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Abstract

Background: The Cell Ontology (CL) is an OBO Foundry candidate ontology covering the domain of canonical,
natural biological cell types. Since its inception in 2005, the CL has undergone multiple rounds of revision and
expansion, most notably in its representation of hematopoietic cells. For in vivo cells, the CL focuses on vertebrates
but provides general classes that can be used for other metazoans, which can be subtyped in species-specific
ontologies.

Construction and content: Recent work on the CL has focused on extending the representation of various cell
types, and developing new modules in the CL itself, and in related ontologies in coordination with the CL. For
example, the Kidney and Urinary Pathway Ontology was used as a template to populate the CL with additional cell
types. In addition, subtypes of the class ‘cell in vitro’ have received improved definitions and labels to provide for
modularity with the representation of cells in the Cell Line Ontology and Reagent Ontology. Recent changes in the
ontology development methodology for CL include a switch from OBO to OWL for the primary encoding of the
ontology, and an increasing reliance on logical definitions for improved reasoning.

Utility and discussion: The CL is now mandated as a metadata standard for large functional genomics and
transcriptomics projects, and is used extensively for annotation, querying, and analyses of cell type specific data in
sequencing consortia such as FANTOM5 and ENCODE, as well as for the NIAID ImmPort database and the Cell
Image Library. The CL is also a vital component used in the modular construction of other biomedical
ontologies—for example, the Gene Ontology and the cross-species anatomy ontology, Uberon, use CL to support
the consistent representation of cell types across different levels of anatomical granularity, such as tissues and
organs.

Conclusions: The ongoing improvements to the CL make it a valuable resource to both the OBO Foundry
community and the wider scientific community, and we continue to experience increased interest in the CL both
among developers and within the user community.
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Background
The Cell Ontology (CL) was initially developed in 2004
with the goal of representing knowledge about in vivo
and in vitro cell types [1]. Cells are a fundamental unit
of biology, and most other entities in biology have direct
relationships to identifiable cell types, for example par-
ticular proteins being produced by unique cell types, tis-
sues and organs containing specific combinations of cell
types, or biological processes being dependent on par-
ticular cell types. Cells therefore are an obvious set of
entities to represent ontologically, and provide a useful
pole for organizing and driving data acquisition and ana-
lysis in biology.
The content in the CL is populated via gradual and en

masse class additions, most notably through several rounds
of improvements to representation of hematopoietic cells
in the ontology [2–4]. Originally, the CL was designed to
include cell types from all major model organisms includ-
ing both plants and animals [1]. However, as a result of
community interest and severe resource limitations, con-
tinuing development of the CL currently focuses primarily
on vertebrate cell types. The CL provides general classes
that can be used for other metazoans (muscle cell, neuron),
and the ontology can be extended in species-specific
ontologies.
The CL is built according to the principles established

by the OBO Foundry [5] and is the designated candidate
ontology for metazoan cell types within the Foundry.
The domain and content of CL is intended to be orthog-
onal to other Foundry ontologies to allow for the con-
struction of compositional classes via logical definitions,
as exemplified by the Gene Ontology (GO) [3, 6–8].
Work on the CL over the past several years has re-

sulted in many improvements in the ontology’s structure
and content. As described below, cooperation among a
number of working groups has resulted in a modular ap-
proach to improving the CL, and continued enhance-
ment of logical definitions in the CL have increased its
integration and interoperability with other ontologies as
well as enhancing its utility for data analysis.

Construction and content
Editorial management of the CL
The CL is maintained primarily by a small group of editors
(ADD, YB, MH, DOS, CVS, NV, CJM), working in con-
junction with interested parties from the ontology commu-
nity. The editors use biweekly teleconferences to discuss
significant issues related to CL ontology development.
Because the CL has not been directly funded in recent
years, most efforts are contributed as part of other pro-
jects and reflect the cooperative efforts of ontology de-
velopers and users based in different communities,
such as the Gene Ontology Consortium [8, 9], the Im-
munology Database and Analysis Portal (ImmPort)

[10], the Human Immunology Project Consortium
(HIPC) [11], the Phenoscape project [12, 13], the Monarch
Initiative [14], and model organism databases such as the
Zebrafish Model Organism database (ZFIN) [15] and
Mouse Genome Informatics (MGI) [16]. Consequently
term creation occurs at an uneven pace, based on requests
and editor availability. Over the past few years, we have
received approximately 3–5 term requests per month.
Most requests are accommodated in 1–3 months. The
CL is released on an ad hoc basis, with new releases 5–6
times per year.
We welcome involvement of the community on par-

ticular domain specific developments, as has been done
with kidney cell types (see below) and with immune cell
types through our continuing collaboration with HIPC.
Collaboration with the larger biological and biomedical
community occurs both through our issue tracker and
through direct contacts with any of the editors.

Cell types in CL
As of June 2016, The CL contains approximately 2,200
classes, compared with 1534 at the time of our last report
[3].The relative distribution of number of cell types among
categories remains relatively constant, with one of the most
well-represented being the hematopoietic cell branch, as
described in [2–4], currently totaling 575 classes. Although
the size of this branch has remained relatively constant, the
content is continually refined and improved. For example,
many of the original hematopoietic cell definitions are be-
ing reviewed and generalized to be applicable beyond
mouse and human.
One area of expansion has been kidney cell subtypes,

resulting from collaboration with the Kidney and Urinary
Pathway Ontology (KUPO) project [17] as well as the Gene
Ontology [18]. This has resulted in the addition of 125 new
classes to represent kidney cell subtypes.
Over 400 cell types were added by generalizing

human-specific classes from the Foundation Model of
Anatomy (FMA) [19, 20]—many of these were compos-
itional classes that we enhanced by adding both textual
definitions and logical definitions connecting to Uberon.
An example is ‘epithelial cell of thyroid gland’
(CL:0002257, FMA:0002257), logically defined as ‘endo-
epithelial cell’ and (part of some thymus) [20].

New and revised skeletal cell types
Work on the Vertebrate Skeletal Anatomy Ontology
(VSAO), a unified ontology for the representation of
skeletal cells, tissues, biological processes, organs, and
subdivisions of the skeletal system [21], resulted in mod-
ifications to 13 existing cell types in the CL to ensure
that the classes applied across vertebrates, and the
addition of 18 new cell types. New relationships between
cell types and skeletal tissues were also added, in
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addition to developmental relationships between skeletal
cell types. These improvements enable broader queries
on skeletal diversity across different biological scales.
Improvements in the representation of skeletal tissues,
organs, and subdivisions of the skeletal system have
since been incorporated from VSAO into the Uberon
multi-species anatomy ontology [22], and the logical def-
initions of associated cells to refer to the Uberon classes.

Extending the CL to encompass vertebrate diversity
An ongoing challenge in developing the CL is to in-
crease the number and granularity of cell types repre-
sented for well-studied species such as mouse and
human, while providing high level classes needed for the
representation of cell types in non-mammalian verte-
brates. To ensure that CL classes are applicable to non-
mammalian vertebrates two courses of action have been
necessary: 1) add non-mammalian classes to the CL; 2)
ensure that general cell type definitions do not uninten-
tionally exclude certain organisms. Examples of non-
mammalian cell types that have been recently added to
the CL include the pigmented cells ‘iridoblast’
(CL:0005001) and ‘xanthoblast’ (CL:0005002) [23], and
the ‘Kolmer-Agduhr neuron’ (CL:0005007) [24]. Ensur-
ing that classes are applicable across species is a multifa-
ceted problem and includes optimizing of cell type
definitions, as well as (ideally) crafting class hierarchies
that incorporate non-mammalian cell types from

inception. Cell type definitions can unintentionally ex-
clude non-mammalian vertebrates by including mamma-
lian specific anatomical structures or by including
species-specific proteins in the logical definition. At the
same time, highly specified cell types for particular taxa
are needed to enable querying of complex data using the
CL. By adding less specific intermediate classes with in-
clusive definitions, such as multi-ciliated epithelial cell
(CL:0005012), the CL can be used by a wide variety of
model organism databases and evolutionary biologists
for data annotation, while serving the needs of sophisti-
cated bioinformatics analyses focused on cell types of
medical interest.

Improved delineation of content and coordination with
other ontologies
The primary focus of CL is to describe in vivo cell types
[3], and while the priority of CL curators has been on in
vivo cell types over the past few years, the ontology does
in fact include a branch for in vitro cells. In order to
clarify the representation of the domain of all cell types,
representatives of the CL, Cell Line Ontology (CLO)
[25], Reagent Ontology (ReO) [26], the Gene Ontology
[9], and Ontology for Biomedical Investigations (OBI)
[27], have agreed that the root class ‘cell’ (CL:0000000)
in CL should be regarded as the root of all cell type clas-
ses in OBO Foundry ontologies (Fig. 1), and is equiva-
lent to the GO class ‘cell’ (GO:0005623). As a result,

cell

mortal cell line cellimmortal cell line cell

cell line cell primary cultured cell

cultured cell

experimentally modified cell in vitro

experimentally modified cell cell in vitro native cell

(inferred)

Fig. 1 High level cell types in CL and related ontologies. The hierarchy of high-level cell types is shown. CL nodes: green, ReO: blue, CLO: orange
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changes were made to the upper level classes, to allow
for a modular approach that represents in vivo and ex
vivo cells types more accurately. Two of the children of
the root class ‘cell’ are ‘cell in vitro’ (CL:0001034), and
‘native cell’ (CL:0000003) (which was formerly known as
‘cell in vivo’). The definition for ‘native cell’ reads as
follows,

A cell that is found in a natural setting, which
includes multicellular organism cells 'in vivo' (i.e. part
of an organism), and unicellular organisms 'in
environment' (i.e. part of a natural environment).

This definition reflects the fact that while cells of
multicellular organisms are naturally considered ‘in vivo’
in their native state, single celled organisms often inhabit
environments that are not part of another organism, and
thus are not “in vivo” in that sense. The naturally occur-
ring in vivo cell types of multicellular organisms are
therefore properly considered subtypes of ‘native cell’.
Another agreed upon change in CL is that the classes

‘cell line cell’, ‘immortal cell line cell’, and ‘mortal cell line
cell’ were deprecated (i.e., made obsolete) in CL and re-
placed with equivalent classes from CLO (see discussion
below and Sarntivijai et al. [25] for additional details). As
CLO specifically represents cell line cells, it seemed ap-
propriate for CLO to contain its own root class and
high-level cell type classes, and for the CLO developers
to assume editorial control for these classes. Where
needed, these three CLO classes were imported into CL
using the MIREOT method [28, 29] to support existing
annotations to these classes, and users of these classes,
primarily MGI [16], were informed well in advance of
these changes.
Similarly, ReO [26] contains the class ‘experimentally

modified cell’ (Fig. 1) and a variety of related classes
such as ‘genetically modified cell’ and ‘experimentally
modified multicellular organism cell in vivo’. These cell
type classes most commonly denote reagents of some
type and fall outside of the domain of the CL proper,
and clearly are within the domain of ReO.
Plant cell types and insect cell types are now han-

dled independently of the CL as separate modules.
The Plant Ontology (PO) has recently undergone new
developments and the PO team has taken responsibil-
ity for curation of all plant cell type classes [30]. Con-
sequently, all plant cell type classes in CL have been
made obsolete. These plant cell types classes in the CL
were already duplicates of existing PO classes, and
were thus redundant and confusing to users. PO cell
type classes may be imported into an extended version
of CL as an OWL import in the future, retaining their
PO IDs. [31]. A similar process is already used to cre-
ate a pan-metazoan version of CL as part of the

Uberon release process [32]; this will be extended to
include Viridiplantae.
While the CL continues to represent a number of high

level insect cell types, the Drosophila Anatomy Ontology
(FBbt) contains cell types for many insect cell types not
represented in CL, particularly insect neurons [33–35].
Similarly, the Zebrafish Anatomy Ontology (ZFA) also
contains neuron types not represented in CL [36]. Going
forward, the general approach is that non-mammalian
species-specific cell types will be represented as is_a
children of the appropriate CL parent in the species-
specific anatomy ontology when such an ontology exists.
The CL will continue to maintain general cell types for
representation of non-mammalian cells where no separ-
ate resource or ontology exists and will remain the prin-
cipal ontology for the representation of mammalian cell
types.
As described above, the root class ‘cell’ (CL:0000000)

in CL is declared to be logically equivalent to the GO
class ‘cell’ (GO:0005623), within the Cell Ontology.
While this arrangement mostly works for practical use
of the CL, a long class proposal has been to deprecate
‘cell’ (CL:0000000) and simply make the GO class ‘cell’
(GO:0005623) to be the root of the Cell Ontology. How-
ever, there are still some minor differences in the way
the two classes are defined, and questions about whether
the Gene Ontology with its orientation to describing
‘normal’ or physiological biology should provide the CL
root node ‘cell’, whose subtypes include tumor cell types,
cell line cell types, and other experimentally modified
cell types. This issue awaits additional discussion with
the Gene Ontology Consortium and other interested
parties.

Natural Language and Logical Definitions in CL
The proportion of classes with natural language defi-
nitions has remained relatively constant, with a cover-
age of 82 % in both 2011 and the present. We still aim
to boost this proportion to have 100 % coverage. The
last five years have seen general improvements in lo-
gical axiomatization—in 2011 we reported the number
of classes with defining equivalence axioms (logical
definitions) to be 340, this number has increased to
1534, added through both manual and automated
methods [3, 20].
The set of ontologies imported into the CL to provide

logical definitions remains constant, and consists of
Uberon [22, 37], Protein Ontology (PRO) [38], GO [9],
the Chemical Entities of Biological Interest (ChEBI)
ontology [39], and the Phenotypic And Trait Ontology
(PATO) [40]. Some classes make use of a variety of clas-
ses in the same axiom, such as ‘T-helper 1 cell’, which in-
cludes a mix of relations to both PRO classes and GO
classes (Fig. 2).
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Improvements to nervous system cell types
In order to improve the representation of neurons and re-
lated cell types, we adopted the relations and methods ori-
ginally developed from the Drosophila Anatomy Ontology
[34, 35]. These include synapsed_to and has_synaptic_ter-
minal_in, used to capture connectivity of neurons to each
other and larger anatomical structures. We aim to coalesce
with other neuron-specific vocabularies and ontologies, in
particularly those that were part of the Neuroscience Infor-
mation Framework (NIF) Standard suite of ontologies [41].
The analogous task has already been performed for neuron
parts [42], and the gross neuroanatomical structure subset
of NIFSTD has been incorporated into Uberon. As an ini-
tial task, we have aligned the contents of NIF-Cell with the
CL by matching up identical or similar classes in the two
hierarchies to identify gaps in both ontologies and differ-
ences in the ontologies’ structures. We will then define
standard patterns for neuronal cell types, and import miss-
ing neuron cell types from NIF. In order to synchronize
with the corresponding Neurolex wiki system, we have de-
veloped an approach for translating the Neurolex semantic
wiki into OWL [43].

Recent improvements in CL development methodology
The CL was originally developed using the OBO-Format
and the OBO-Edit ontology editor [1, 44], without any

automated quality control, release pipeline or automated
procedures for building the ontology. We previously re-
ported on improvements to this methodology, specific-
ally leveraging the OWL2 ontology language [45] and
associated tooling such as OWL reasoners, and the Pro-
tégé 5.x editor [20, 46].
We have made further changes and improvements to

the ontology engineering framework we use. Previously,
the editors’ version (source code) for the ontology was
in OBO-Format, necessitating a conversion to OWL step
prior to reasoning and debugging in Protégé. We have
since switched the editors’ version to be in OWL, simpli-
fying the procedure for working with the OWL stack of
tools (note that we still produce editions in OBO-
Format along with every release, as many bioinformatics
tools still rely on this format). This switch also gives us
greater flexibility for expressing concepts using the
richer constructs available in the OWL language.
We have also implemented a TermGenie [47] instance,

available at cl.termgenie.org. This provides a wider com-
munity of users a web frontend for instant provisioning
of new classes, either conforming to pre-defined tem-
plates (i.e. design patterns), or templateless free-form ad-
ditions. Currently the only design pattern implemented
is a simple ‘part-whole’ template for the addition of clas-
ses like ‘epithelial cell of forearm’. One of the main users

Fig. 2 Logical definition for ‘T-helper 1 cell’ (CL:0000545). The logical definition for the cell type ‘T-helper 1 cell’ as presented by the Protégé
ontology editor. The logical definition uses imported classes the Protein Ontology (‘T-box transcription factor TBX21’, PR:000001835; ‘C-X-C
chemokine receptor type 3’, PR:000001207; and ‘C-C chemokine receptor type 6’, PR:000001202) and the Gene Ontology (‘interferon-gamma
production’, GO:0032609). Note some anonymous ancestor classes are not shown due to space considerations
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of the TermGenie instance has been the curators of the
ENCODE project (see below).
We make use of the Jenkins Continuous Integration sys-

tem, as developed and implemented by the Gene Ontology
Consortium, for quality control and validation [8, 48]. This
system alerts the editorial team if changes are made that
inadvertently introduce logical, terminological, or struc-
tural errors into the ontology (for example, a cell that is lo-
cated in two disconnected locations, or two cell classes
that share the same name). We are in the process of
switching to Travis-CI as this provides more direct integra-
tion with the GitHub system, where we manage the ontol-
ogy. This system is also used to generate releases, creating
a package of ontology files in OWL2 and OBO formats
that are pre-reasoned and in some cases simplified for leg-
acy use for systems that do not support logical definitions
(See Table 1 for listing of available CL files).
In the time since we last published on CL, we have mi-

grated the source repository we use to manage the
ontology on two occasions. We originally migrated from
SourceForge to GoogleCode; some time later, Google an-
nounced the retirement of GoogleCode, so we then
followed many other ontologies and migrated to GitHub,
where the source now resides [49]. Note however that
most users of the CL do not interact with GitHub dir-
ectly, and retrieve the ontology from the URLs provided
in Table 1. Class requests and other inquiries for the
ontology developers should be made through the CL
issue tracker [50]. We have deprecated the older issue
trackers on SourceForge and GoogleCode, and we mi-
grated the tickets on these systems to GitHub.
While this migration process caused some disruption,

this is compensated by efficiencies afforded by the
GitHub system—for example, the ability to link edits on
the ontology to tickets. The GitHub release mechanism
also works well for ontology releases. One feature we
hope to deploy this year is the ability to move to a
GitHub-flow style of development, allowing external edi-
tors the ability to make ‘pull requests’ on the ontology,
with complete validation being performed by Travis.

Utility and discussion
Use of CL classes in development of other ontologies
Cells are central to understanding biology from the mo-
lecular to the organismal level, and the CL is increasingly
useful as a tool for representing and organizing cell types
and data related to cell types in a variety of projects. As the
designated ontology for the representation of cells in the
OBO Foundry, the CL is used in a number of ontologies
for the development of compositional classes via logical
definitions. Gene Ontology developers have long employed
the principle of “cross-product” class development, in
which two classes from different ontologies are combined
to make a more expressive “pre-composed” (or “compos-
itional”) ontology class [6–8]. The class ‘neuron differenti-
ation’ (GO:0030182), for instance has the logical axiom
'cell differentiation' and (results in acquisition of features of
some ‘neuron’), where ‘neuron’ is a CL class. As GO devel-
opers continue to implement logical definitions for cross-
product classes, they have increasingly needed new cell
types in CL for use in these logical definitions. In order to
facilitate this process, GO ontology developers have been
trained in CL ontology editing as well and are now making
direct contributions to the CL. An extended version of the
GO that includes a subset of the CL together with linking
axioms is available [51].
Development of the Cell Line Ontology (CLO) has ref-

erenced CL cell types and the hierarchy of the CL [25].
In CLO, all cell line cells are under the CLO class ‘cell
line cell’, which is a child of CL ‘cultured cell’. Initially,
CLO listed over 30,000 cell line cells immediately under
the parent class ‘cell line cell’. To better identify the rela-
tions among different cell line cells, CLO generated
many intermediate cell line cell classes (e.g., ‘immortal
epidermal cell line cell’ and ‘immortal keratinocyte cell
line cell’) based on a basic relation design that a CLO
‘cell line cell’ is derived from a CL ‘cell’, for example,
CLO ‘immortal epidermal cell line cell’ derives_from
some ‘epidermal cell’, and CLO ‘immortal keratinocyte
cell line cell’ derives_from some ‘keratinocyte’. In CL, the
class ‘epidermal cell’ is a parent of ‘keratinocyte’. Based
on this CL hierarchical definition, CLO automatically in-
cludes a logical definition that ‘immortal epidermal cell
line cell’ is a parent of ‘immortal keratinocyte cell line
cell’. In total over 130 CL classes were imported to CLO
with the hierarchy of the CL informing CLO structure.
These newly generated CL-matched CLO classes were
then used as parent classes for the over 30,000 cell line
cells in CLO to layout an improved hierarchy of the cell
line cells [25].
Interactions between different ontologies in the scope

of biological cells can become complicated as we imple-
ment a thorough and precise representation of know-
ledge in this domain. As described above, CLO’s ‘cell
line cell’ is a subclass of CL’s ‘experimentally modified

Table 1 CL Ontology Files

File pre-
reasoned

with external
ontology classes

PURL

cl-edit.owl no yes N/A

cl.owl yes yes http://purl.obolibrary.org/obo/
cl.owl

cl.obo yes yes http://purl.obolibrary.org/obo/
cl.obo

cl-basic.owl yes no http://purl.obolibrary.org/obo/
cl-basic.owl

cl-basic.obo yes no http://purl.obolibrary.org/obo/
cl-basic.obo
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cell in vitro’ where ‘experimentally modified cell in vitro’
is inferred as a subclass of ReO’s ‘experimentally modi-
fied cell’. The correct relationships among these related
classes are only seen when all have been loaded into
Protégé and a reasoner has been run. This degree of
interrelatedness and complexity is becoming more com-
mon in bio-ontology practice, and demonstrates the
needs for effective communication within the commu-
nity. Being the center of interactions in situation like
this, the CL has acted as the facilitating moderator of
this kind of communication.
CL development allows for modular development of

species-specific extensions. These extensions enable the
creation of very granular cell types defined in ways that
are unique to a particular species or limited to a subset
of species. However, many cell types can be generically
defined across species, and the CL provides the appro-
priate OBO ontology for their representation. In order
to allow for comparison and integration of cell type spe-
cific data between species, species-specific cell types
should always be subtypes of generic CL cell types.
While development of modular extensions to CL is en-
couraged, the well-developed hierarchy of classes in the
CL provides a valuable resource for data annotators
working in species who do not have time or resources to
develop CL extensions.
As examples of this methodology, developers of

species-specific anatomy ontologies such as the Zebra-
fish Anatomical Ontology (ZFA) [36] and the Xenopus
Anatomy Ontology (XAO) [52] have extended the CL by
incorporating species-specific cell classes as is_a chil-
dren of CL classes in their ontologies. This strategy al-
lows ontologists to make species-specific classes that are
is_a children of the appropriate CL class for use in data
annotation at model organism databases. The integration
of the CL with the species-specific ontologies also allows
the CL classes to be used in phenotype and expression
annotations at ZFIN [15] and expression annotations at
Xenbase [53].
As ontologies such as the Infectious Disease Ontology

(IDO) [54] or the Neurological Disease Ontology [55]
are developed, CL classes are being used to represent in-
formation such as viral tropism or neurons affected in
Parkinson’s disease. As with the GO, there is communi-
cation between developers of related biomedical ontol-
ogies that contribute to the development of both. The
CL is also a component of the Experimental Factor
Ontology (EFO), used to provide descriptions of experi-
mental variables in databases at the European Bioinfor-
matics Institute [56].
The CL is also being used far more extensively in the

GO, in particular the GO has added a way to provide
additional cellular context to gene associations using a
mechanism called “annotation extensions” [57]. These

cross-ontology linkages are used by a number of model
organism databases in GO annotation and visible in
AmiGO—for example, the page for ‘neuron’ includes
GO annotations for neuronal parts [58].

Use of the CL as Metadata in ENCODE and FANTOM5
Projects
Two major projects studying gene expression have uti-
lized the CL as part of their data analysis pipelines. The
Encyclopedia of DNA Elements (ENCODE) Consortium,
which is funded and organized by National Human Gen-
ome Research Institute (NHGRI), aims to discover and
define the functional elements encoded in the human
genome [59]. ENCODE investigators are utilizing a pri-
oritized set of various cell types to complete annotations
about genes and their RNA transcripts and transcrip-
tional regulatory regions and have developed data stan-
dards that utilizes the CL, among other ontologies, to
describe the metadata for cell types used and experimen-
tal assays [60, 61].
The value of the CL for data integration and analyses

was adeptly demonstrated in a recent series of notable
papers from the FANTOM5 Consortium, which relied
in part on the CL for large-scale data analyses of tran-
scriptional start sites [62], enhancers [63], and waves of
transcription in differentiating cell types [64]. The FAN-
TOM5 Consortium utilized the CL as a component of
the FANTOM Sample Ontology, in combination with
Uberon, the Disease Ontology and the EFO to identify
cellular, tissue, disease sources and experimental modifi-
cations for the samples used in transcriptional analyses
[65]. By relying on the ontological hierarchy provided by
the CL, the FANTOM5 Consortium was able to classify
transcription patterns associated with individual cell
types, groupings of related cell types, and cell lineages
during differentiation [62, 64].

Use of the CL in other non-ontology projects
The CL is being used as metadata in a variety of non-
ontology projects, such as The Cell: An Image Library
[66], CELLPEDIA [67], Phenoscape [13], LINCS [68],
the Human Immunology Project Consortium (HIPC)
[11], and ImmPort [10]. The HIPC and ImmPort pro-
jects are National Institute of Allergy and Infectious
Diseases (NIAID) sponsored programs to collect and
organize data from immunology experiments performed
by NIAID supported investigators in order to facilitate
secondary usage [10]. In support of these projects, the
CL is being used both as a controlled vocabulary of cell
types for use as metadata, and as part of an analytical
pipeline for analyzing high-dimensional flow cytometry
and mass cytometry data (e.g. CyTOF) [69] submitted to
the ImmPort data repository. Developers of the CL have
already incorporated novel B cell types discovered via
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high-dimensional flow cytometry [70], such as ‘IgG-posi-
tive double negative memory B cell’ (CL:0002103) and
‘IgD-negative CD38-positive IgG memory B cell’
(CL:0002107). The CyTOF method is yielding informa-
tion about even more granular cell types [71]. In order
to facilitate the analysis of data generated in high-
dimensional flow cytometry or CyTOF, the flowCL soft-
ware package matches cell populations identified via
automated gating algorithms against existing cell types
in the CL based on their combinations of markers, or
immunophenotypes [72, 73].

Conclusion
Through cooperative efforts between the Cell Ontology
editors and various stakeholders, ongoing development
of the CL has ensured that it continues to be a valuable
resource for users and developers of related ontologies.
Use of the CL by a broad range of third party efforts, in-
cluding the high visibility ENCODE and FANTOM5
projects, as a source of metadata and for data integration
and analysis shows the value of the CL to the wider sci-
entific community. As big data collection and analysis
continues to grow in importance as a source of bio-
logical discovery, we expect the CL will be of key utility
in organizing and understanding these data. We invite
community feedback and participation to continue the
improvements to the CL.

Availability and requirements
Like all OBO library ontologies, the CL is available from
a standard purl [http://purl.obolibrary.org/obo/cl.owl].
The main URL for the project
[http://cellontology.org/] and links to various browsers

are available from the main OBO Library page for CL
[http://obofoundry.org/ontology/cl.html].
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