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Abstract

Motivation: To evaluate how well current anatomical ontologies fit the way real-
world users apply anatomy terms in their data annotations.

Methods: Annotations from three diverse multi-species public-domain datasets
provided a set of use cases for matching anatomical terms in two major anatomical
ontologies (the Foundational Model of Anatomy and Uberon), using two lexical-
matching applications (Zooma and Ontology Mapper).

Results: Approximately 1500 terms were identified; Uberon/Zooma mappings
provided 286 matches, compared to the control and Ontology Mapper returned 319
matches. For the Foundational Model of Anatomy, Zooma returned 312 matches,
and Ontology Mapper returned 397.

Conclusions: Our results indicate that for our datasets the anatomical entities or
concepts are embedded in user-generated complex terms, and while lexical
mapping works, anatomy ontologies do not provide the majority of terms users
supply when annotating data. Provision of searchable cross-products for
compositional terms is a key requirement for using ontologies.

Background
The need for anatomy ontologies to support researchers and clinicians in managing the

explosion of experimental data is well-documented [1]. Four of the 8 Open Biological and

Biomedical Ontologies (OBO) Foundry ontologies and 39 of the site’s other listed ontolo-

gies, cover aspects of the representation of anatomical knowledge. Whilst the OBO Foun-

dry has a stated goal of “creating a suite of orthogonal interoperable reference ontologies

in the biomedical domain” (http://www.obofoundry.org), most of these ontologies have

been developed to address a species-specific need articulated by a community working

with a particular model organism—for example, ZFIN by the zebrafish researcher commu-

nity [2], FlyBase by the Drosophila researcher community [3], and the various databases

dedicated to different ways of representing the needs of mouse researchers [4]. As a result,

despite the number of ontologies and the amount of knowledge represented within them,

efforts to integrate data across species are in their infancy. We undertook this study—

matching terms from real-world data annotations to two major anatomical ontologies—to
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illuminate some of the existing obstacles to such integration, and to propose ways of mak-

ing the ontologies more usable to real-world users.

The motivation behind this study was to determine how well current ontologies fit

the way users apply anatomy terms in their knowledge domains. We wished to explore

whether there was a gap between available ontologies and the use cases for functional

genomics data annotation. We also wished to demonstrate our process to show where

any gaps and omissions lie.

This paper describes the results of a test of lexical matching anatomical terms

entered by current users of an active database of experimental annotation to two

major state-of-the-art anatomy ontologies. The implications of our results for the cur-

rent state of usability for those ontologies in the users’ experience are described. We

go on to propose methods to bridge the gap between ontologies and the use cases they

are intended to support.

Methods
Annotations were taken from three diverse public domain datasets—(i) gene expression

from the ArrayExpress Archive [5] and Gene Expression Atlas [6], (ii) the Europhe-

nome mouse-specific databases [7-9], and (iii) the multi-species radiobiology database

ERA-PRO [10,11]. These were selected to provide a set of representative data from

functional genomics studies. The use cases provided data for matching anatomical

terms to terms in two major anatomical ontologies, the Foundational Model of Anat-

omy (FMA) and a species-agnostic ontology, Uberon [12].

Ontologies

The FMA is a symbolic representation of human anatomy, containing over 75,000 con-

cepts over a range of granularity (http://sig.biostr.washington.edu/projects/index.

html#FMA). Uberon is a multi-species metazoan anatomy ontology with the goals of:

(1) supporting translational research by allowing comparison of phenotypes across spe-

cies, and (2) providing logical cross-product definitions for GO biological process

terms [13]. These ontologies were chosen for comparison on the basis of size (thus,

likelihood of coverage) and importance in the anatomy ontology community.

Data preprocessing

The ArrayExpress Gene Expression Archive currently contains over 615,000 assays,

covering approximately 1200 different species. Of these assays, those which meet a par-

ticular standard of quality and clarity are re-annotated with ontology classes, summar-

ized, and stored in the Gene Expression Atlas, which currently contains 138,000 assays

from 30 species. Europhenome is an online resource developed to capture phenome

data derived from mice using the standardized tests contained in EMPReSS (the Eur-

opean Mouse Phenotyping Resource of Standardised Screens) [7-9]. The ERA-PRO

database is a legacy database of the results of radiation exposure of a wide range of

organisms. It contains data on more than 300,000 animals from experiments con-

ducted in Europe, the USA and Japan from 1954-1996 [10,11].

Ontology-curated annotations from the Atlas and non-standardized ones from the

Archive, along with anatomy terms from Europhenome and ERA-PRO, constituted the

sample of terms that we compared against the ontologies, as shown in Table 1.
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There were 1537 terms in our initial sample of anatomical structures by vertebrate

species because once the structures were made species-agnostic, the terms from Euro-

phenome and ERA-PRO were identical to terms in the Gene Expression Atlas, and

thus did not increase that total number. These terms were predominantly human,

mouse, and rat anatomical terms, but other species were represented as well, as pre-

sented in Table 2.

Although these represent the set of terms as they were actually submitted by the users

who annotated the use cases, we performed a small amount of manual and semi-automated

preprocessing. The terms were normalized prior to matching as follows: species names were

removed from the anatomical structures to be searched. Anatomical structure terms that

had been unique only because they had different species names were resolved into a single

term to remove duplicates. This practice may have increased the risk of false positives; how-

ever, we did not formally investigate that possibility. Inconsistent use of spaces within terms

was resolved. Obvious misspellings and typographical errors, inconsistent punctuation and

hyphenation were resolved. Anglicisms were converted to American spellings.

This preprocessing was carried out in order to reduce the number of false positive

matches due only to duplication, and the number of false negative match failures due

to: 1) Obvious errors in the data resulting in “terms” that would not exist in any anat-

omy ontology, 2) duplications due to different use of spaces, sentence casing, or punc-

tuation and hyphenation, and 3) the emphasis of both the FMA and Uberon on

American spellings as the primary term.

Whilst this is not strictly verbatim annotation data, this preprocessing represents

simple data cleanup for which tools are readily available, so we consider it a represen-

tative model of how data would actually be submitted for matching against an ontology

Table 1 Anatomical and species data. Sample of anatomical and species data used for
matching against the FMA and Uberon

animal cap Xenopus laevis

annulus fibrosus Bos taurus

anterior cingulate cortex Homo sapiens

anterior cingulate cortex Pan troglodytes

anterior inferior parietal lobule Homo sapiens

anterior inferior parietal lobule Pan troglodytes

Table 2 Terms by species. Absolute number and percentage of terms by species (n = 1537)

Species Number of anatomical terms Percentage of total

Homo sapiens 782 50.88%

Mus musculus 429 27.91%

Rattus norvegicus 163 10.61%

Bos taurus 26 1.69%

Pan troglodytes 25 1.63%

Gallus gallus 23 1.50%

Danio rerio 18 1.17%

Xenopus laevis 16 1.04%

Macaca mulatta 13 0.85%

Sus scrofa 12 0.78%

Other vertebrate species 30 1.94%
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after automatic cleanup. After preprocessing, 1097 terms of the original 1537

remained. Inspection established that 229 terms exactly matched terms or synonyms in

FMA, and 277 exactly matched terms or synonyms in Uberon. We used these matches

as test controls before comparing the dataset to the ontologies.

Comparison tools

Zooma is an automatic ontology mapping application developed at the European Bioin-

formatics Institute (EBI) (http://zooma.sourceforge.net/). Given a list of terms and an

ontology in OWL/OBO format, or an ontology service to match against, Zooma can

automatically map terms from the list to ontology terms. It can re-use existing mappings

e.g., from a database, discover mappings for new terms, and search ontologies to propose

mappings against terms not mapped to a reference set. It produces two time-stamped

tab-delimited text files, one containing successful matches, and one containing matching

failures. Zooma delegates all ontology term fetching to the OntoCat library (http://www.

ontocat.org). This library provides a uniform interface to query heterogeneous ontology

resources including local ontologies in OWL or OBO as well as public ontology reposi-

tories, such as NCBO BioPortal and EBI Ontology Lookup Service.

Ontology Mapper [14] (http://www.ebi.ac.uk/efo/tools) is a Perl module, based on

the Metaphone and Double Metaphone algorithms [15], that normalizes the terms in

the list and the ontology to a representation of their sounds, and carries out the

matching of similar-sounding terms. It performs exact matches without intervention,

and proposes single or multiple approximate matches to the user for curator driven

matching. Our dataset was run once against both the FMA and Uberon using Zooma,

and once against both ontologies using Ontology Mapper.

These two approaches were used in order to identify particular issues that the user

would confront in matching terms from annotations to terms in the ontologies.

Because Zooma and Ontology Mapper use complementary approaches, we tested the

ontologies with both tools in order to get more thorough coverage of potential issues.

Results
A full set of results is available at http://www.ebi.ac.uk/~raven/uberon-fma-annota-

tions-test/all-data.pdf .

As shown in Figure 1, when run with the term list against Uberon, Zooma provided

286 matches, compared to the control (visual inspection) of 277 exact matches. Ontol-

ogy Mapper returned 319 matches, with user curation. For the FMA, Zooma returned

312 matches, and Ontology Mapper returned 397.

Precision/recall for each iteration are provided in Table 3.

Confusion matrices are provided in Table 4.

This established that, for the terms covered in the ontologies, the tools returned a set

of matchings from each ontology that was comparable to the curated set. although

Ontology Mapper was particularly prone to false positives. However, the term coverage

was quite low: 229 terms of 1099 anatomical terms used by annotators were found in

the FMA (20.84%), and 277 terms were found in Uberon (25.20%). This precision and

recall held only for the covered terms; both dropped to 0 for the large percentage of

annotators’ terms that were not represented. There was a 62.4% overlap between terms

in the FMA and Uberon.
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We examine the implications of these results in the Discussion.

Discussion and conclusions
The first question that emerges from these results is why are there so few matches

between such rich ontologies and real-life anatomical annotations from the user com-

munity? The tools we used to evaluate the ontologies provided complementary

approaches to matching the data; as a result, a variety of issues were uncovered.

Some of the discrepancies are accounted for by the fact that the tools were designed

for strict matching to reduce the number of false positives during automated lexical

processing. However, the actual mismatches between the terms as the users provide

them, and as they are represented in the ontologies accounted for much of the low hit

rate. The strictness of the matching algorithm is a by-product of the fact that we

wanted a low rate of false positives due to the known heterogenous nature of the

input. The aim is to automate these processes of mapping in future and for the use

cases we have, low false positives is important. In future work we can extend the use

of methods to use more fuzzy matching techniques e.g., Levenshtein distance-based

methods, which will improve recall for adjectival forms.

Annotation issues

The most obvious issues with the data that would block matching to the ontologies

were standardized by preprocessing before the test was run. However, even after pre-

processing, there were recurring problems that interfered with successful matching.

Figure 1 Results by ontology and by tool. Successful number of mappings (y-axis) in red, compared to
control (blue) for Zooma on Uberon and FMA, and Ontology Mapper on Uberon and FMA.

Table 3 Precision and recall for matching results

OM/FMA OM/U Z/FMA Z/U

Precision 0.007 0.014 0.734 0.969

Recall 1.000 1.000 1.000 1.000

FMA=Foundational Model of Anatomy, OM=Ontology Mapper, U=Uberon, Z=Zooma
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Most of the mismatches were due to annotations containing composite terms, where

one or both of the terms, taken separately, actually would have matched. For example,

Liver/Kidney does not match any entity in either ontology, but Liver alone and Kidney

alone matched in both. Sometimes only one of the terms would have matched; for

example, in Acetabulum and pelvic soft tissues, while pelvic soft tissues is too vague

and would have required clarification, Acetabulum could have been an exact match.

Tools that are able to split up the user’s annotations into individual anatomical terms,

or even mine the user’s annotations for new anatomical terms, as well as the provision

of searchable cross-products for compositional terms, can resolve some of these

problems.

Sometimes it was unclear whether the composite term was actually referring to two

different entities, or whether it was simply a redundancy, for example, Adrenal cortex,

adrenal gland. Breaking down that composite term would have accomplished either

one or two matches, depending on whether the user intended two different entities, or

was using Adrenal gland redundantly to modify Adrenal cortex.

Occasionally the user would refer to a cell when it was obvious the sample referred

to a tissue (example: Adipocyte vs. Adipose tissue), and whilst the cell name the user

entered did not match, the intended tissue type actually would have.

Entities in anatomical ontologies are nouns for the most part, so when the user

entered an adjective referring to the anatomical structure, such as Abdominal for

Abdomen, or Arterial for Artery, the adjective would not match the ontology, yet was

closely related to a term that was present.

Shorthand, such as Antrum for Pyloric antrum, or Both ventricles for Left ventricle of

heart and Right ventricle of heart also kept the matching rate artificially low. Most of

those examples could be expanded to full names of entities in the anatomy ontologies,

but out of context, it was impossible to determine what a few meant, such as Ventral

or 11 different tissues. If a human curator cannot know what the annotation means,

mapping becomes an impossible task for any automatic or curated tool.

Occasionally match failures occurred from the users’ utilization of named processes

implying an anatomical location, such as Colon pinch biopsy, BA (bronchioalveolar)

lavage, or Bone marrow, flushed from femur. The latter could be a composite term as

Table 4 Confusion matrices for ontology term mapping

OM/FMA True False

Positive 229 32485

Negative 702 0

OM/U True False

Positive 277 19509

Negative 780 0

Z/FMA True False

Positive 229 83

Negative 787 0

Z/U True False

Positive 277 9

Negative 813 0

FMA=Foundational Model of Anatomy, OM=Ontology Mapper, U=Uberon,
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well, although breaking it down into entities would require the tool to know how to

deal with “flushed from”, in order to find the boundary between them.

Ontology issues

Sometimes a mismatch would occur because the user made use of a synonym for a

term that was actually in the ontology, but synonyms were missing. Sometimes an

omission from an ontology was quite surprising—for example, the term Anterior tibia-

lis was missing from Uberon and FMA. Addition of synonyms to both would improve

utility.

The FMA and Uberon are designed for different purposes, so there is no consensus

between them as to exactly what entities belong in an anatomical ontology. For exam-

ple, Alveolar macrophage is included as a discrete entity in FMA, where Uberon does

not contain it, and explicitly regards it as a composite to be generated from Alveolus

and Macrophage, rather than belonging in the ontology itself. These differing defini-

tions based on design decisions, while not apparent to the user, have an impact on

whether that user’s terms can be expected to match terms in the ontologies being

used.

Uberon handles embryological and non-human anatomical entities better than the

FMA does. For this reason, Uberon performed relatively better in programmatically

matching the heterogeneous data from this community.

Mutual mismatch issues

The implicit assumption of the tools is that the mapping between list terms and ontol-

ogy terms should be 1:1. This meant that there were sometimes approximate matches

on a closely-related term, even in the absence of an exact match. For example, some-

times there was a superset or subset relationship approximate match, such as Abdom-

inal fat and Abdominal fat pad, or Fascia and Connective tissue. Other proposed

matches crossed levels of abstraction, for example, Right lung as opposed to Lung.

Additionally, a few cases of quantitative annotations, such as 75% kidney, 25% liver

were present in the annotations; these will be ruled out of scope in future testing, as

very few present ontologies can handle quantitative data. However, their presence does

indicate a currently-unmet user need in data annotation.

Ontology classes tend to be expressed in the singular whilst annotations are written

in singular and plural. Both tools did a better job of matching the singular terms than

they did the same terms in plural; given the variation in working styles, tools that

access ontologies for real-world applications will need to be better at dealing with sin-

gular-plural variation.

We have established that, although we were able to map almost half of the terms

from the use cases to the ontologies, the process required a great deal of time, effort,

and manual curation. There remains a vast gap between the way users use anatomical

terms in free text annotation and the way they are represented in two of the richest

anatomical ontologies. This exercise provided preliminary insight into the following

issues:

• Which terms are available in which source(s)? Uberon was able to match more

embryological and non-human terms in our data than the FMA did. This fact
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indicates the effect that the design decisions and scope of each ontology will have

on users desiring to match their annotations with an ontology.

• Which areas require concentration in ontology development in order to obtain as

much coverage as other areas have? Although they are the most difficult to repre-

sent rigorously in an ontology, and are consequently underrepresented in anatomi-

cal ontologies, brain terms and embryological terms make up the bulk of the

annotation data. As a consequence, species-specific and cross-species anatomical

ontologies need to represent that data, meaning that the particular difficulties of

representing it need to be addressed.

• What maps, what does not map, and why? Simple terms such as Liver, Kidney,

Adrenal gland, and Retina match very well in each ontology. Compositional terms,

such as Alveolar macrophage, for example, tend to map poorly in each ontology,

because of lexical similarity and granularity issues. Some of the compositional

terms are to be expected in sampling (such as Bone marrow from femur); others

are simply an artifact of combining samples or acquiring samples that cross multi-

ple structures (Liver, kidney, adrenal gland, adrenal cortex); there needs to be a

way of dealing with each scenario.

• What duplications and errors are our tools able to determine in the ontologies

used in the comparison, and what suggestions would we make for additions and

modifications to the source ontologies? We found omissions of surprisingly com-

mon terms and synonyms utilized in the user community, such as Anterior tibialis

for “tibialis anterior”. We also found that Uberon had the term Ureter twice, with

two separate IDs, and requested a consolidation.

• What suggestions do we want to make to the tool developers for functionality

that would make it easier for users to obtain better matches? Currently there is a

large risk of false positives for matching. Lemmatisation and stemming would pre-

vent some of the need for pre-processing, but would exacerbate the tendency to

false positives. We would suggest tools refined more precisely to the specific needs

of the anatomy domain. Misspellings, hybrid terms with elements of multiple lan-

guages, and other flawed input data present a challenge to the canonical terms in

ontologies. The input data needs to be cleaned up and made consistent, a task that

was done manually for this study, but which is prohibitive for scaling.

• The requirements for cross-products in many annotation use cases. Terms such

as Bone marrow from femur failed to match, even though both Bone marrow and

Femur were in the ontologies.

These insights will also inform our future efforts in developing and refining ontol-

ogy-matching tools. Although the purpose of this study was not to evaluate the tools

per se, some interesting findings emerged that will provide a basis for future refine-

ment of the tools. Ontology Mapper was far more sensitive to potential mappings than

the anatomist was, tending toward false positives such as proposing to match Periso-

teum of ilium with Whole embryo. This was an artifact of its Double Metaphone algo-

rithm. Zooma did not provide any false positives, as a result of its exact matching, but

made many false negative errors. The discrepancy between Zooma’s exact matches and

the anatomist’s is an interesting finding. The numbers should have been the same. Pos-

sible reasons for the discrepancy include human error, a possible bug in the code, or
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the presence of non-printing characters in the data, recognisable by Zooma but invisi-

ble to the anatomist. We will follow up on this in future work. Another issue for future

work is aligning matches along semantic content rather than the lexical matching that

sufficed for this exploratory study. The lexical matching approach worked for such

general vertebrate structures as Liver or Kidney, but for annotations containing more

detailed accounts of species-specific structures (e.g., zebrafish Frontal bone, rat Anterior

prostate), this approach will need to be refined in order to avoid another source of

false positives.

In order for ontologies to realize their potential, they need to be used. The user must

perceive the benefit from their use, whether that benefit takes the form of ease of data

entry, time saved, and replacement of manual inspection with automation. The current

state of anatomical ontologies leaves a gap between the needs of the user and which

ontologies are available. There is a real and growing need for tools such as Zooma,

Ontology Mapper, and others that can complement the functions of ontologies in brid-

ging that gap, removing barriers between the ontology and the community of users it

is intended to serve.
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