents the results of an evaluation of the full
system on the unseen corpus of 40 questions. AskCuebee
automatically answers 24 questions without any user
intervention with the number increasing to 33 questions
when the scientist corrects for any entity recognition and
ontology element matching errors.

Discussion and limitations
AskCuebee does not limit the questions to a specific set
or templates. Subsequently, the preprocessing does not
match the question to a template. However, its use of
dependency grammar makes it sensitive to the gram-
mar of the question. Therefore, questions exhibiting the
correct grammar are more likely to produce correct
answers. Machine learning based entity recognition typi-
cally requires a large corpus of training data for reasonable
performance. AskCuebee’s focus on a single organism
confines the number of possible types of questions that
are asked. We partially address this issue by combin-
ing machine learning based entity recognition to obtain
abstract labels with lexical ontology look up for specificity.
Of course, ontology classes and properties may not always
provide a match with the recognized entities, in which
case the framework suggests searching the annotated data
for a match. Classes that annotate matched data serve as
more specific labels.
Finding the LCA as a common point between the iden-

tified entities is a general way of obtaining the semantic

Table 10 Evaluation of AskCuebee on the corpus of 40 questions.
These questions are not used in training any part of the system

Scenario Precision Recall F1

Scenario 1 61.54 60 60.76

Scenario 2 64.10 62.50 63.29

Scenario 3 84.62 82.50 83.54

Scenario 4 100 97.50 98.73
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associations between the entities given a transformed
ontology graph. However, we identify four types of ques-
tions for which this approach gives incorrect associations:
questions with negative expressions, questions with com-
plex comparative relationships, questions containing one
ontology entity only, and questions that use complex
query patterns such as nested queries and queries on
groups. As examples of such types, consider the following
three questions:

(1) Find all gene knockout targets in amastigote stage
that have orthologs in Leishmania but not in T.
brucei.

(2) Give the strain summaries for all amastigote genes
that have a standard deviation less than 1.5 of the
log2 ratio.

(3) Show proteins that are downregulated in the
epimastigote stage and exist in a single metabolic
pathway.

Question (1) contains a negation, which is lost in
the association discovery step. Though the interface of
Cuebee allows users to formulate such questions,
AskCuebee is unable to obtain the correct query. Question
(2) contains a relationship that involves comparing with
a function of the values of two classes. While AskCuebee
does not support such complex comparisons, we may
address such comparisons by considering additional
grammar dependencies. However, creating general rules is
difficult because there may be many operations that could
be considered.
In question (2), the user is interested in all the available

data on only one entity, cloned samples. Cuebee requires
at least two entities in order to generate an RDF triple with
an object or data type property between them.
Finally, to formulate question (3) we require utilizing

nested queries, group-by and aggregated functions. In
particular, to answer this question we require a query that
uses Group by to group all the epimastigote genes associ-
ated with a single metabolic pathway (group by genes that
have a pathway count of 1).
Intervening to correct the RDF triple query or enter

a new RDF query can generate answers for some ques-
tions that involve negation and group-by clauses. This is
because the triple query interface Cuebee supports these
operations. In the previously unseen corpus of 40 ques-
tions, 6 had negations in themwhile 1 pertained to a single
concept.

Related works
Several systems allow querying of semantic data anno-
tated using domain ontologies. We may categorize these
into two groups based on how the query is posed: (i)
approaches in this group solicit queries as RDF triples,

or ask users to select points on a graph, or use other
visual representations. In these systems, the scientist must
transform the question in her mind to the representa-
tion sought by the system; (ii) these approaches solicit
questions in their natural form, and minimal, if any, trans-
formation of the question is needed.

Query answering systems
Specific to biomedicine, BioSPARQL [10] facilitates
querying biomedical linked open data. It finds the con-
cepts in the ontology that are lexically most similar to a
phrase provided by the user. A subgraph with the selected
concept in the center and surrounded by related concepts
is formed. The user may select another concept in the sub-
graph and BioSPARQL finds all paths between the two
concepts with a facility to create a more specific query.
BioGateway [73] composes several online ontologies from
OBO foundry [74], GO annotation files [75] and in-house
data sources, and provides a single entry point (gate-
way) to query using SPARQL. Pre-formulated SPARQL
queries are available and may be refined. Analogously,
Cheung et al. [76] provide facilities to integrate differ-
ent semantic data stores in neuroscience, and offer either
SPARQL or SQL query interfaces to access the remote
data.
iSPARQL [8] allows users to select concepts and rela-

tionships in an ontology and connect them using the
provided graphical tools.
NITELIGHT [9] extends iSPARQL by providing a query

design canvas that allows the user to move the elements
around and edit them through menu items.
Hogenboom et al. [77] also offer a visual interface using

a SPARQL-based graphical query language for RDF called
RDF-GL. It uses boxes to represent ontology classes and
arrows for the properties between them. Hogenboom
et al. also use cycles to depict different operations such
as union or Boolean operations for data types. Knowledge
about SPARQL is needed in order to use many of these
systems.

Natural language question answering systems
Systems in this category accept queries expressed as nat-
ural language questions, and utilize ontologies in the pro-
cess of analyzing the question and returning answers from
RDF data stores that subscribe to the ontology. Therefore,
the scientist need not learn the vocabulary or structure
of the underlying ontology, unlike the systems discussed in
the previous subsection. Lopez et al. [78] provide a survey
of semantic question answering systems.
Closely related to AskCuebee is AquaLog [19] which

utilizes the well-known general architecture for text engi-
neering (GATE) [79] and the Java annotations patterns
engine (JAPE) to tokenize and tag phrases in the question
with parts of speech annotations.
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These annotations are used to create linguistic triples
each consisting of the subject, relationship and object.
AquaLog then maps the triples to concepts and prop-
erties in the ontology using lexical matching assisted by
WordNet. AquaLog is evaluated on two distinct data sets
[80, 81] using 69 and 68 questions, respectively, and
reported a 58% and 69.11% success rate in answering the
questions (without user intervention).
A recent extension of AquaLog [82] provides support

for multiple ontologies and larger data. OntoNLQA’s use
of the LCA to form queries that make intuitive sense dis-
tinguishes it from AquaLog, which directly forms a group
of triples from the question, and contributes to a better
precision.
LifeQA [83] proposes to build SPARQL queries from

natural language questions in the context of the life sci-
ences. Based on an analysis of 14 questions from the 2007
TREC genomics track [84], Kim et al. suggest a 5-step pro-
cess: named entity recognition, parsing, targeting, condi-
tioning, and encoding. In agreement withOntoNLQA, Kim
et al. suggest that finding shortest paths between impor-
tant entities detected from previous steps is sufficient to
encode a SPARQL query for the original question. How-
ever, no approach is proposed and no prototype system
exists to the best of our knowledge.
Guided-input natural language question-answering,

GINSENG [11], relies on a simple question grammar,
which is extended using the ontology schema to guide
users to directly formulate SPARQL queries. Evaluation
on multiple datasets, not in the biomedical domain,
demonstrates that the system achieves very high preci-
sion of 97% and more due to its direct use of the ontology
in posing the question, but poor recall of 40% or less.
SemanticQA [21] shares its approach with GINSENG by
providing a facility to assist users in constructing their
question as they type. It presents valid suggestions in
the universe of discourse of the selected ontology, whose
content has been previously indexed with Lucene [72].
Linguistic triples are extracted from the question and
searched in the RDF data; those that are incomplete are
referred to Web documents (e.g., PubMed) to complete
them. A small scale ad-hoc test performed with only
8 samples of simple factoid questions using the Lehigh
University Benchmark ontology yielded 63% precision,
and 6 sample queries using the SwetoDBLP ontology
yielded 83% precision. Neither GINSENG nor Seman-
ticQA perform path finding instead simply forming a
group of RDF triples, which constitute the SPARQL query.
NLP-Reduce [20] treats natural language questions as a

bag of words and differs by making reduced use of lin-
guistic processing; it utilizes just stemming. NLP-Reduce
matches the bag of words from a parsed question to the
synonym-enhanced triples stored in a lexicon and gener-
ates SPARQL statements for those matches. All the triples

for which at least one of the question words occurs as
an object, property or literal in the triple are retrieved,
and it seeks to form a chain of triples which covers the
entire question. This approach differs from OntoNLQA’s
approach of finding the LCA in order to form a sequence
of RDF triples. Of course, not all relationships are explic-
itly stated in a question. Consequently, NLP-Reduce often
finds it difficult to form the correct chain. Kaufmann
et al. [85] evaluated NLP-Reduce on the same non-
biomedical datasets as GINSENG leading to a high preci-
sion and improved recall.
Another system in this category is FREyA (feedback,

refinement and extended vocabulary aggregation) [86],
which is a knowledge-based question answering system
that incorporates ontology reasoning and syntactic pars-
ing. Questions are parsed to produce parse trees using
GATE and OntoRoot Gazetteer [79]. Nodes in the parse
trees are matched with ontology elements and genera-
tion of the final SPARQL query solely depends on the
matched ontology concepts rather than a semantic asso-
ciation between the concepts. Therefore, the system fails
to generate an answer if a required property is not men-
tioned in the original question. Nevertheless, an evalua-
tion on 250 geographical questions resulted in a precision
and recall of 92.4%. As wementioned previously, less than
10% of the questions in our corpus exhibit triples that are
directly found in the data.

Conclusion
In this article, we introduced a new framework for
ontology-based question answering.OntoNLQA offers five
steps in order to answer natural language questions.
OntoNLQA may be utilized for any domain that is sup-
ported by one or more ontologies. As we show in this
article, selection of specific methods to realize the compo-
nent approaches involves evaluating them in the context
of the specific ontologies and RDF data that is available.
The primary contribution of OntoNLQA is its capability

of modeling the semantics of the question and mapping
them to the semantics of the annotated data model (ontol-
ogy and RDF triples), in order to generate computational
queries for retrieving the answers. Moreover, in designing
the framework, we are cognizant of the fact that the sci-
entist may have no prior knowledge about the underlying
ontology’s design and its structure. As a result, another
contribution of our approach is its hiding of the complex-
ity of the ontology schema and the query language from
the scientist.
We applied OntoNLQA in the context of T. cruzi para-

site research, resulting in AskCuebee. We evaluated var-
ious alternative methods in order to realize each step
in AskCuebee. Additionally, we performed a comprehen-
sive evaluation of the system as a whole and discussed
the effect of errors in each component on the overall
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performance of the system. In comparison to previous
systems, AskCuebee differs in how some of the methods
are realized. Main conclusions from these evaluations are
listed below:

1. Lexical similarity measure, ISUB, demonstrates
matching performance better than many other
measures, making it well suited for use in ontology
element matching.

2. Precomputing all-pairs LCA is significantly quicker
and improves correctness compared to the online
path query approach.

3. Matching recognized entities from questions with
ontology classes, properties and data for specificity
significantly improves performance of the system.

4. Automatically recognizing key entities in questions
followed by identifying related concepts in ontologies
and finding the associations between them using
LCA allows answering 68% of the questions, which
indicates that this approach performs well.

5. Through these evaluations and an understanding of
the methods, we identified four types of questions,
which may not be answered by AskCuebee.

We have prioritized supporting questions with nega-
tions and aggregate operators as the next step in future
work.

Appendix A
Background on CRF
CRFs are undirected statistical graphical models that
compute the conditional probability of values on output
nodes given values assigned to input nodes. In special
cases, the input nodes of the model are linked by edges
in a linear chain under the first-order Markov assump-
tion such that the distribution over a node is conditioned
on the value of the previous node only and not the entire
history. We may view these linear-chain CRFs as condi-
tionally trained finite state machines. Figure 13 illustrates
the graphical representation of CRFs.
Let o = 〈o1, o2, ..., on〉 be a sequence of observed input

data of length n, such as a sequence of words in a sen-
tence. Let S be a set of finite state machine states with
corresponding labels, l ∈ L. Examples of labels in our con-
text include process, data collection and agent, which are
the higher-level classes in the hierarchy of PEO. Let s =
〈s1, s2, ..., sn〉 be the sequence of states in S that correspond
to the labels assigned to words in the input sequence, o.
The linear-chain CRF defines the conditional probability
of a state sequence given an input sequence as:

P(s|o) = 1
Zo

exp

⎛
⎝

n∑
i=1

m∑
j=1

λjfj(si, si+1, o, i)

⎞
⎠ (1)

Fig. 13 The graphical representation of linear-chain CRFs containing
feature functions

where Zo is a normalization factor over all the state
sequences, fj(si−1, si, o, i) is a function that describes fea-
tures (see Fig. 13), m is the total number of feature func-
tions, and λj is the learned weight for each of the feature
functions. A feature functionmay be defined to have value
0 in most cases and value 1 in other cases. For example,
Table 11 gives a list of the orthographic features used in
training the CRF.

Appendix B
An efficient algorithm for computing LCA
Baumgart et al. [87] proposed an efficient method for
finding LCAs in a directed acyclic graph. Other meth-
ods such as using a range-minimum query [88] also
exist. Baumgart’s algorithm utilizes the concept of short-
est ancestral distance between two nodes in a graph. For

Table 11 List of orthographic features used in training the CRFs
model

Orthographic feature Regular expression

HASDASH .*-.*

INITDASH -.*

ENDDASH .*-

INITCAPS [A-Z].*

INITCAPSALPHA [A-Z][a-z].*

REALNUMBERS [-0-9]+[.,]+[0-9.,]+

NATURALNUMBER [0-9]+

ALLCAPS [A-Z]+

CAPSMIX [A-Za-z]+

DIGIT .*[0-9].*

SINGLEDIGIT [0-9]

DOUBLEDIGIT [0-9][0-9]

GENEPATT .*[tbglmjfrnix0-9]+[.][0-9]+.*

DNASEQUENCE [ACTG]+

HASROMAN .*\\b[IVXDLCM]+\\b.

ROMAN [IVXDLCM]+
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Fig. 14We avoid cycles in the graph by splitting a node. In the subgraph (a) an edge, transformation of, between two nodes, parameter and data
collection, causes a cycle. Subgraph (b) shows the edge, transformation of, is added between parameter and a new node with a similar name, data
collection_1

every node pair, x and y, the algorithm finds a list of all
nodes, C, where for every c ∈ C, sum of distance(c, x) and
distance(c, y) is minimal. This method is themost efficient
so far to the best of our knowledge.
A complication is that Baumgart et al.’s algorithm works

on directed acyclic graphs only while ontologies are often
cyclic graphs when the named properties are considered.
Therefore, we must convert the ontology graph into a
directed acyclic graph with no loss of information. The
framework transforms a cyclic graph into a acyclic one
while retaining the information from the cyclic graph.
The graph is regenerated; a cycle is detected by remem-
bering the previously generated nodes, and the repeated
node that causes the cycle is split into two nodes with no
edge between them (see Fig. 14 for illustration). A nam-
ing convention for the newly created nodes is utilized to
remember that these split nodes constitute a single par-
ticular node in the original ontology. We must remember
these nodes to avoid creating excess ones. Specifically, a
node deemed to be repeated is checked if it has been
split previously. If so, then the edge may be added to
the split node if no cycle results. Note that multiple
LCAs may exist between two classes and each of these is
computed.
The LCA algorithm builds a table of n × n dimensions

where n is the number of classes in the ontology. Each
cell of the table contains all possible LCAs between the
corresponding ontology class pair. If we index the class
pairs, we may retrieve the LCAs in near-constant time.
The table would be regenerated when there is a change in
the ontology schema.

Endnotes
1AskCuebee is available for use at http://jade.cs.uga.edu.
2Note that no publicly available corpus of questions on

parasite research exists in our knowledge.

Additional files

Additional file 1: Question list 1. This file contains the corpus of 125
questions related to parasite immunology research. It is utilized for the
five-fold cross validation.

Additional file 2: Question list 2. This file contains the corpus of 40
questions related to parasite immunology previously unseen by the
system. It is utilized in the evaluation of the system.
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