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Abstract

Background: The Gene Ontology and its associated annotations are critical tools for
interpreting lists of genes. Here, we introduce a method for evaluating the Gene
Ontology annotations and structure based on the impact they have on gene set
enrichment analysis, along with an example implementation. This task-based
approach yields quantitative assessments grounded in experimental data and
anchored tightly to the primary use of the annotations.

Results: Applied to specific areas of biological interest, our framework allowed us to
understand the progress of annotation and structural ontology changes from 2004
to 2012. Our framework was also able to determine that the quality of annotations
and structure in the area under test have been improving in their ability to recall
underlying biological traits. Furthermore, we were able to distinguish between the
impact of changes to the annotation sets and ontology structure.

Conclusion: Our framework and implementation lay the groundwork for a powerful
tool in evaluating the usefulness of the Gene Ontology. We demonstrate both the
flexibility and the power of this approach in evaluating the current and past state of
the Gene Ontology as well as its applicability in developing new methods for
creating gene annotations.

Background
Introduction

The Gene Ontology [1] (GO) provides a resource for systematically classifying and anno-

tating gene function. The annotations associated with the GO play a critical role in mod-

ern biology and cover many organisms. Many of these annotations, especially for human,

are the product of manual and automated annotation by the Gene Ontology Annotation

(GOA) team at UniProt [2]. For the human genome, over 10,000 GO terms are used to

annotate gene function in over 200,000 annotations.

Annotations in GOA come from a variety of sources. Broadly, they either derive from

manual curation, or from automatic inference based on pre-existing annotations and

resources. Currently over half of the human GO annotations are the result of manual

curation as opposed to the automatic electronically inferred annotations (IEAs) [3].

Historically, manually-added annotations are considered to be of higher quality [4] than

IEAs, though recent work is challenging this conception [5]. Both sets of annotations are
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continually revised and expanded based on published advances in the literature and sus-

tained biocuration efforts. The ever-increasing size of the human GO annotation dataset

(Figure 1) suggests that the structured representations of gene function are still very

much in flux.

Due to the importance of GO annotation in modern biology, significant effort has

been expended to assess the quality of these annotations. Measures of annotation com-

pleteness, accuracy, and precision are important tools for the GO developers, and are

critical if researchers are to use the annotations in real-world applications with confi-

dence. Numerous methods for assessing annotation error rate and accuracy have been

developed [6-8]. However, most of these focus on the creation of ad-hoc qualitative

metrics based on annotation evidence codes and term specificity. Such methods, (e.g.

[7]) have significant drawbacks: for one, it is conceivable to construct a random and

artificial ontology that would score highly on these metrics without any bearing on the

real world. Likewise, measures of accuracy based on term specificity have been called

into question [5]. Other approaches that address annotation error rates or accuracy

such as [6] and [8] downplay the role of ontology structural quality, and ignore the

effect that the ontology structure can have on real-world applications.

An approach that quantified the performance of the ontology at common tasks

would allow us to understand the strengths and weaknesses of the ontology and its

annotations directly [9]. In this paper, we present an approach that assesses the quality

and utility of GO and its annotations through their performance in a common use-

case, namely gene-set enrichment analysis.

A task-based approach

Enrichment analysis is the process of using a collection of gene annotations to determine

what terms are “enriched” or over-represented in a set of genes, which are often pro-

duced from genome-scale experiments (e.g., gene expression analysis, genome sequen-

cing, etc.). For instance, a cancer researcher, presented with a set of genes implicated in

neuroblastoma metastasis, could use enrichment analysis and the GOA to determine

what biological processes are most associated with her gene set. This process is among

Figure 1 Cumulative annotations from 2002 through 2011 The increase in individual gene:term
annotation pairs from the start of 2002 through the start of 2012. These numbers were created by
progressively filtering earlier annotations from the 2012 human annotation file available at [3].
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the most common applications of the GO annotations, and is a critical resource for the

analysis of genome-scale profiling experiments [10][11][12].

Our framework uses enrichment analysis to determine the effectiveness of the GO

annotations at providing biologically accurate results (Figure 2). This produces a mea-

sure of utility based on a real-world application, and helps us understand the strengths

and weaknesses of the GO and its annotations. Broadly, our framework consists of the

following workflow: First, we select one or more terms to test that are representative

of our area of interest. Next, select a dataset that is clearly representative of those

terms, and use standard statistical methods to define a list of differentially expressed

genes. Conduct an enrichment analysis, using the GO annotations and the chosen

dataset, and obtain a list of terms that are significantly enriched among the list of dif-

ferentially expressed genes. The performance of the GO knowledgebase is related to

the significance of the term of interest in the resulting list. Notice that the perfor-

mance measured in this manuscript focuses on the specific biological context chosen,

and not the quality of the GO knowledgebase as a whole. Rather, we provide a

Figure 2 Analytical framework for evaluation of GO performance Using our method, the user first
identifies a GO term or biological area of interest. He or she then collects experimental data known to be
representative of that area, and performs an enrichment analysis with the gene list and appropriate GO
annotation sets. By identifying the significance (or lack therof) of the term or terms associated with the area of
interest, the user can quantify the performance of the GO and its annotations for this domain.

Clarke et al. Journal of Biomedical Semantics 2013, 4(Suppl 1):S4
http://www.jbiomedsem.com/content/4/S1/S4

Page 3 of 11



framework for evaluating its precision and coverage in specific domains where compel-

ling experimental evidence is available.

Implementation and testing

To demonstrate the framework, we present an example implementation and apply it

towards a selected term of interest. The methodology and results of this experiment

are discussed below.

Results
Creating the Analytical Framework

Our framework consists of the following steps:

1 Identify term(s) of interest T. These may be representative terms of an area of interest

or a sample across the GO structure.

2 Collect experimental data that are clearly related to T. For example, if T was angio-

genesis, one might use gene expression datasets related to highly angiogenic tissues to

derive a list of overexpressed genes.

3 Use standard statistical methods to define a list of differentially expressed genes.

4 Conduct an enrichment analysis on each gene list from (3).

5 From the list of enriched terms resulting from (4), identify the rank and p-value of T.

The expectation is that T will be significantly enriched against the background terms;

whether or not that expectation is met, along with T’s relative rank and score, indicates

the efficacy of T’s annotation set.

The framework as presented here is generalizable. For instance, it is up to the user to

determine what enrichment method to perform in Step 4. It is also up to the user to

determine how to best identify terms of interest and the associated datasets.

One basic use case is to evaluate how well the GO annotations perform at reproducing

biological expectations for a dataset. A researcher interested in angiogenesis may collect a

series of datasets derived from tumor samples that are known to express traits associated

with blood vessel formation, for instance. He or she would then use these datasets in an

enrichment analysis with the current version of the GO annotations, and observe how

significant the angiogenesis-related terms were in the resulting list of enriched terms. The

researcher could compare the rank of angiogenesis terms to other unassociated biological

processes to get an idea of how well the GO annotations cover this area. This procedure

could be used in any area for which experimental data are available. To test these various

analyses, we implemented the framework as a set of Python scripts called the GO Evalua-

tion Suite (GOES). This resource is available as open-source software [13].

Test 1: Evaluating current GO performance on a selected dataset

In our tests, we selected the GO term angiogenesis (GO:0001525) as our term of interest.

Angiogenesis, the formation of blood vessels, is a well-known trait of a type of brain

tumor called glioblastoma multiforme. Glioblastoma multiforme, a high-grade glioma, is

unusual for tumors because of its highly vascular nature [14]. We then searched the NCBI

Gene Expression Omnibus [15] (GEO) for expression microarray datasets involving glio-

blastoma and selected one such dataset, GDS1962 [16]. GDS1962 compares general gene

expression in various gliomas, including glioblastoma, to non-tumor control samples. The

structure of the experiment that produced this dataset and the tissues it tested made us
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reasonably confident that angiogenesis was a highly significant trait of the glioblastoma

samples. We therefore expect that conducting an enrichment analysis using the Biological

Process branch of the GO would yield angiogenesis as a significant term. Our expectations

were validated: an enrichment analysis using the protocol (outlined in more detail in

Methods) yielded a p-value of 1.07 x 10-8 for the term angiogenesis. Even after applying a

conservative Bonferroni multiple-testing correction, this enrichment for angiogenesis was

still significant in GDS1962 (p = 6.3 x 10-5).

Designing a time-based analysis

We can expand this method to assess the changes made to the GO and its annotations

over time. Because the GO is constantly changing, it is important to be able to determine

if the alterations improve or decrease its performance in common use-cases. To assess the

quality of the GO and its annotations over time, we performed the following experiment:

1 Select terms and representative datasets as in Steps 1 and 2 in the original

framework.

2 By using the version-control system of the Gene Ontology Consortium [17] retrieve

versions of the GO structure for each time point under consideration. For instance, to

look at the changes from 2004 - 2012, we would collect nine iterations of the GO, one

from each year.

3 Retrieve matching iterations of the GO annotations from [18].

4 For each time point, complete the remaining steps in the original framework. Note

the significance of the term(s) of interest in each time point.

5 Plot or otherwise compare the changing significance of the term across the time

points.

Test 2: Evaluating GO performance over time

We implemented the time-based analysis by sampling the structure of the GO in May

of each year from 2004 through 2012 from the GO version control repository and the

human GO annotations from concurrent time points in the GOA repository. We pro-

duced each term’s gene set by associating that year’s annotations to the terms in the

ontology. The rest of the procedure was identical to the previously-described process,

and yielded the significance of the term angiogenesis for GDS1962 from 2004 to 2012.

Figure 3A (red line) shows the changing p-value for angiogenesis in the glioblastoma

sample during this time. From 2007 to 2012, the p-value of angiogenesis decreased by

nearly five orders of magnitude (0.024 to 1.07 x 10-8).

Tracking the significance of the most relevant terms over time

Another variation of the framework is the omission of pre-identified terms of interest in

favor of observing the most significant terms for a dataset. More specifically, instead of

a priori identifying a term of interest, we select a gene list of interest and run an enrich-

ment analysis on those genes. We then select the most significant terms and observe how

their significance changes as the structure and annotations change (as in the time-based

analysis). The benefit of this approach is that it yields a broader picture of the GO evolu-

tion by identifying what was reported as being most significant for a dataset in past ver-

sions of the GO. It allows researchers to see how recently a term became significant, and

which terms have become less relevant.
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Figure 3 P-values of angiogenesis and ten most significant terms for glioblastoma samples over
time A) The red line shows the change in p-value of the angiogenesis term from 0.024 (2007) to
1.07x10-8 (2012). The grey lines are the p-values for the ten most significant terms in enrichment
analysis from 2012 traced through time (see Table 1). The vertical axis is on a log scale. Some lines start
after 2004 or end before 2012 due to filtering in the enrichment analysis (only terms annotated to
between 3 and 500 genes). The final p-values have had a Bonferroni multiple-testing correction applied.
B) The same as A but using the most significant terms from enrichment analysis done with 2006
versions of the ontology and annotations.
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Test 3: Behavior of the most significant terms over time

To see if the most significant terms for GDS1962 in 2012 had always been the most sig-

nificant through the years, we followed the generalized dataset analysis approach

described in Methods. First, we selected the top 10 “most significant” terms (i.e. lowest

p-values) from an enrichment analysis using up-to-date versions of the ontology and

annotations. We then conducted a time-based analysis to track the significance of these

terms in past years, shown in Figure 3A (grey lines). Because the study that produced

GDS1962 was published in 2006, we also examined how the top terms of an identical

enrichment analysis done in 2006 would perform in later years (Figure 3B, grey lines). In

these figures, terms that had a p-value of 1 or were annotated to fewer than 3 genes

were omitted, resulting in the grey lines beginning only when the terms started appear-

ing. In Figure 3A, we can see that some terms are consistently highly significant from

2007 onwards, while some only appear as recently as 2010. In Figure 3B, the behavior of

the top terms in 2006 is inconsistent: while some improve in significance, others become

less relevant.

Comparison of changes to ontology structure and changes to annotations

The Gene Ontology and its annotations are distinct entities. Changes to the ontology

structure, such as the addition or clarification of a term, or the movement of a term within

the graph, may affect the results of enrichment analyses independently from annotation

changes[19]. Our time-based framework can be modified to assess the impact of these dif-

ferent kinds of changes in the following manner.

Before, we combined the ontology structure for a given time point with its contempor-

ary annotations, recreating the resource as it would have been used during that time. By

only varying the ontology structure, and using a single set of annotations, we can

observe the impact of structural changes on performance. Conversely, we can observe

the impact of annotation changes alone by using various annotation sets while using a

set ontology structure. We then use these modified resources in the time-based analysis

specified above.

Test 4: Assessing the difference between changes to ontology structure and annotation

We created gene sets reflecting ontology structure changes by merging the 2012 anno-

tations with each year’s version of the GO. Similarly, we produced gene sets reflecting

annotation changes by merging each year’s annotations with the 2012 GO structure. We

then performed an enrichment analysis on each collection of gene sets and looked at the

performance of both angiogenesis and the previously-identified top 10 most significant

terms for glioblastomas in GDS1962. Figure 4 shows the results when considering only

changes to the annotations (Fig. 4A) or only changes to the ontology structure (Fig. 4B).

Generally, changes to the ontology structure did not have as significant an effect as

changes to the annotation sets, as evidenced by the relatively unchanging significance

levels in Fig. 4B compared to Fig. 4A.

Discussion
Here, we presented a task-based framework for GO annotation evaluation and applied it

to an angiogenesis-enriched gene list derived from a glioblastoma dataset. We showed

how our method can be used to analyze the historical performance of the GO, providing
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us with an understanding of how the ontology and annotations have changed over time.

Our framework also allowed us to separate the effects of changes to the ontology struc-

ture from changes to the annotations, and to see how each affects the performance of

the GO in a real-world task.

Figure 4 Effect of changing only the annotations or ontology structure on angiogenesis and most
significant terms A) The same analysis as in Figure 3A, but with only the annotations changing over time
(the ontology structure used was from 2012). The final p-values have had a Bonferroni multiple-testing
correction applied. B) The same analysis as Figure 3A, but with only the ontology structure changed (the
annotation set used was from 2012).
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Our implementation of the framework shown here presents us with some noteworthy

results. Our term of interest, angiogenesis, rose in significance over time, as we had

expected. What we had not expected was how recently some of the most significant

terms in the 2012 analysis even started appearing in results (a term appeared if it had a

p-value of 1 or annotated to more than 3 genes)- some as late as 2010. Other terms

show a dramatic increase in p-value from 2010 to 2012. To determine whether changes

to the ontology or the annotations were responsible for these trends, we can consider

our structure-vs-annotations experiment shown in Figure 4. Here, we see that the graph

where only the annotations changed (Fig. 4A) shows the same trends of interest as

Fig. 3A, while the graph with only ontology changes lacks these trends. We can safely

assert that annotation changes, in this instance, are largely responsible for the later

dramatic changes. These results only hold for our dataset under test; an interesting fol-

low-up to this would be to identify a GO term with low annotation activity and see if

ontology structure changes affect it more strongly.

In Figure 3B, we see that the significance of the most relevant terms in the 2006 enrich-

ment analysis do not consistently improve, and are not especially significant in later years.

In fact, Table 1 shows that there is no overlap between these terms and their counterparts

in 2012. However, some terms are closely related and have more specific counterparts in

2012, e.g. transmission of nerve impulse becomes regulation of transmission of nerve impulse.

For this dataset, our results suggest that the GO and its annotations have become more

effective at representing the underlying biological facts of the data. We can assert this

based on the rising significance of a key tissue phenotype, angiogenesis, and the increasing

specificity of its most significant terms. Questions on the overall efficacy of the GO and

the human GO annotations are not answered by our implementation.

Discussion of the framework

These results illustrate the behavior of the GO as applied to a single dataset, which begs the

question of whether these results would hold in a more general analysis. The demonstrable

flexibility of the framework would allow its use in a large-scale effort where representative

terms or areas of interest are selected and tested. For instance, with datasets that are speci-

fically crafted to represent particular traits like cell division or apoptosis, we could deter-

mine empirically how accurate and useful the GO and its annotations are at representing

biological truths.

Table 1 Top Ten Biological Process Terms for 2006 and 2012

2006 2012

System development axon guidance

nervous system development regulation of synaptic transmission

transmission of nerve impulse regulation of transmission of nerve impulse

mitotic cell cycle M phase of mitotic cell cycle

intracellular protein kinase cascade nuclear division

metal ion transport mitosis

cell morphogenesis organelle fission

cytoskeleton organization regulation of vesicle-mediated transport

regulation of cell cycle regulation of neurological system process

potassium ion transport learning or memory

The p-values for 2006 range from 3.15E-21 to 6.70E-7. The p-values for 2012 range from 1.11E-16 to 2.26E-10. The terms
are listed in order of p-value.
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On a smaller scale, the framework allows researchers to test modifications to the ontol-

ogy or annotations in real-time. Let us assume a new method of gene annotation, for

example through text-mining, has been developed and we wish to test its efficacy. Let us

also assume that the previous versions of the GO are worse at the task of enrichment ana-

lysis than later versions (as is arguably the case with GDS1962 and angiogenesis). We

could then combine the novel annotations with previous versions of the GO annotations

and observe if key terms rose or fell in significance, and if the new results more closely

resemble current results. If so, then we have evidence that the new method of gene anno-

tation is at least as correct as the efforts of existing curators. This would be a powerful

new tool for the development of future automated annotation methods.

Similar methods to the ones described here were used in an analysis of a long-term

annotation initiative in which the authors examined the impact of the new annotations

on standard enrichment analyses [20]. As with our results, they found that the new

annotations significantly increased the number of enriched terms, many of which were

not present at all before the annotation efforts. Their results are an example of the

divergent behavior we would expect from high annotation activity.

Conclusions
In this framework, we have a quantitative way to examine the GO and its annotations in

the context of real-world applications. We have demonstrated its ability to shed light on

the evolution of the GO over time, to separately quantify changes in ontology structure

and annotation composition, and test the performance of the GO in key applications.

Our framework is flexible enough to address many questions facing GO developers and

annotators and can be applied across disparate regions of the GO, multiple species, and

various enrichment analyses. The methodology presented here should become a valuable

tool in the development of novel annotation algorithms and many other applications.

Methods
To identify a list of genes that were overexpressed in the GDS1962 dataset, we first filtered

out microarray probes whose maximum value across samples was less than the median

probe value across the entire dataset. We then took the natural log of each probe value.

To identify differentially-expressed genes, we used an independent T-test comparing the

glioblastoma sample against the control. The final list of differentially expressed genes

included those whose Bonferroni-corrected p-value was significant (p < 0.05). We used an

enrichment analysis based on Fisher’s exact test for the glioblastoma samples [21]. In the

Fisher’s exact test, we used only terms that were annotated to at least 3 and no more than

500 genes.

Authors’ contributions
AS, BG, and EC conceived of the studies; EC and SL performed the analyses; EC, SL and AS wrote the manuscript. All
authors read and approved the final manuscript.

Competing Interests
The authors declare that they have no competing interests.

Acknowledgements
The authors acknowledge support from the National Institute of General Medical Sciences (GM089820 and GM083924
to A.I.S).
Declarations
This research and the publication costs were funded by the National Institute of General Medical Sciences (GM089820
and GM083924 to A.I.S).

Clarke et al. Journal of Biomedical Semantics 2013, 4(Suppl 1):S4
http://www.jbiomedsem.com/content/4/S1/S4

Page 10 of 11



This article has been published as part of Journal of Biomedical Semantics Volume 4 Supplement 1, 2013: Proceedings
of the Bio-Ontologies Special Interest Group 2012. The full contents of the supplement are available online at http://
www.jbiomedsem.com/supplements/4/S1

Published: 15 April 2013

References
1. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA,

Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene
ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature genetics 2000, 25:25-9.

2. Dimmer EC, Huntley RP, Alam-Faruque Y, Sawford T, O’Donovan C, Martin MJ, Bely B, Browne P, Mun Chan W,
Eberhardt R, Gardner M, Laiho K, Legge D, Magrane M, Pichler K, Poggioli D, Sehra H, Auchincloss A, Axelsen K,
Blatter MC, Boutet E, Braconi-Quintaje S, Breuza L, Bridge A, Coudert E, Estreicher A, Famiglietti L, Ferro-Rojas S,
Feuermann M, Gos A, et al: The UniProt-GO Annotation database in 2011. Nucleic acids research 2012,
40(Database issue):D565-70.

3. Human Gene Associations, Revision 1.232. [http://cvsweb.geneontology.org/cgi-bin/cvsweb.cgi/~checkout~/go/gene-
associations/gene_association.goa_human.gz?rev=1.232;content-type=application%2Fx-gzip].

4. Schnoes AM, Brown SD, Dodevski I, Babbitt PC: Annotation error in public databases: misannotation of molecular
function in enzyme superfamilies. PLoS computational biology 2009, 5:e1000605.

5. Skunca N, Altenhoff A, Dessimoz C: Quality of computationally inferred gene ontology annotations. PLoS
computational biology 2012, 8:e1002533.

6. Jones CE, Brown AL, Baumann U: Estimating the annotation error rate of curated GO database sequence
annotations. BMC bioinformatics 2007, 8:170.

7. Buza TJ, McCarthy FM, Wang N, Bridges SM, Burgess SC: Gene Ontology annotation quality analysis in model
eukaryotes. Nucleic acids research 2008, 36:e12.

8. Gross A, Hartung M, Kirsten T, Rahm E: Estimating the Quality of Ontology-Based Annotations by Considering
Evolutionary Changes. 2009, 5647:71-87.

9. Porzel R, Malaka R: A Task-based Approach for Ontology Evaluation. Test 2004, 9-16.
10. Huang DW, Sherman BT, Lempicki RA: Bioinformatics enrichment tools: paths toward the comprehensive functional

analysis of large gene lists. Nucleic acids research 2009, 37:1-13.
11. Khatri P, Drăghici S: Ontological analysis of gene expression data: current tools, limitations, and open problems.

Bioinformatics (Oxford, England) 2005, 21:3587-95.
12. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR,

Lander ES, Mesirov JP: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide
expression profiles. Proceedings of the National Academy of Sciences of the United States of America 2005, 102:15545-50.

13. GO Evaluation Suite. [http://bitbucket.org/sulab/go-evaluation].
14. Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T, Maira G, Parati EA, Stassi G, Larocca LM, De Maria R:

Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 2010, 468:824-8.
15. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research

2002, 30:207-210.
16. Sun L, Hui AM, Su Q, Vortmeyer A, Kotliarov Y, Pastorino S, Passaniti A, Menon J, Walling J, Bailey R, Rosenblum M,

Mikkelsen T, Fine HA: Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer
cell 2006, 9:287-300.

17. Gene Ontology CVS. [http://cvsweb.geneontology.org/cgi-bin/cvsweb.cgi/go/].
18. Gene Ontology Annotations CVS. [http://cvsweb.geneontology.org/cgi-bin/cvsweb.cgi/go/gene-associations/].
19. Groß A, Hartung M, Prüfer K, Kelso J, Rahm E: Impact of ontology evolution on functional analyses. Bioinformatics

(Oxford, England) 2012, 28:2671-7.
20. Alam-Faruque Y, Huntley RP, Khodiyar VK, Camon EB, Dimmer EC, Sawford T, Martin MJ, O’Donovan C, Talmud PJ,

Scambler P, Apweiler R, Lovering RC: The Impact of Focused Gene Ontology Curation of Specific Mammalian
Systems. PLoS ONE 2011, 6:e27541.

21. Man MZ, Wang X, Wang Y: POWER_SAGE: comparing statistical tests for SAGE experiments. Bioinformatics 2000,
16:953-959.

doi:10.1186/2041-1480-4-S1-S4
Cite this article as: Clarke et al.: A task-based approach for Gene Ontology evaluation. Journal of Biomedical
Semantics 2013 4(Suppl 1):S4.

Clarke et al. Journal of Biomedical Semantics 2013, 4(Suppl 1):S4
http://www.jbiomedsem.com/content/4/S1/S4

Page 11 of 11

http://www.jbiomedsem.com/supplements/4/S1
http://www.jbiomedsem.com/supplements/4/S1
http://cvsweb.geneontology.org/cgi-bin/cvsweb.cgi/~checkout~/go/gene-associations/gene_association.goa_human.gz?rev=1.232;content-type=application%2Fx-gzip
http://cvsweb.geneontology.org/cgi-bin/cvsweb.cgi/~checkout~/go/gene-associations/gene_association.goa_human.gz?rev=1.232;content-type=application%2Fx-gzip
http://bitbucket.org/sulab/go-evaluation
http://cvsweb.geneontology.org/cgi-bin/cvsweb.cgi/go/
http://cvsweb.geneontology.org/cgi-bin/cvsweb.cgi/go/gene-associations/

	Abstract
	Background
	Results
	Conclusion

	Background
	Introduction
	A task-based approach
	Implementation and testing

	Results
	Creating the Analytical Framework
	Test 1: Evaluating current GO performance on a selected dataset
	Designing a time-based analysis
	Test 2: Evaluating GO performance over time
	Tracking the significance of the most relevant terms over time
	Test 3: Behavior of the most significant terms over time
	Comparison of changes to ontology structure and changes to annotations
	Test 4: Assessing the difference between changes to ontology structure and annotation

	Discussion
	Discussion of the framework

	Conclusions
	Methods
	Authors’ contributions
	Competing Interests
	Acknowledgements
	References

