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Abstract

Background: Due to human variations in genetic susceptibility, vaccination often triggers adverse events in a small
population of vaccinees. Based on our previous work on ontological modeling of genetic susceptibility to disease,
we developed an Ontology of Genetic Susceptibility Factors (OGSF), a biomedical ontology in the domain of
genetic susceptibility and genetic susceptibility factors. The OGSF framework was then applied in the area of
vaccine adverse events (VAEs).

Results: OGSF aligns with the Basic Formal Ontology (BFO). OGSF defines ‘genetic susceptibility’ as a subclass of
BFO:disposition and has a material basis ‘genetic susceptibility factor’. The ‘genetic susceptibility to pathological
bodily process’ is a subclasses of ‘genetic susceptibility’. A VAE is a type of pathological bodily process. OGSF
represents different types of genetic susceptibility factors including various susceptibility alleles (e.g., SNP and gene).
A general OGSF design pattern was developed to represent genetic susceptibility to VAE and associated genetic
susceptibility factors using experimental results in genetic association studies. To test and validate the design
pattern, two case studies were populated in OGSF. In the first case study, human gene allele DBR*15:01 is
susceptible to influenza vaccine Pandemrix-induced Multiple Sclerosis. The second case study reports genetic
susceptibility polymorphisms associated with systemic smallpox VAEs. After the data of the Case Study 2 were
represented using OGSF-based axioms, SPARQL was successfully developed to retrieve the susceptibility factors
stored in the populated OGSF. A network of data from the Case Study 2 was constructed by using ontology terms
and individuals as nodes and ontology relations as edges. Different social network analysis (SNA) methods were
then applied to verify core OGSF terms. Interestingly, a SNA hub analysis verified all susceptibility alleles of SNPs
and a SNA closeness analysis verified the susceptibility genes in Case Study 2. These results validated the proper
OGSF structure identified different ontology aspects with SNA methods.

Conclusions: OGSF provides a verified and robust framework for representing various genetic susceptibility types
and genetic susceptibility factors annotated from experimental VAE genetic association studies. The RDF/OWL
formulated ontology data can be queried using SPARQL and analyzed using centrality-based network analysis
methods.
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Background
Genetic susceptibility, also called genetic predisposition, is
an increased likelihood or chance of developing a particular
disease (e.g., diabetes) or pathological bodily process (e.g.,
infection) due to the presence of one or more gene muta-
tions with or without a family history of an increased risk
[1]. Genetic susceptibility is associated with all kinds of dis-
ease and traits across the whole medical domain, such as
infectious diseases [2], alcoholism [3], cancer [4], and auto-
immunity [5]. As a more specific example, human vaccin-
ation may induce undesired adverse events, so called
vaccine adverse event (VAE), which may be manifested in
various forms of signs, symptoms and diseases [6]. The
VAE may appear in a small population but not in the
majority of vaccinee population, indicating the genetic sus-
ceptibility in the small population [7,8]. For example, com-
pared to white children, the native American Indian
Apache children have significant impairment of their anti-
body response to H. influenzae type b polysaccharide, thus
they may be prone to develop adverse events if adminis-
tered a H. influenzae vaccine with H. influenzae type b
polysaccharide as its component [9]. Better understanding
of genetic susceptibility factors to specific diseases will
allow us design preventative and therapeutic measures to
prevent and control the diseases in susceptible populations.
Various kinds of genetic variations bear susceptibilities,

e.g., linkage disequilibrium (LD, non-random association
between two or more loci) haplotype, a linkage region,
genetic polymorphisms, alleles and so on. These various
genetic variant entities are named ‘genetic susceptibility
factors’ by the authors. The allele that confers increased
susceptibility may be inherited; whereas the disease itself
will not. The single locus genotype is usually insufficient
to cause a disease. A disease often appears when impaired
expressions of alleles at other gene loci and/or environ-
mental factors co-exist [10]. Genetic susceptibility factors
might not have obvious mutations. A genetically inherited
disorder is more likely the consequence of a polygenic
combination of variants at several genes that might be
common in healthy humans. Moreover, the main deter-
minants of susceptibility may be different in different
populations [11]. Furthermore, many environmental fac-
tors may interact with genetic factors, and they contribute
to a diseased outcome simultaneously [7,12]. Many appar-
ently contradictory findings in disease-gene association
studies associated with different study designs increase the
complexity of the problem [13]. The sophisticated nature
of genetic susceptibility makes it challenging to identify
true genetic factors associated with human susceptibility
to a specific disease or a pathological bodily process.
The general methodology to identify the genetic suscep-

tibility to complex disease is a combination of linkage and
association studies in biological experimental science. At
first, the family-based studies identify a linkage region
contains several mega bases of DNA. To narrow down
such a region to a susceptible gene (or genes), population-
based case–control studies identify variants in linkage
disequilibrium with the susceptibility locus, which lead
to define the genomic region responsible for the original
linkage signal [14]. Although the original linkage signal
may not be detectable in some studies, combination of dif-
ferent levels of evidence from multiple studies may de-
cipher true genetic susceptibility. At the post-genomics
era, it is possible to use high throughput Omics methods
to identify possible genetic variations that contribute to the
genetic susceptibility. The strategy of applying Omics and
other methods to study host genetic variations and their ef-
fects in vaccine-induced host immune responses (e.g.,
VAEs) has been termed vaccinomics [12]. The notion of
genetic susceptibility can be traced back to 1926 [15]. Since
then, numerous literature reports of genetic susceptibility
have been published. As of December 23, 2013, a PubMed
search for “genetic susceptibility” has generated over
119,900 hits. However, a database of general genetic
susceptibility factors is not yet available. As a first step
towards systematically collecting and studying genetic sus-
ceptibility factors, there is a need to generate a consensus-
based robust ontological framework for systematically
representing and studying such genetic susceptibility and
the genetic factors contributing to the susceptibility.
A formal ontology is a set of computer- and human-

interpretable terms and relations that represent entities
in a specific domain and how these entities relate to
each other. Ontological terms are expressed in formal
logic to support automated reasoning. Lin et al. have pre-
viously developed an Ontology of Genetic Susceptibility
Factors to Diabetes Mellitus (OGSF-DM) intended to pro-
vide a framework for genetic susceptibility to diseases [14].
By using the TCF7L2 gene and its susceptibility to Type 2
Diabetes (T2D) as an example, OGSF-DM formalizes
the basic definitions of ‘genetic susceptibility’ and ‘genetic
susceptibility factor’. The ontology OGSF-DM is a virtual
ontology composed of three ontologies: the Ontology of
Genetic Disease Investigation (OGDI), which imports other
two ontologies: the Ontology of Glucose Metabolism
Disorders (OGMD) and the Ontology of Geographical
Regions (OGR). The previous study found out that es-
sential variables impacting genetic susceptibility to diseases
include: genetic polymorphism, the population and geo-
graphical location, the disease entities, and related statis-
tical values (e.g., odds ratio and p-value) [14].
The Open Biological and Biomedical Ontologies (OBO)

Foundry community [16] has recently developed many on-
tologies that overlap the scope of OGSF-DM. For example,
within the OBO Foundry, the Ontology for Biomedical
Investigations (OBI) that represents biological and clinical
investigations [17] overlaps with the scope of OGDI; the
ontology Gazetteer (GAZ) that describes environmental
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places [18] overlaps with OGR. However, the ontological
modeling of genetic susceptibility remains untouched.
The original OGSF-DM was loosely aligned with BFO
1.0 by denoting some classes as subclasses of ‘continuant’
or ‘occurrent’. The structure of the three OGSF-DM ontol-
ogies did not follow the OBO Foundry’s principles [16],
which makes it difficult to be integrated with other OBO
Foundry ontologies. To leverage the reusability and inter-
operability of the community developed ontologies, we
have found that the OGSF-DM would be better if being
refined and focused more on the area of genetic suscep-
tibility. We have thus proposed to develop a single
ontology: the Ontology of Genetic Susceptibility Factors
(OGSF), to represent various types of genetic suscepti-
bility and genetic susceptibility factors supported by
textual conclusions given by genetic association studies.
While the OGSF-DM modeled the genetic susceptibility

to a disease (i.e., diabetes mellitus) [14], genetic susceptibil-
ity is not always associated with only disease. In BFO, a dis-
ease is a subclass of disposition, which is positioned in the
branch of BFO:continuant. The genetic susceptibility is
often associated with the risk of a pathological bodily
process including a vaccine adverse event [19-21]. The
pathological bodily process as defined by the Ontology of
General Medical Science (OGMS) as a process positioned
under the branch of BFO:occurrent [22]. Therefore, the dis-
ease (a dependent continuant) and the pathological bodily
process (a BFO:occurrent) are located in two different
major branches of BFO. To more comprehensively repre-
sent entities related to genetic susceptibility, it is required
for OGSF to represent pathological bodily processes such
as vaccine adverse events.
In this paper, we introduce our development of a new

version of genetic susceptibility-focused ontology: the
Ontology of Genetic Susceptibility Factors (OGSF) by
using BFO 2.0 as its upper ontology. To illustrate the
Figure 1 The OGSF hierarchy and key OGSF terms introduced in the p
ontology and verify our ontology design patterns, two
vaccine adverse event-related genetic susceptibility case
studies were specifically analyzed. Our studies demon-
strate that the OGSF successfully provides an ontological
framework for systematically representing genetic suscep-
tibility, genetic susceptibility factors, associated entities
and relations.

Results
In what follows, single quotes are used to refer to a spe-
cific term within OGSF where appropriate. The numerical
ID following the prefix of ontology is given after the term
is mentioned, which gives the indication of the term’s re-
source. Italics are used to indicate the axioms or proper-
ties defined in the ontology.

The new OGSF is aligned with BFO
The development of OGSF follows the OBO Foundry
principles, including openness, collaboration, and use
of a common shared syntax [16]. To align OGSF with
BFO 2.0 version, we started with previously identified
key terms and render them using BFO's terms as par-
ent terms (Figure 1). To enable the reusability of other
ontologies, we have imported many related terms and re-
lations from existing OBO foundry ontologies. For ex-
ample, the terms ‘vaccine’ (VO_0000001) and ‘vaccination’
(VO_0000002) are adopted from the Vaccine Ontology
(VO) [23,24]; the terms ‘adverse event’ (OAE_0000001)
and ‘vaccine adverse event’ (OAE_0000004) are imported
from OAE. The relations between these vaccine terms and
VAE terms are defined in the newly generated OVAE [8].
The vaccine related investigation is within the scope of the
OBI, so that some OBI terms, such as ‘investigation’ and
‘textual conclusion’ were imported into OGSF.
In addition to the reuse of existing ontology terms, over

60 OGSF-specific class and property terms exist. The two
aper.
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OGSF core terms are: ‘genetic susceptibility’ and ‘genetic
susceptibility factor’. The OGSF term ‘genetic suscepti-
bility’ (OGSF_0000000) is a subclass of ‘BFO:disposition’
(BFO_0000016). The alternative term for ‘genetic suscepti-
bility’ is ‘genetic predisposition’. In BFO 2.0, the genetic
and other risk factors for specific diseases are considered
as predispositions, i.e., they are dispositions to acquire
other dispositions. The realization of such a predisposition
consists in processes which change the physical makeup
of its bearer in such a way that parts of this bearer serve
as the material basis for a disease [25]. Since the term ‘pre-
disposition’ is not included in current version of BFO 2.0,
we assert OGSF ‘genetic susceptibility’ as an immediate
child of BFO term ‘disposition’. The child terms of ‘genetic
susceptibility’ include: ‘genetic predisposition to disease of
type X’ (OGMS_0000033) and ‘genetic susceptibility to
pathological bodily process’ (OGSF_0000001). The term
that reflects our use cases is ‘genetic susceptibility to vac-
cine adverse event’ (OGSF_0000010), which is a child term
of ‘genetic susceptibility to pathological bodily process’.
Another OGSF core term ‘genetic susceptibility factor’

(OGSF_0000004) is a subclass of ‘material entity’ (BFO_
0000040). Any allele, gene, genotype, or haplotype may be
a genetic susceptibility factor if a genetic association study
supports the association between any of those entities and
a phenotype. The relation ‘material basis of at some time’
(BFO_0000127) is formalized in BFO 2.0 to represent the
relation between a material entity and a disposition [25].
BFO 2.0 refers disposition to the potentials or powers of
things in the world. Whenever a disposition exists, it is a
disposition of something, namely its material bearer [25].
This relation is adopted to represent the relation between
genetic susceptibility factor and genetic susceptibility in
OGSF. At the instance level, the same genetic susceptibil-
ity factor bearing genetic susceptibility in a person has its
entire existence all the time. But this statement may not
be true at the class level. The same genetic susceptibility
factor may contribute differently to the manifestation of a
disease at different time periods and conditions. Such a
meaning is reflected in the words ‘at some time’ of the re-
lation ‘material basis of at some time’.
OGSF represents different types of genetic susceptibil-

ity factors, including haplotypes, genes, single nucleotide
polymorphisms (SNPs), and alleles. A haplotype is a com-
bination of DNA sequences at adjacent locations (loci) on a
chromosome that can be inherited together from a single
parent. A haplotype can describe a pair of genes on one
chromosome or all genes on a chromosome from a parent.
A haplotype can also refer to an inherited cluster of SNPs
that are variations at single positions in the DNA sequence
among individuals. An allele is an alternative form of the
same gene or other genetic material that occupies a specific
location on a chromosome. The Ontology for Genetic
Interval (OGI) [26] defines different subclasses of allele
including ‘allele of gene’, ‘allele of SNP’ and ‘allele of haplo-
type’. Since every individual has two parents who each con-
tribute one allele, genetic susceptibility factors can usually
be represented by the notion of allele. Sometimes two or
more SNPs work together and contribute to genetic suscep-
tibility. Two situations existed for this condition: the collab-
orative SNPs from one haplotype, and the synergistic
combinations of SNPs from different haplotypes. Such
cases are represented as ‘aggregate SNPs’ in OGSF. OGSF
fully imports OGI, thus it inherits the OGI’s allele classes
and definitions. OGSF inherits the OGI classification of
haplotype, genes and SNPs as material entities containing
sequence information [27]. Different from OGI, the DNA
sequences in the Sequence Ontology (SO) represents se-
quence information itself [28]. The SO also does not dif-
ferentiate different allele types. These are the reason why
we use OGI instead of SO in OGSF. A new relation ‘is_al-
lele_of_gene’ has been created to link ‘allele of gene’ and
‘gene’. This relation is required for logical definition and
correct reasoning in susceptibility allele of gene analysis as
shown in our Case Study 2 described later in the paper.
In total, OGSF contains over 600 class and property

ontology terms as shown on http://www.ontobee.org/
ontostat.php?ontology=OGSF. In our VAE susceptibility
use case studies, we have also generated many OGSF
instances as introduced later in this paper.

Modeling genetic susceptibility to vaccine adverse event
As defined in the Vaccine Adverse Event Reporting System
(VAERS) and Ontology for Adverse Event (OAE), a
vaccine adverse event is an adverse event following
vaccination and does not necessarily assume a causal
association [8,20,21]. However, a causal association be-
tween administration of a specific vaccine and an ad-
verse event in a particular population can be identified
through systematic and statistical studies [7,12,29,30].
Although a large number of studies have provided sup-
porting evidences for asserting susceptibility factors (e.g.,
susceptibility alleles) to vaccine adverse event outcomes,
the results of these studies cannot be automatically proc-
essed by computers. Our OGSF presentation aims to cre-
ate a machine-interpretable ontological representation of
these studies in order to analyze the results across studies
and search for possible causal associations.
Figure 2 illustrates the design pattern of how OGSF is

used to represent the association between a genetic sus-
ceptibility factor and a vaccine adverse event (VAE)
based on experimental studies reported in the literature.
As shown in the figure, the ‘genetic susceptibility factor’
is the material basis of ‘genetic susceptibility’. The ‘gen-
etic susceptibility to vaccine adverse event’ is realized in
the process of ‘vaccine adverse event’ (OAE_0000004).
In the vaccine case, the genetic susceptibility factor is a
part of a ‘human vaccinee carrying susceptibility allele

http://www.ontobee.org/ontostat.php?ontology=OGSF
http://www.ontobee.org/ontostat.php?ontology=OGSF


Figure 2 General design of OGSF representing genetic susceptibility to vaccine adverse event. Square boxes denote classes, and italicized
terms along the arrows denote relations.
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for adverse event’ (OGSF_0000029), which ‘actively par-
ticipates in’ the ‘vaccine adverse event’. As a participant
of a ‘genetic association investigation’ (OGSF_0000016),
a ‘case group’ (OGSF_0000022) has a member of ‘human
vaccinee carrying susceptibility allele for adverse event’.
A human vaccinee is vaccinated with a vaccine. The
vaccination occurs before (or is preceded by) a vaccine
adverse event. As a specified output of the genetic asso-
ciation investigation, the ‘textual conclusion of genetic
susceptibility’ concludes the association between a ‘genetic
susceptibility factor’ and a ‘vaccine adverse event’. Below
we provide more specific details to introduce this OGSF
design pattern.
The direct linkage from susceptibility-related terms to

VAE terms is often required in our OGSF modeling. For
example, in OGSF, we need to link ‘human vaccinee carry-
ing susceptibility allele for adverse event’ (OGSF_0000029)
to a vaccine. An object property term (ontological relation)
reflecting such linkage is not available in existing ontol-
ogies. However, VO defines a shortcut relation ‘vaccine
immunization for host’, which relates a vaccine with a vac-
cinee [23]. The strategy of designing and using shortcut re-
lations has been promoted by Mungall et al. to simplify the
complex axioms involving nested class expressions to make
it ‘triple-friendly’ for complex OWL ontologies [31]. In our
design, the ‘inverse’ usage of this VO shortcut relation ‘vac-
cine immunization for host’ connects from ‘human vaccinee
carrying susceptibility allele for adverse event’ to ‘vaccine’.
The term ‘genetic association investigation’ (OGSF_

0000016) is defined as: an investigation that aims to test
whether single-locus alleles or genotype frequencies (or
more generally, multi-locus haplotype frequencies) dif-
fer between two groups of individuals (usually diseased
subjects and healthy controls). Different types of those
studies exist. For example, a ‘case control genetic associ-
ation study’ (OGSF_0000017) is a genetic association study
that contains two types of human study subject groups:
‘case group’ and ‘control group’. The control group provides
a background control in order to properly assess the results
identified from the case group study. In contrast, a ‘case-
only genetic association study’ (OGSF_0000036) includes a
case group and does not have a control group to compare.
The results obtained from a case-only genetic association
study provide sufficient evidence to detect an association
[32]. However, they are often biased by pre-condition of
non-independence between the genetic and environmen-
tal factors in the population [33]. Another type of gen-
etic association study is ‘family-based genetic study’
(OGSF_0000041) that investigates family members who
may show different phenotypes. By analyzing entire ge-
nomes of people with a disease (cases) and similar
people without the disease (controls), a Genome-Wide
Association Study (GWAS or GWA study) examines
many common genetic variants in different individuals
to see the association between variant and a trait [7,12].
Such a genome wide association study is a type of ‘case
control genetic association study’.
A reported genetic susceptibility study typically includes

a conclusion of the association between a genetic factor
and a disease (or pathologic bodily process) under specific
conditions. Such conclusion is required to be represented
ontologically. To represent the results from individual
genetic association studies as reported in different papers,
we have added an OGSF term ‘textual conclusion of
genetic susceptibility’ to represent the textual conclu-
sion of a genetic susceptibility study. Ontologically, a
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‘textual conclusion of genetic susceptibility’ is asserted as a
‘specified output of ’ a ‘genetic association investigation’.
There are three types of ‘textual conclusion of genetic sus-
ceptibility’: ‘positive textual conclusion of genetic suscepti-
bility’ (OGSF_0000031), ‘negative textual conclusion of
genetic susceptibility’ (OGSF_0000032) and ‘neutral text-
ual conclusion of genetic susceptibility’ (OGSF_0000033).
Using the vaccine adverse event example, a ‘positive text-
ual conclusion of genetic susceptibility’ means that a posi-
tive conclusion is drawn based on a significant statistical
association of a genetic factor and a vaccine adverse event
as identified in a published paper. A ‘negative textual con-
clusion of genetic susceptibility’ denies such a possible as-
sociation between a genetic factor and an adverse event as
declared in a published paper. Sometimes, depending on
the data, an investigator might not be able to draw a de-
finitive positive or negative conclusion on a genetic sus-
ceptibility association. This situation is captured using
‘neutral textual conclusion of genetic susceptibility’. In
addition, OGSF also provides several datatype properties,
such as ‘hasOddsRatio’ and ‘hasPvalue’, to allow the repre-
sentation of digital data for statistical evaluation of the
textual conclusion of genetic susceptibility (Figure 2).
Use case studies
Case studies are used for two purposes: 1) to validate the
modeling, 2) to test possible applications of the ontology.
Below we represent two case studies reported from peer-
reviewed journal articles using the OGSF framework.
Figure 3 OGSF modeling of vaccine-associated multiple sclerosis. Squ
Case study 1: HLA allele DBR1*15:01 is genetic susceptibility
to Pandemrix related multiple sclerosis in a case report study
Pandemrix is an influenza pandemics vaccine that is de-
veloped by the company GlaxoSmithKline. The vaccine
Pandemrix is represented in the Vaccine Ontology (VO)
with the VO ID: VO_0000410. Vrethem et al. reported the
occurrence of severe Multiple Sclerosis (MS) in a previously
healthy young male in association with the vaccination of
Pandemrix [34]. In this study, a human DBR1*15:01 allele is
responsible for association with the Pandemrix-related MS
adverse event. DBR1*15:01 is an allele of human leukocyte
antigen (HLA) complex that encodes a MHC class II cell
surface receptor. The association of this allele with MS
appears to be consistent with many previous reports on
situations other than vaccine adverse event [35,36].
This genetic susceptibility case was represented in

Figure 3 by following the general OGSF design pattern
(Figure 2). For ontological modeling, it is critical to gener-
ate description logic constraints and axioms to accurately
represent human- and computer-interpretable knowledge.
As an example, the basic information about DRB1*15:01
can be ontologically represented as:

� ‘DRB1*15:01’ is subclass of ‘allele of gene’.
� ‘DRB1*15:01’ is subclass of (is_allele_of_gene some

‘HLA DBR1 gene’).

In addition to the above basic logical definitions, genetic
susceptibility related to ‘DBR1*15:01’ can be identified
based on different studies. Case Study 1 is such a study,
are boxes denote classes, and curved box denote instances.
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which is represented as ‘genetic association study_1’
(Figure 3). This study generated a specific output ‘posi-
tive conclusion of genetic susceptibility_1’. This specific
conclusion ‘is about’ the class ‘DBR1*15:01’ and the
‘multiple sclerosis AE’. The instance of ‘DBR1*15:01’ is
a part of the specific patient in the case study. Based on
this and many other case reports [34-36], we have gen-
erated the OGSF representation at the class level:

� ‘DRB1*15:01’ is subclass of (‘part of continuant at all
times that whole exists’ some (‘human vaccinee’ and
(inverse (‘vaccine immunization for host’) some
Pandemrix)))

� ‘DRB1*15:01’ is subclass of (‘material basis of at
some time’ some ‘genetic susceptibility to vaccine
adverse event’)

� ‘DRB1*15:01’ is subclass of ‘susceptibility allele’

This case study indicates that OGSF provides necessary
elements to represent genetic susceptibility and genetic sus-
ceptibility factors associated with vaccine adverse events.

Case study 2: genetic polymorphisms associated with
adverse events after smallpox vaccination in multiple
clinical trials
Reif et al. reported that genetic polymorphisms in several
genes encoding important immune factors, including en-
zyme methylenetetrahydrofolate reductase (MTHFR), an
Table 1 Statistical summary of genetic susceptibility
factors with systemic adverse event following smallpox
vaccination

GSF& Allele Gene Odds ratio
(confidential
interval)

P-value Study
1 or 2

rs1801133 SNP T MTHFR 2.3 (1.1–5.2) 0.04 1

rs1801133 SNP T MTHFR 4.1 (1.4–11.4) 0.01 2

rs9282763 SNP G IRF1 3.2 (1.1–9.8) 0.03 1

rs9282763 SNP G IRF1 3.0 (1.1–8.3) 0.03 2

rs839 SNP A IRF1 3.2 (1.1–9.8) 0.03 1

rs839 SNP A IRF1 3.0 (1.1–8.3) 0.03 2

Haplotype 1* G,A IRF1 3.2 (1.0–10.2) 0.03 1

Haplotype 1* G,A IRF1 3.0 (1.0–9.0) 0.03 2

Haplotype 2# T,C,A IL4 2.4 (1.0–5.7) 0.05 1

Haplotype 2# T,C,A IL4 3.8 (1.0–14.4) 0.06$ 2

Notes:
&GSF stands for Genetic Susceptibility Factor.
*Haplotype 1 contains G allele of rs9282763, and A allele of rs839 in
IRF1 gene.
#Haplotype 2 contains T allele of rs2070874, C allele of rs2243268, and A allele
of rs2243290 in IL4 gene.
$In the second study, Haplotype 2 didn’t achieve the significant level of
p value.
The data of this table is summarized and curated from Reif. et al.’s work on the
genetic analysis of adverse event after smallpox vaccination [37].
immunological transcription factor (IRF1), and interleukin-
4 (IL-4), were associated with adverse events after smallpox
vaccination [37]. In this report, two independent clinical tri-
als were conducted as initial and replicating genetic associ-
ation studies. Different from the Case Study 1 where an
allele of gene is a susceptibility factor, susceptibility alleles
of Single Nucleotide polymorphisms (SNPs) are the mater-
ial basis of genetic susceptibility in this Case Study 2. Table 1
lists all the SNPs (e.g., the A allele of rs839 SNP in the gene
irf1), their associated genes, and the Odds Ratio and p-
value from two clinical trials [37].
The OGSF design pattern was applied to represent the

information from these clinical trial studies (Figure 4).
This figure does not include many linkages and axioms
similar to those illustrated in Figure 3. Instead, Figure 4
focuses on representation of statistics providing evidence
indicating the type of genetic associations to vaccine
adverse events. In OGSF, the datatype property ‘has-
Size’ allows the recording of the size of a human study
subject group such as ‘case group’. The datatype prop-
erties ‘hasOddsRatio’, ‘hasPvalue’ and ‘hasCI’ (confidence
interval) link the corresponding data to specific textual
conclusion of genetic susceptibility. The Odds Ratio,
P-value, and confidential interval are used to measure
the association between genotypes and vaccine adverse
event [37]. The Odds Ratio represents the ratio that an
outcome will occur given an exposure, compared to
the odds of the outcome occurring in the absence of
the same exposure [38]. Using these datatype proper-
ties, the values of these measurements were captured
and represented within the ontology. For example, the
conclusion of clinical trial 1 regarding the ‘T allele of
rs1801133 SNP’ was supported by the statistical data:
having an Odds Ratio of 2.3, a P-value 0.03, and a con-
fidence interval of [> = 1.4, <=11.4]. These statistical
results support a positive genetic association between
the allele of SNP and systemic adverse events of smallpox
vaccination [37].
Since OGSF provides a framework to ontologically

represent the complex data structure (including differ-
ent variables and relations among these variables), the
representation of the knowledge and data using OGSF
supports computer-assisted data integration and rea-
soning. Such data sets can be queried efficiently using
SPARQL as described below.
SPARQL query
The SPARQL Protocol and RDF Query Language
(SPARQL) is the query language and protocol for the
Resource Description Framework (RDF) data. RDF de-
composes any knowledge into triples. Each RDF triple
contains three components: subject, predicate, and ob-
ject [39]. OGSF is developed using the Web Ontology



Figure 4 OGSF modeling of case study 2. Square boxes denote classes, and curved boxes denote instances.
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Language (OWL) [40]. Both RDF and OWL are means to
express increasingly complex information or knowledge,
and both can be serialized in the RDF/XML syntax. RDF by
itself has a limited capability for formal knowledge represen-
tation. OWL adds ontological capability to RDF by defining
the components of RDF triples with formal computable first
order description logic. So OWL provides more “semantic
richness”. In addition, the OGSF OWL document can be
converted to RDF format and queried by SPARQL.
From the OGSF supported knowledge system, our

questions are focused on: 1) the list of susceptibility fac-
tors to a certain disease or pathological bodily process;
2) the evidences, either supportive or negative, support-
ing those susceptibilities. Using Case Study 2 as an
example, we designed a SPARQL query to identify the
genetic susceptibility factors to systemic adverse event
of smallpox vaccination and related statistical evidences.
The SPARQL script developed to query against the
OGSF ontology is provided as follows:
This query was executed in the SPARQL plugin embed-
ded with Protégé 4.3, build 304, and it could also be per-
formed using the SPARQL endpoint (http://www.ontobee.
org/sparql/index.php) in Ontobee [41], a linked data web-
server where OGSF was deployed. The SPARQL execution
retrieved five susceptibility factors to systemic smallpox
vaccine adverse event as shown in Additional file 1 and
listed below:

1. ‘T allele of rs1801133 SNP’ supported by 1 positive
evidence.

2. ‘G allele of rs9282763 SNP’ supported by 2 positive
evidence.

3. ‘A allele of rs839 SNP’ supported by 2 positive
evidence.

4. ‘haplotype 1 in IRF1 gene’ supported by 2 positive
evidence.

5. ‘haplotype 2 in IL4 gene’ supported by 1 positive
evidence, and 1 negative evidence.

http://www.ontobee.org/sparql/index.php
http://www.ontobee.org/sparql/index.php
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The SPARQL query output is consistent with the results
obtained from the paper (Table 1). Therefore, our evalu-
ation confirms the value of OGSF ontology representation
of genetic susceptibility knowledge and instance data set.

Social network analysis and visualization
After an ontology is generated, it is often valuable but
challenging to determine which ontology terms are more
central and carry more information than other terms in
the ontology. As an ontology defines terms and relations
(object properties) between terms, an ontology can be
viewed a social network. Specifically, the terms and rela-
tions of an ontology can be viewed as a directed hyper-
linked graph G = (V, E) with nodes v∈V and edges e∈E,
where the nodes correspond to the terms or entities in
an ontology, and a directed edge (p, q) ∈ E indicates the
relation that links from p (i.e., the relation’s domain) to
q (i.e., the relation’s range). Therefore, the methods used
for social network analyses may be potentially used for
identifying key ontology terms as hubs or clusters of
ontology terms [42]. In this study, we aimed to apply
known social network analysis methods to evaluate the
structure of the OGSF ontology and examine whether
OGSF was constructed effectively to represent key entities
for study of genetic susceptibility and genetic susceptibility
factors as we designed.
Social Network Analysis (SNA) is the sum of the tools

and methodologies of graph theory to analyze and thus
describe structures of social networks [43]. Many SNA
methods also overlap with network analysis methods
from other domains such as literature mining-derived
gene network analyses [44]. Two questions have been
pre-designed for such social network analyses: Firstly,
can the use case data support such identified central
terms in the network? Secondly, can different network
analysis methods generate different results and insights?
To address these questions, the data from Case Study 2
were extracted using OntoGraf [45], and then visualized
and analyzed using social network visualization tool
Gephi [46]. The software was used to conduct the ana-
lyses of the degree centrality, closeness centrality, and
hubs and authority scores to measure the relative im-
portance of a node within the network. The statistical
measurement data of these analyses are included in
Additional file 2.
The first method of our network analysis was based on

the calculation of the degree centrality (Figure 5A). The
degree centrality is simply the number of direct edges
that an entity has in a network [43,44]. The network has
24 nodes and 38 edges with an average degree of 1.538.
Our analysis found that the two terms with the highest
degree centrality scores are ‘systemic adverse event of
smallpox vaccination’, and ‘haplotype 2 in IL4 gene’.
These two terms have the highest numbers of links to
other terms. These findings are consistent with the
knowledge stored in the ontology. However, the term
‘haplotype 2 in IL4 gene’ is not our intended core terms.
This gives us insights that the degree measurement only
cannot verify the core terms of the current network.
Secondly, we used the closeness centrality for network

exploration (Figure 5B). The closeness centrality mea-
sures the average shortest path from a node to all other
nodes. Specifically, the closeness centrality calculates
the inverse of the farness that is the sum of a node’s
distances to all other nodes [47]. The more closeness
centrality a node is, the easier it can be reached by
other nodes or reach out other nodes. The five ontology
terms that have the best closeness centrality scores and
have no out-reaching nodes are ‘genetic susceptibility
to vaccine adverse event’, ‘systemic adverse event fol-
lowing smallpox vaccination’, ‘IL4 gene’, ‘IRF1 gene’,
and ‘MTHFR gene’. The result is consistent with the
design and construction of the ontology: the evidence
link to ‘genetic susceptibility’ and ‘vaccine adverse event’,
the variants link to ‘genes’. It is interesting that all the three
genes were identified together in this study.
The third network analysis was based on the calcula-

tion of the authority and hub scores [47,48] (Figure 6).
The terms (nodes) that many other terms point to are
called authorities. In contrast, the terms pointing to a
relatively high number of authorities are called hubs.
The authorities and hubs are a natural generalization of
the eigenvector centrality that measures the influence of
a node in a network. The authority analysis has been
used for ranking web pages, and the data and ontologies
from the Semantic Web search [49]. Figure 6A shows
that top three authority centralized nodes: ‘systemic ad-
verse event of smallpox vaccination’, ‘genetic suscepti-
bility of vaccine adverse event’, and ‘IL4 gene’. There
results indicate: 1) the main focus of this piece of linked
data is about systemic adverse event of smallpox vaccin-
ation and genetic susceptibility; 2) IL4 gene carries more
information flow than others, for it is connected with two
kinds (positive and negative) of evidence and a haplotype
of three SNPs in the network. Figure 6B shows nodes with
highest hub scores. Interestingly, these identified hubs are
all the SNPs related to the adverse event concluded in
Case Study 2.
In summary, different network characteristics cal-

culations reflect different dimensions of the ontology
knowledge. The closeness and authority centrality ana-
lyses verified the core terms of the OGSF dataset in
case study 2 are ‘systemic adverse event of smallpox
vaccination’ and ‘genetic susceptibility of vaccine ad-
verse event’. Interestingly, the hub analysis identified
all the alleles of SNPs, and the closeness analysis de-
tected all three hidden genes that are related to those
alleles of SNPs. It is noted that the genes instead of the



Figure 5 Degree and closeness network analyses using Case Study 2 data modeled in OGSF. (A) Degree centrality. The size of a node
indicates the degree of the node indicating the number of connections from the node. (B) Closeness centrality. The closeness centrality analysis
identified all three genes in the case study dataset. The visible nodes in the figure all have closeness centrality value equal to ‘0’. The nodes in the
figure represent classes and instances contained in the case study. Those nodes displayed in the same color are clustered in the same group by
the modularization method of the software Gephi [46].
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alleles of SNPs are usually found by direct literature
searching. Based on these observations, our network
analyses accurately identified ontology terms essential
for representing genetic susceptibility and genetic sus-
ceptibility factors.

Discussion
In this paper, we have introduced the development of
the new version of the Ontology of Genetic Susceptibil-
ity Factors (OGSF) and its usage for ontologically repre-
senting genetic susceptibility to vaccine adverse events.
The new OGSF is aligned with the BFO 2.0. OGSF im-
ports many terms from existing ontologies and also in-
cludes many new ontology terms. For the first time, we
have ontologically represented the genetic susceptibility
to a pathological bodily process (i.e., vaccine adverse
event). Two vaccine adverse event use cases were repre-
sented and evaluated. The SPARQL and social network
analyses were implemented to evaluate and analyze the
OGSF contents and structure. Different social network
analysis methods identified ontology terms with differ-
ent types of importance in the ontology.
OGSF emphasizes the classification of different genetic

factors and polymorphisms associated with susceptibility
to diseases or pathological bodily processes. Some suscep-
tibility factors may be genotype or mutation, which can be
expressed using different allele classes. Moreover, OGSF
has several classes, such as susceptibility SNP interval, sus-
ceptibility gene, and susceptibility haplotype to host those
entities that is not allele per se. For example, in the con-
structed network of our case study 2, the ‘IL4 gene’ is the
third authoritative node but the first gene identified from



Figure 6 Authority and hub network analyses using Case Study 2 data modeled in OGSF. (A) Authority analysis. The top 3 node with the
highest authority score are ‘systemic adverse event of smallpox vaccination’, ‘genetic susceptibility to vaccine adverse event’, and ‘IL4 gene’.
(B) Hub analysis. Hub nodes in this network are all the SNPs. All the visible nodes have the highest hub score of 0.08.
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the authority analysis (Figure 6A). From the SPARQL
query result, only ‘haplotype 2 of IL4 gene’ is linked to two
different evidences: the positive conclusion from trial 1
and the negative conclusion from trial 2. Moreover, the
‘haplotype 2 of IL4 gene’ is consisted of three SNPs that is
more than other haplotype in the network (Table 1). This
structure increases the ranking of IL4 gene in the author-
ity analysis comparing to other genes. More interestingly,
in another genetic susceptibility to smallpox vaccine ad-
verse event study, a haplotype in IL4 gene is related with a
decrease of the susceptibility to fever after vaccination
[50]. This haplotype contains a SNP rs2243250 located in
the promoter region of IL 4 gene, where a C→T substitu-
tion is associated with increased production of IL-4 [50].
Searching the HaploReg database [51], this SNP is pre-
dicted to be located in the same haplotype of IL4 gene in-
troduced in Case Study 2. This example shows the
complicated role that IL4 gene polymorphisms play in the
systemic adverse event triggered by smallpox vaccination.
It also shows the importance of representing the increase
or decrease (resistance) of genetic susceptibility.
In addition to the genetic susceptibility factors, many

other variables may also contribute to the manifestation of
a disease or a pathological bodily process outcome (e.g.,
vaccine adverse event) [30]. For example, the human in-
dividual’s characteristics, such as race/ethnic identity,
geographical region, and disease history, may also play
an important role in the manifestation of an adverse
outcome. Different genetic study design, such as family
study or population-based study, may lead to different
conclusions. To identify possible causality between a
genetic susceptibility factor and a VAE, a statistical ana-
lysis is often required. The sample size of human subjects
involved will also affect the statistical power of genetic
association studies. Our integrative OGSF framework has
incorporated many statistical terms in order to measure
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the robustness of the genetic association with a specific
disease or pathological outcome. The statistical measure-
ment then gives foundations to support the true genetic
association between genetic susceptibility factors and re-
lated disease or pathological bodily process. Well-designed
experiments may be applied to verify the association.
Different methods can be used for ontology evalua-

tions [52]. A use case analysis is critical to evaluate the
correctness, completeness, and utility of an ontology.
Two use cases have been chosen and presented in the
paper to illustrate how OGSF is logically constructed
and useful in representing genetic susceptibility to vac-
cine adverse events. To further evaluate the ontology
utility in addressing specific questions, we designed and
implemented SPARQL queries to identify known gen-
etic susceptibility factors to smallpox vaccine-induced
systemic adverse events as shown in the second use case.
Furthermore, different social network analyses were ap-
plied to identify and verify the key ontology terms essential
in the topic.
Although social network analysis (SNA) has been widely

used in the fields of web search and social studies, its ap-
plication in ontology field is rare. SNA uses graph theories.
Since ontologies can be considered as (labeled, directed)
graphs, graph analysis techniques are promising tools for
evaluating ontologies in many dimensions. Hoser et al.
have applied SNA to analyze the structures of Suggested
Upper Merged Ontology (SUMO) and SWRC ontology
[43]. Harth et al. and Hogan et al. have been developing
search strategies using network-based approaches to mine
linked data in semantic web respectively [49,53]. Their
studies show that the SNA of a given ontology provides
deep insights into the structure of ontologies and know-
ledge base. These ontology-related SNA studies treated all
ontology classes and relations as network nodes. Different
from this approach, our SNA analyses only consider ontol-
ogy classes and their instances as nodes and make ontol-
ogy relations (i.e., object properties) as edges. Our distinct
treatment of ontology relations as edges makes senses
since these relations are designed to link different classes
and their instances. Our SNA study found that the
visualization and social network analysis results using
the Case Study 2 data provide better understanding of
ontology designing and evaluation. Interestingly, our
SNA hub and closeness analyses generated two distinct
sets of results. The hub analysis identified all five sus-
ceptibility alleles of SNPs as top key terms while the
closeness analysis detected all three susceptibility genes
collected in the Case Study 2. The SNA hubs are terms
directed to the high authority terms. Our identification
of all the SNPs as hubs is consistent with the notion that
these SNPs are essential for the authority terms such as
‘systemic adverse event of smallpox vaccination’ and
‘genetic susceptibility of vaccine adverse event’. The
closeness centrality measures how a node can be easily
reached by other nodes. As the genes have different sus-
ceptibility variants (i.e., SNPs of genes), it makes sense that
the genes have better closeness centrality scores than their
variants. Since these genes are not directly defined as gen-
etic susceptibility factors, the genes appear to be hidden
factors that can be mined from the OGSF data. When we
consider the gene functions, the direct gene name extrac-
tion gives more biological meaningful information than
the variants themselves. These distinct observations sug-
gest that different SNA analysis methods may identify
ontology terms essential from different aspects.
Other than OGSF, many other research projects also

focus on establishing and cataloging the relation between
genotypes and phenotypes. For example, the Database
of Genotypes and Phenotypes (dbGaP) is a repository
for archiving, curating, and distributing the information
obtained from studies investigating the interactions of
genotypes and phenotypes [54]. SNPedia is focused on
the medical, phenotypic and genealogical associations of
SNPs [55]. The Leiden Open (source) Variation Database
(LOVD) provides open data of genetic variants curated
from published paper, and the disease association in-
formation is included [56]. GWAS central (previously
called HGBASE, HGVbase and HGVbaseG2P) pro-
vides a centralized compilation of summarized findings
from genetic association studies [57]. These resources
provide structured raw or curated information related
to genotypes and phenotypes. However, unlike OGSF,
these resources do not ontologically represent different
genetic susceptibility types and genetic susceptibility
factors with all necessary information and evidence as-
sertions. OGSF is able to serve as an intermediate and
an integrative layer between various evidence-based
medicine applications and above existing structure data
resources and other unstructured data resources.
Our study clearly shows that OGSF provides a robust

platform to support logical representation and analysis
of genetic susceptibility and genetic susceptibility factors.
Such platform will allow us to logically organize the know-
ledge and data related to genetic susceptibility and genetic
susceptibility factors. With the well-organized informa-
tion, it is then possible to generate automatic reasoning
programs to analyze the data, predict new knowledge on
genetic susceptibility, and support personalized medicine
research. However, while the use case studies out of the
literature curation were meant for evaluating and validat-
ing the OGSF framework, it would be a huge effort to
manually curate all the possible data available in the litera-
ture. To improve the study of genetic susceptibility factors,
it might help to devote more programing effort to select-
ively integrate related data sources from openly accessible
resources such as the SNPedia [55] as introduced above.
Advanced text mining programs may also be developed to
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retrieved related information from unstructured literature
data. Following these programming efforts, a large amount
of manual curation may also be requested for expanding
the ontology and making it more useful. To achieve a
long-term goal of solving susceptibility issues, some spe-
cific domains may initially be focused. We are looking for
collaborations for further applying OGSF for practical
usage for scientific domains.
Conclusions
Originated from previous OGSF-DM research [14], the
new Ontology of Genetic Susceptibility Factors (OGSF)
is aligned with the framework of BFO 2.0 and developed
to ontologically represents various genetic susceptibility
types, genetic susceptibility factors, and related entities
and relations. OGSF has been used to represent genetic
susceptibility and susceptibility factors associated with
vaccine adverse events as annotated from experimental
studies. Our SPARQL and network evaluations have
shown that OGSF is able to provide a robust framework
for the representation and analysis of genetic susceptibil-
ity knowledge and datasets. The social network analysis
results also demonstrated that key ontology terms crit-
ical in different aspects can be detected with different
centrality-based network analysis methods.
Methods
Ontology editing
The format of OGSF ontology is W3C standard Web
Ontology Language (OWL2) (http://www.w3.org/TR/owl-
guide/). For this study, many new terms and logical def-
inition were added into original OGSF [14] using the
Protégé 4.3.0 build 304 OWL ontology editor (http://
protege.stanford.edu/).
Ontology term reuse and new term generation
OGSF imports the whole set of the Basic Formal Ontology
(BFO) [58]. To support ontology interoperability, terms
from OBO Foundry ontologies, such as OBI, OAE, IAO
and etc., are reused. For this purpose, OntoFox [59] was
applied for extracting individual terms from external on-
tologies. For those genetic susceptibility-specific terms, we
generated new OGSF IDs with the prefix of “OGSF_”
followed by seven-digit auto-incremental digital numbers.
New OGSF terms created according to the intensive mod-
eling from the use cases.
Evaluation of OGSF by SPARQL
Use case studies were designed based on literature survey.
SPARQL was performed using the SPARQL query plug-in
embedded with Protégé 4.3.0 build 304.
Evaluation of OGSF by social network analysis
Graphed data used for visualization was first extracted
from OGSF using the OntoGraf plug-in [44]. After man-
ual editing, the file (Additional file 3) was used as input
for the network visualization software Gephi 0.8.2 beta
(http://gephi.org) [45]. Gephi was also used to conduct
social network data analysis and visualization based on
the extracted data. The embedded algorithms in Gephi
were used to calculate the scores of degree, closeness
[59], and hub and authority [46].

Availability and access
The website for OGSF project is available at http://code.
google.com/p/ogsf/. As an OBO Foundry library ontol-
ogy, OGSF has been deposited by default in the Ontobee
linked data server [41]. All OGSF terms can be browsed
and searched via the Ontobee at http://www.ontobee.
org/browser/index.php?o=OGSF. The source of the ontol-
ogy is also deposited in the NCBO Bioportal: http://bioportal.
bioontology.org/ontologies/3214.

Additional files

Additional file 1: Screen shots of SPARQL queries. (A) SPARQL query
used in Ontobee SPARQL query endpoint. The file includes the SPARQL
query script used in the Ontobee SPARQL query endpoint (http://www.
ontobee.org/sparql/index.php) and its results as returned by the Ontobee
SPARQL query server. (B) Additional File 4.png. Screen shot of Protégé
SPARQL query tab showing the SPARQL query result.

Additional file 2: Network characteristic measurements of each
node in the use case 2 graph. The file includes in-degree, out-degree,
degree, authority, hub, modularity, clustering, strength, local clustering
coefficient, eigenvector centrality, PageRank, eccentricity, closeness
centrality, betweenness centrality scores of the 24 nodes in the graph.
The calculation was conducted by using Gephi software.

Additional file 3: The input file used for network visualization
analysis using Gephi software. The file includes the data of individuals
and related classes of case study 2 extracted from OGSF ontology.
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