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Abstract

Background: Biomedical ontologies aim at providing the most exhaustive and rigorous representation of reality as
described by biomedical sciences. A large part of medical reasoning deals with diagnosis and is essentially
probabilistic. It would be an asset for biomedical ontologies to be able to support such a probabilistic reasoning
and formalize Bayesian indicators of performance: sensitivity, specificity, positive predictive value and negative
predictive value. In doing so, one has to consider that not only the positive and negative predictive values, but also
sensitivity and specificity depend upon the group under consideration: this is the “spectrum effect”.

Methods: The sensitivity value of an index test IT for a disease M in a group g is identified with the proportion of
people in g who have M who would get a positive result to IT if the test IT was realized on them. This value can be
estimated by selecting a reference test RT for M and a sample s of g, and measuring the proportion, among
members of s having a positive result to RT, of those who got a positive result to IT. Similar approximation
strategies hold for prevalence, specificity, PPV and NPV. Indicators of diagnostic performances and their estimations
are formalized in the context of the OBO Foundry, built on the realist upper ontology Basic Formal Ontology (BFO).

Results: Entities and relations from the Ontology for Biomedical investigations (OBI) and the Information Artifact
Ontology (IAO) are used and complemented to represent reference tests and index tests, tests executions, tests
results and the relations involving those entities, as well as the values of indicators of performance and their
estimates. The computations taking as input several estimates of an indicator of performance to produce a finer
estimate are also represented. The value of e.g. sensitivity estimates should be dissociated from the real sensitivity
value – which involves possible, non-actual conditions, namely the result a person would get if a medical test
would be performed on her. Such conditions could not be directly represented in a realist ontology, but a
representation is proposed that introduces only actual entities by considering a disposition whose probability value
is the real sensitivity value. A sensitivity estimate is a data item which is about such a disposition.

Conclusions: This model provides theoretical basis for the representation of entities supporting Bayesian reasoning
in ontologies.
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Background
Definition of indicators of performance
Biomedical ontologies aim at providing the most exhaust-
ive and rigorous representation of reality as described by
biomedical sciences. A large part of medical reasoning
deals with diagnosis and is essentially probabilistic. It

would be an asset for biomedical ontologies to be able to
support such a probabilistic reasoning.
Ledley and Lusted’s seminal article [1] on Bayesian rea-

soning in medicine defines different kinds of probabilistic
entities. Consider for example the simple case of an in-
stance of test of type IT (for “index test” – a test whose ac-
curacy is being measured) aiming at detecting if a patient in
a group g has an instance of disease of type M.1 The per-
formance of test IT in diagnosing M can be quantified by
the positive predictive value of this test, hereafter abbrevi-
ated PPV, defined by the Oxford Handbook of Medical
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Statistics [2] as the “proportion of tested positives who are
true positives” and by the negative predictive value, here-
after abbreviated NPV, defined as the “proportion of tested
negatives who are true negatives”. These values provide the
probability that a patient has or not the disease, depending
upon the result (positive or negative) to the test.
However, such values depend on some characteristics

of the patient. If a patient received a positive test, the
probability that he has the disease can for example depend
upon his sex, his status of smoker or non-smoker, and
other biological or environmental parameters. In particular,
it depends on the prevalence of the disease among the
group of persons with those characteristics.
Therefore, the statistical data communicated in the

medical literature for a test are generally not the positive
and negative predictive values, but the so-called “sen-
sitivity” and “specificity”. The Oxford Handbook of
Medical Statistics defines sensitivity as “the propor-
tion of those who have the disease who are correctly
identified by the test as positive” ([2], p. 340) and spe-
cificity as “the proportion of those who do not have
the disease who are correctly identified by the test as
negative“. The PPV and NPV can be computed on the
basis of the prevalence Prev, sensitivity Se and specifi-
city Sp thanks to the following Bayesian equations:

PPV ¼ Prev:Se
Prev:Seþ 1−Prevð Þ 1−Spð Þ

NPV ¼ 1−Prevð Þ:Sp
Prev: 1−Seð Þ þ 1−Prevð Þ:Sp

In the remainder of the article, sensitivity, specificity,
PPV and NPV will be called “(Bayesian) indicators of
performance” and abbreviated “IPs”.
In the wake of Ledley and Lusted [1] the sensitivity

and specificity values have often been considered as de-
pending only on the pathophysiological characteristics of
the disease and of the test, and thus as being independent
of the group of people under consideration. However, sen-
sitivity and specificity values do in fact depend upon the
group under consideration: this is the “spectrum effect”
[3].

The spectrum effect
If IT is an index test and M is a disease, let’s introduce
f1(IT,M) as “the proportion of individuals who get a posi-
tive result to IT, among individuals who have M”, which
fits with the usual definition of sensitivity (as provided
by [2]). The main problem with this definition is that it
does not specify the reference population. "The individ-
uals who have M” are part of which population: the
population in a given sample? The population of a spe-
cific country? The whole human population? Ledley and
Lusted [1] considered that sensitivity and specificity

depend upon pathophysiological characteristics of the
disease, but not upon the population in consideration. If
this was the case, the proportion of people tested posi-
tive among the diseased would be the same in any group
under consideration – abstracting from statistical fluctua-
tions due to randomness. However, as has been recog-
nized by the medical literature, but regularly omitted, this
hypothesis is false for at least two reasons. First, most tests
are not inherently dichotomous but rely on a
categorization of individuals based on continuous traits
[3]. Second, various populations can express various dis-
ease characteristics (such as various degrees of severity
[4]) that will influence the chance to get a positive result
to a test.
The latter can be illustrated with the following ex-

ample. Suppose that around 80 % of people having
rheumatoid arthritis have a rheumatoid factor (RF), and
would with certainty receive a positive result to a test
that would perfectly2 detect this factor; and that the
remaining 20 % do not have a rheumatoid factor, and
would receive a negative result (yet do have the disease).
The diseased population is then composed of two sub-
groups: a subgroup sg1 whose members would all get
for sure a positive result to IT, and a subgroup sg2
whose members would all get for sure a negative result
(see Fig. 1). The sensitivity calculated in this example
would be 80 %.
Nevertheless, in reality, those proportions vary

based upon various characteristics of the patients. For
example, RF presence increases with age at onset of
disease in juvenile arthritis [5]. As a result, the sensi-
tivity of a test for RF will increase according to the
age of the individuals of the population being tested.
Its sensitivity will be lower in younger patients and
higher in older patients.

Fig. 1 Variation of sensitivity depending on the group
under consideration
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Therefore, f1 is not a well-defined function: the value
of the proportion does not depend only upon IT and M,
but also upon the population g under consideration
(which could be, for example, the whole human popula-
tion, the Canadian smoker population, the female popula-
tion, etc.). This is the “spectrum effect”, which can also be
manifested, for example, as a dependence of sensitivity
and specificity on the degree of severity of the disease in
the group under consideration [4].
The sensitivity can therefore depend on the group g

under consideration. A better candidate than f1(IT,M) to
the definition of the sensitivity value would be the func-
tion f2(g,IT,M) defined as “the proportion3 among
people in g who have M of those who would get a posi-
tive result to IT if the test IT was realized on them” –
the mention in italic is necessary, as a test IT will not be
realized on all individuals who have M, but on a sample
only. The next part will distinguish three related entities:
the real sensitivity4 value, its estimates, and the measure-
ments of proportion in samples. It will also explain how
such entities should be distinguished in an ontology of IPs.

Methods
Proportion measurement in a sample
It is impossible to know f2(g,IT,M) with certainty in
practice, for two reasons. The first reason is that it is
often not possible to determine with certainty, through
reasonable means, whether a given person has the dis-
ease M or not; in some cases, the only way to be certain
would be to perform an autopsy on the deceased patient.
Therefore, one needs to use a “reference test”, which is
the best diagnostic test that is reasonable to perform in
the present context (for more on the distinction between
a reference test and the associated disease, see section
“The challenge of representing indicators of performance
in an ontology” below).
If the patient receives a positive result to this reference

test, it will be concluded that he has the disease; if he re-
ceives a negative result, it will be concluded that he does
not have it. But those inferences can be wrong: the refer-
ence test might lead to a positive result for a non-
diseased person, or a negative result for a diseased per-
son. If RT is a reference test for M and IT is an index
test (of unknown accuracy) for M, then one can define
the function f3(g,IT,RT) as “the proportion, among indi-
viduals of g who would get a positive result to RT if the
test RT had been performed on them, of people who
would get a positive result to IT if the test IT was real-
ized on them”. Since RT is a reference test for M,
f3(g,IT,RT) approximates f2(g,IT,M). Both values can dif-
fer though: this is a first epistemic limit to the know-
ledge of f2(g,IT,M).
On top of this, f3(g,IT,RT) is not directly measurable.

As a matter of fact, a test IT is never realized on a

population as large as e.g., the whole population of
smokers, or the whole male population. It is however
possible to approximate f3(g,IT,RT) by performing both
tests IT and RT on individuals in a sample s judged as
being representative of the population g. Let’s define
f4(s,IT,RT) as “the proportion, among members of s who
got a positive result to RT, of those who got a positive re-
sult to IT”. If s is a representative sample of g, then
f4(s,IT,RT) does approximate f3(g,IT,RT) – and thus, by
transitivity, does approximate f2(g,IT,M). Note that as
long as the sample s is not perfectly representative of g,
f4(s,IT,RT) will differ at least slightly from f3(g,IT,RT)
(which also differs from f2(g,IT,M)): this is a second
limit to the knowledge of f2(g,IT,M).
Let’s illustrate those two limits of estimations with a

study [4] which analyzes the quality of the Neer test
(here written IT’) for diagnosing the shoulder impinge-
ment syndrome (written M’), a syndrome that is charac-
terized by rotator cuff muscles inflammation near the
sub-acromial space. In this study, the Neer test IT’ is re-
alized on a sample (written s’) of 552 patients, judged as
representative of the target population (g’). Park et al.
[4] take as reference test (RT’) the surgical observation.
Here, f4(s’,IT’,RT’) is the proportion of people in the
sample who have received a positive result to the Neer
test, among those diagnosed as positive by surgical op-
eration. f4(s’,IT’,RT’) approximates f3(g’,IT’,RT’), namely
the proportion of individuals in the target population g’
who would get a positive result to the Neer test among
those who would get a positive result by surgical observa-
tion, if those tests were performed on them. Finally,
f3(g’,IT’,RT’) itself approximates f2(g’,IT’,M’), which is the
proportion of individuals in g’ who would receive a posi-
tive Neer test result among those who have an im-
pingement syndrome. Thus, f4(s’,IT’,RT’) approximates
f2(g’,IT’,M’).
Note that similar approximation strategies hold for

prevalence, specificity, PPV and NPV. Concerning e.g.
specificity, one could thus define f ’2(g,IT,M) as “the pro-
portion5 among people in g who don’t have M of those
who would get a negative result to IT if the test IT was
performed on them”; and f ’4(s,IT,RT) as “the proportion,
among members of s who got a negative result to RT,
of those who got a negative result to IT”. Thus,
f ’4(s,IT,RT) approximates f ’2(g,IT,M).

Sensitivity value and sensitivity estimates
Now that those definitions have been given, we can de-
termine which entity the word ‘sensitivity’ refers to in
the medical literature. At first sight, this term might ap-
pear polysemic. To illustrate this, let’s consider a study
which evaluates the quality of an exercise test in the
diagnosis of coronary artery disease, and claims: “The
sensitivity varied substantially according to sex (women
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30 % and men 64 %)” [6]. On one hand, the statement
“sensitivity varies substantially according to the sex” sug-
gests that sensitivity depends on the target population g
in consideration, and that there is a sensitivity value for
the female population, and another one for the male
population. This formulation thus suggests that sensitivity
value is given by the function f2(g,IT,M). However, the
value 30 % assigned to the sensitivity of the test for women
refers to a proportion which has been measured by the au-
thors in a sample of 37 women, using coronary angiog-
raphy as a reference test. This might thus suggest that the
sensitivity value is in fact given by the function f4(s,IT,RT)
However, two arguments suggest that the sensitivity

value should be interpreted as f2(g,IT,M) rather than
f4(s,IT,RT). First, the value which is ultimately relevant
for medical practice is f2(g,IT,M): if s is a sample of g
and RT is a reference test for M, f4(s,IT,RT) is of interest
for the medical practitioner only insofar as it provides
an information on the diseaseM and the target population
g from which the sample is taken – that is, insofar as it
provides an estimate of f2(g,IT,M). Indeed, the fact that a
few people who got a positive result to RT in a given sam-
ple have got a positive or negative result to a test IT has
medical relevance only insofar as it teaches us something
about how diseased people in the target population (not
only in the sample) will react to this test IT.
Second, the sensitivity value is usually given with a

95 % confidence interval (see e.g., [7] or [8]), which esti-
mates the likely range of error in determining the sensitivity
value. But f4(s,IT,RT) can be measured with certainty,6 and
thus the confidence interval cannot characterize the uncer-
tainty on our knowledge of f4. On the other hand, there is
some uncertainty on the knowledge of f2(g,IT,M) and
f3(g,IT,RT), as they are estimated on the basis of f4(s,IT,RT).
Therefore, the 95 % confidence interval would characterize
the uncertainty on the knowledge of f3(g,IT,RT), which is
taken as a proxy for f2(g,IT,M).7

Thus, those two arguments suggest that the term “sensi-
tivity” should refer to f2(g,IT,M) – which is relative to a
disease and a target population – rather than to f4(s,IT,RT)
– which is relative to a reference test and a sample.8 As
for f4(s,IT,RT), it can be interpreted as the value of a meas-
urement of proportion in a sample, which provides an es-
timate of the sensitivity value.
Therefore, a sentence such as “The sensitivity varied

substantially according to sex (women 30 % and men
64 %)” should, more rigorously, be formulated as: “The
sensitivity varies substantially depending on the sex:
through measurement of proportions in samples, its
value was estimated to be 30 % for the women, and 64 %
for the men”. We could prefer the first formulation, more
compact, for practical reasons; but it is important to
remember that it is only a shortcut for the second
formulation.

Accordingly, we will need to dissociate three different
kinds of entities. First, tests execution on a sample s, re-
ferring more precisely to the process of performing tests
IT and RT and measuring the numbers of true positive,
false positive, true negative and false negative as opera-
tionalized by IT and RT - for example, the false positive
are people who are tested positive by the index test IT
but negative by the reference test RT in the sample s.
Second, the proportion of true positives among positives
(as given by the reference test) is relative to the index
test, the reference test and the sample, and its value is
given by the function f4(s,IT,RT); as such, it provides an
estimate of the sensitivity value. Third, the “real sensitiv-
ity”, which is relative to an index test, a disease and a
population g, and whose value f2(g,IT,M) is given by the
proportion of people in the group who would have a
positive result to the test IT among those who are dis-
eased. The real sensitivity would provide a better infor-
mation than a sensitivity estimate on the probability that
a random member of the group g would get a positive
test result, in case he has the disease. However, its value
f2(g,IT,M) cannot be known with certainty, contrarily to
the value of the sensitivity estimate f4(s,IT,RT).
More generally, those considerations can be adapted

to other indicators of performance (specificity, PPV and
NPV), as well as the prevalence. In particular, f ’2(g,IT,M)
should refer to the real specificity value, whereas
f ’4(s,IT,RT) can be interpreted as the value of a measured
proportion in a sample that provides an estimate of the
real specificity value. In particular, real sensitivity, speci-
ficity, PPV and NPV, as we have defined them above, de-
pend neither on the sample nor on the reference test.
However, they are estimated on the basis of proportion
measurements which depend both on the sample and
the reference test. Accordingly, when a study [9] men-
tions “cadaveric prevalence” of the rotator cuff tears, this
expression should be understood as a linguistical shortcut
denoting a proportion measurement in a sample when the
cadaverical analysis is adopted as reference test; and the
“radiological prevalence” should be understood as a pro-
portion measurement when the radiological analysis is
adopted as reference test. The real prevalence, how-
ever, does not depend on the reference test.

Aggregation of sensitivity estimates
Finally, we need to add a last layer to this model. Ap-
proximations of sensitivity taken in different samples,
with different index tests, can be combined in order to
build a finer estimate of sensitivity for a more encom-
passing category of index tests. Consider for example the
meta-analysis [7] which assess the quality of peripheral
thermometers in detecting fever. They use as reference
test a pulmonary artery catheter, and consider 29 studies
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assessing the sensitivity and specificity of those devices.
Combining those values, they come up with an estimate
of 0.64 for the sensitivity and of 0.96 for the specificity.

The challenge of representing indicators of performance
in an ontology
To the extent that they aim at representing biomedical
knowledge and enabling medical reasoning, biomedical
ontologies should provide a formalization of IPs as well
as the prevalence, by dissociating e.g. the real sensitivity
from the sensitivity estimates, and the process leading to
those estimates. This article will introduce such a
formalization in the context of the OBO Foundry [10],
one of the most massive set of interoperable ontologies in
the biomedical domain, built on the upper ontology Basic
Formal Ontology (BFO) 1.1 [11].
BFO endorses a realist methodology, which carefully

dissociates material entities (such as disorders) from
informational entities (such as diagnosis). In common
medical practice, a disease may be diagnosed in ideal
circumstances by a given gold standard test, which can
be defined as the most accurate reference test; but the dis-
ease, the diagnosis, and the result to a gold standard test
are three different entities that should be distinguished. As
a matter of fact, many human diseases already existed a
few thousands of years ago, much before they could be di-
agnosed. Moreover, a diagnosis can be wrong or imprecise.
Finally, a given gold standard can be later replaced by a
better one: this shows that the disease cannot be defined
by a positive result to a gold standard - otherwise, there
could not be, by definition, a “better” gold standard. Thus,
while a diagnosis of a disease represents the best know-
ledge by some health or research professional of the pres-
ence of the disease in a particular patient, a diagnosis is
not equivalent to a disease: it is rather “about” a disease.
This formalization is compatible with IAO (Information
Artifact Ontology [16]) and OGMS (Ontology for General
Medical Sciences).
The question of how probabilistic notions can be rep-

resented in ontologies has been tackled from different
perspectives in the past. For example, [12] has proposed
the alternative PR-OWL format that extends the clas-
sical OWL format; we take here a different approach,
which does not aim at changing the OWL format. Solda-
tova and colleagues [13] have described a model in
which probabilities can be assigned to research state-
ments. We build here upon an alternative approach [14],
in which probabilities can be assigned to dispositions.
Sensitivity and specificity have been recently introduced

in the Ontology of Biological and Clinical Statistics (OBCS
[15]) as subclasses of Data item. We will partly endorse
and refine this classification, by considering estimates of
sensitivity and specificity as subclasses of Data Item, and
extend this classification to PPV and NPV. A data item, as

defined by the Information Artifact Ontology (IAO) [16],
is intended to be a truthful statement about something. In
order to formalize IPs, one should thus clarify which en-
tities in the real world they are about.
Proportion measurements are data items that are ob-

tained from some processes named "proportion mea-
sures", which involve performing two kinds of tests (the
index test and the reference test) in a sample. On the
other hand, we have defined a real sensitivity value
f2(g,IT,M) as the proportion of people who would get a
positive result by IT among those who have the disease
M. But note here the conditional structure: what is re-
ferred to is the proportion of true positives among dis-
eased if IT was performed on them. In realistic
situations, however, as explained above, the sensitivity
value will be estimated by performing the test on a sam-
ple of the population only – not the entire population g;
thus, f2(g,IT,M) is the value of a non-actual proportion.9

However, possible-but-non-actual situations cannot be
straightforwardly represented in a realist ontology like
BFO. To solve this problem, we will formalize the real IP
value as the probability assigned to a disposition borne by
an instance of group of individuals; and estimates of IPs as
data items which are about such a disposition. This will
provide a formal characterization of IPs and their esti-
mates based on proportion measurements.

Results
The formalization that will be presented here can be visu-
alized on Fig. 2 and Fig. 3, in which classes are in rectan-
gles, instances in boxes with rounded edges, and the
numerical value assigned by datatype properties in ellipses.
Unless specified otherwise, all the relations used here be-
long to BFO 1.1 [11].

Test results and sensitivity estimate
Let us first start with the formalization of test results and
the IP estimates they lead to (see Fig. 1).10 A Medical_test
will be here considered as a subclass of Planned_process
(as defined by OBI, the Ontology for Biomedical Investiga-
tions [17]) which consists in the observation of a given
feature to infer the presence of another feature – in the
case of interest, a pathological entity such as a disease.
Consider a medical test11 IT1 and a disease M:

Medical_test is_a Planned_process
IT1 is_a Medical_test
M is_a Disease

Suppose that we are interested in the sensitivity and
specificity of test IT1 for diagnosing M in a group g1.
This group g1 will be formalized as a collection of
humans (for more on collections, see [18]). To estimate this
sensitivity and specificity, one can select a sample s1
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considered to be representative of g1 (which will be called
the reference class). Thus:

g1 instance_of Collection_of_humans
s1 instance_of Sample_of_humans
Sample_of_humans is_a Collection_of_humans
s1 part_of g1

Let’s now introduce the class of tests RT1 which are
reference tests for M:

RT1 is_a Medical_test

s1 is composed of n humans, named p1, p2,…,pn.
Two12 tests will be performed on each pi: an instance of

RT1, named thereafter rt1,i, and an instance of IT1,
named it1,i; thus, for every i between 1 and n:

pi instance_of Human
pi part_of s1
pi participates_in rt1,i
pi participates_in it1,i

We introduce tests_executions1,IT1,RT1 which has as
part all the tests rt1,i and it1,i for i between 1 and n and
the recording of which members of the sample are true
positives (those who have been tested positive both by
IT1 and RT1), true negatives (those who have been tested
negative both by IT1 and RT1), false positives (those who
have been tested positive by IT1 but negative by RT1)

Fig. 2 Real sensitivity and specificity values and their estimates

Fig. 3 Aggregation of several sensitivity estimates
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and false negatives (those who have been tested negative
by IT1 but positive by RT1). This recording leads (OBI:-
has_specified_output) to the creation of the instance of
Data_set named tests_resultss1,IT1,RT1:

tests_executions1,IT1,RT1 instance_of Planned_process
rt1,i part_of tests_executions1,IT1,RT1
it1,i part_of tests_executions1,IT1,RT1
tests_resultss1,IT1,RT1 instance_of Data_set
tests_executions1,IT1,RT1 has_specified_output
tests_resultss1,IT1,RT1

The tests_resultss1,IT1,RT1 will then serve as input
(OBI:has_specified_input) to a planned process noted
computationSe1 which computes a sensitivity estimates
noted estimateSe1 , by calculating the proportion of true
positives among positives:13

computationSe1 is_a Planned_process
estimateSe1 is_a Data_item
computationSe1 has_specified_input
tests_resultss1,IT1,RT1
computationSe1 has_specified_output estimateSe1

Finally, we can use the datatype property OBI:has_-
specified_value to relate estimateSe1 with its numerical
value f4(s1,IT1,RT1):

estimateSe1 has_specified_value f4(s1,IT1,RT1)

Similar strategies can hold for representing Specificity,
PPV and NPV and their estimates.14

Aggregation of sensitivity estimates
We will now show how various sensitivity estimates can
be aggregated for a finer sensitivity estimate (cf. Fig. 3).
Suppose that we have another sample s2 (also a part_of g),
composed of n’ humans named q1, q2, ..., qn'. We can per-
form another measure of sensitivity for a related (possibly
identical to IT1) index test IT2 for M in g on this sample,
using a related (possibly identical to RT1) reference test
RT2, by performing instances of RT2 named rt2,j (for j
between 1 and n’) and instances of IT2 named it2,j on each
member qj of s2. One can then define the entity tests_exe-
cutions2,IT2,RT2 as a planned process which has as part
those tests rt2,j and it2,j, and which has as output tests_re-
sultss2,IT2,RT2; the latter serves as input to another compu-
tation of sensitivity computationSe2 , which has as output
another estimate of sensitivity estimateSe2 , to which the
value f4(s2,IT2,RT2) can be assigned (the latter being the
proportion, among people who have been tested positive by
RT2 in s2, of people who had a positive result to IT2).
As explained earlier, various sensitivity estimates can

be combined to estimate the value of the sensitivity of a

test for M in g. If IT1 and IT2 on one hand, and RT1 and
RT2 on the other hand, are similar enough (in particular,
if they are identical), those results might be gathered to
come up with a finer estimate of the sensitivity value.
More specifically, if IT1 and IT2 can be subsumed under
a common index test class IT0, and RT1 and RT2 can also
be subsumed under a common reference test class RT0,
then their values can be compiled mathematically (for ex-
ample by meta-analysis methods) to come up with the
value of a (hopefully finer) estimate named estimateSe1,2,
whose value is given by a function h(s1,IT1,RT1,s2,IT2,RT2).
This can be generalized to the aggregation of more than
two former estimates.
We can here introduce a planned process of computa-

tion of sensitivity named computationSe1,2, which takes as
input both estimateSe1 and estimateSe2 , and the output of
such a process, a data item named estimateSe1,2:

computationSe1,2 instance_of Planned_process
estimateSe1,2 instance_of Data_item
computationSe1,2 has_specified_input estimateSe1
computationSe1,2 has_specified_input estimateSe2
computationSe1,2 has_specified_output estimateSe1,2
estimateSe1,2 has_specified_value h(s1,IT1,RT1,s2,IT2,RT2)

We will not aim at giving the details of this function h,
which is the responsibility of the statistician, not the on-
tologist – who focuses on how to represent such values.
Finally, since estimateSe1 or estimateSe1,2 are informational

entities, they must be about some entities. To determine
what those entities are about, we will need to formalize the
entity to which is assigned the “real sensitivity value”.

Real sensitivity value
As said earlier, estimates of sensitivity of IT for M in g
aim at estimating the real sensitivity value, which is given
by the proportion of members of g who would get a posi-
tive result to IT among those who have M. However, the
condition of performing the test IT on the members of g
is never realized, because the test is performed (at best) on
one or several samples of the population, not on the whole
population g: the performance of test IT on the members
of g is a possible (leaving aside practical difficulties), non-
actual condition. Interpreting specificity, PPV, and NPV
along the former lines would also imply such possible,
non-actual conditions.
BFO’s realist methodology [19] implies that all instances

should be actual entities. Thus, one cannot represent
directly such a possible-but-not-actual condition in an
ontology based on BFO. In order to solve this difficulty,
we will introduce a strategy named “randomization”,
which will clarify the nature of the real sensitivity value
as a probability assigned to an actual entity, namely a
disposition. This will also clarify what an estimate of
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sensitivity is about, namely about this disposition. Thus, it
will enable to represent IPs in a realist fashion, compliant
with BFO’s methodology.

From proportions to objective probabilities: the
randomization strategy
We will explain first how the proportion of a subgroup
in a group can be formalized as a probability value
assigned to a disposition; this will help explaining later
how the proportion of a subgroup in a group undergoing
a possible, non-actual condition can be formalized along
similar lines.
Dispositions are entities that can exist without being

manifested; an example of disposition is the fragility of a
glass, which can exist even when the glass does not
break. We will use Röhl & Jansen's model of disposition
[20] in BFO, which associates to every instance of dis-
position one or several instances of realizations, and one
or several instances of triggers (a trigger is the specific
process that can lead to a realization occurring). In this
model, the fragility of a glass is a disposition of the glass
to break (the breaking process is the realization) when it
undergoes some kind of stress (the process of undergo-
ing such a stress is the trigger); this disposition inheres
in the glass. Starting with the definition of these entities
and their relations at the instance level, Röhl & Jansen
proceed to formalize them at the universal level. Previ-
ous work [14] has shown how to adapt this model to
probabilistic dispositions. Thus, an instance of balanced
coin is the bearer of an instance of disposition to fall on
heads (the realization process) when it is tossed (the
trigger process), to which an objective probability 1/2
can be assigned.
We will now extend the scope of this model to the

situation at hand. Consider the prevalence Prev(g,M),
which was defined above as the proportion of persons
having M in the actual population g. We can define the
disposition dPrevg,M , borne by the group g, that a person
randomly drawn in g has M. More specifically, let’s write
Tg the process “randomly drawing a person in g”, and
Rg,M the process “drawing by Tg someone who has M”:
the triggers of dPrevg,M are instances of Tg and its realizations
are instances of Rg,M. Following the lines of previous work
[14], one can thus define the probability assigned to the
disposition15 dPrevg,M , which is the probability of drawing
randomly someone who has M in g. This probability is
equal to the proportion of individuals who have M in g,
that is, to Prev(g,M): if there are e.g., 10 % diseased
people in g, then the probability of drawing randomly a
diseased person in g is 10 %. Thus, the prevalence value
can be identified to the objective probability assigned
to the disposition dPrevg,M . We name this strategy the
“randomization” of the proportion of persons having
M in g.

The randomization strategy may not be necessary to
formalize a proportion in an actual group, such as the
prevalence. But this strategy can also be applied to pro-
portions of people in groups which are subject to a pos-
sible, non-actual condition – and thus, be relevant to
formalize sensitivity and other IPs, and their estimates.
As a matter of fact, the real sensitivity value f2(g,IT,M)
was defined as the proportion of people who would get
a positive result to IT among M’s bearers in g. This value
can be “randomized” as follows. We can define dSeg,IT,M as
the disposition16 to draw randomly, among the individ-
uals of g who have M, someone who is tested positive by
IT. More specifically, let’s define the process TSe

g,IT,M as
the “performance of test IT on the individuals in g, and
random draw of an individual among those who have
the disease M”;17 and the process RSe

g,IT,M as the “drawing
by TSe

g,IT,M of someone who got a positive result to IT”.
The triggers of dSeg,IT,M are instances of TSe

g,IT,M, and its re-
alizations are instances of RSe

g,IT,M . As it happens, the real
sensitivity value f2(g,IT,M) is the objective probability
assigned to this disposition dSeg,IT,M,: indeed, if there are
e.g., 15 % of the diseased people in g who would get a
positive result by IT, then the probability of randomly
drawing someone who got a positive test result by IT
among diseased people in g if test IT would be per-
formed on them is equal to 15 %.
Specificity value can be defined along similar lines, as

probabilities assigned to actual dispositions borne by the
group g noted dSpg,IT,M (and similarly for the PPV and
NPV). Although both dSeg,IT,M and dSpg,IT,M are dispositions
inhering in g, they have different triggers and different
realizations; the process TSp

g,IT,M is the “performance of
test IT on the individuals in g, and random draw of an
individual among those who do not have the disease M”
and the process RSp

g,IT,M is the “drawing by TSp
g,IT,M of

someone who got a negative result to IT”.

Assignment of real sensitivity values to dispositions
Let us now consider how to formalize these probability
values in ontologies. dSeg,IT,M is a disposition individual in-
hering in the group g; and a probability value can be
assigned to this disposition using a datatype property
has_probability_value [15]. This probability value is
what we called the real sensitivity value:18

dSeg,IT,M has_probability_value f2(g,IT,M)

Thanks to our analysis above, we can now answer our
original question, and state what sensitivity estimates
such as estimateSe1 or estimateSe2 are about19 - namely,
about this disposition:

estimateSe1 is_about dSeg1,IT1,M
estimateSe2 is_about dSeg2,IT2,M
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Also, if the samples s1 and s2 are considered by the
statistician as representative enough of a general popula-
tion g0 encompassing g1 and g2, if RT1 and RT2 are consid-
ered as similar enough to be representative in the same
way of the disease M, and if IT1 and IT2 are considered as
similar enough to be representative of a more general
index test IT0, then:

estimateSe1,2 is_about d
Se
g0,IT0,M

As dSeg,IT,M is an individual, it cannot be related directly
to the classes IT and M, but only indirectly, through the
following formalization. First, dSeg,IT,M can be seen as an
instance of a disposition class written DSe

IT,M, which has
as trigger the process class TSe

IT,M: “performance of test
IT on the members of a group, and random draw of a
person among those who have the disease M”; and as
realization the process class RSe

IT,M defined as “drawing by
TSe
IT,M of someone who got a positive result to IT”. We

can then introduce two new relations sensitivity_dispositio-
n_of_test and sensitivity_disposition_for (abreviated as
se_of_test and se_for_disease) relating DSe

IT,M with IT and M:

dSeg,IT,M instance_of DSe
IT,M

DSe
IT,M is_a Disposition

DSe
IT,M se_of_test IT

DSe
IT,M se_for_disease M

These two relations se_of_test and se_for_disease are
introduced for pragmatic reasons of facility of use: on a
foundational level, DSe

IT,M and M (resp. IT) could be re-
lated through a complex array of relations and entities
that involve the relation has_trigger between DSe

IT,M and
TSe
IT,M, as well as a sequence of relations between TSe

IT,M

and M (resp. IT). Such an analysis would raise interest-
ing theoretical questions, as instances of DSe

IT,M can exist
even if no instance of M or IT do exist - we therefore
face here issues similar to the ones addressed by [20]
and [21].
Figure 2 represents classes and particulars involved in

formalizing tests execution and results, sensitivity estimates,
the disposition this estimate is about, and the real sensitivity
value. Figure 3 represents the classes and particulars in-
volved in formalizing aggregation of sensitivity estimates
into a finer estimate. Specificity, PPV and NPV can be for-
malized along similar lines, as data items about dispositions
related to tests and diseases through relations that could be
labeled sp_of_test, sp_for_disease, ppv_of_test, ppv_for_-
disease, npv_of_test, and npv_for_disease.

Example of application
An example will now illustrate this formalization.
McTaggart and colleagues [8] have performed a meta-
analysis to determine the accuracy of point-of-care tests

for detecting albuminuria (let’s call IT0 the class of such
index tests), using as reference test a laboratory test
albumin-creatinine ratio-ACR (let’s call RT0 the class of
such reference tests).
They take into account ten studies in their article.

Consider for example Lloyd et al. [22], which measures
the accuracy of semiquantitative Clinitek® microalbumin
urine dipstick with a cutoff value indicating albumineria
at 3.4 mg/mmol (let’s call IT1 the class of such index
tests), with a laboratory ACR test with the same cutoff
value as a reference (let’s call RT1 the class of such refer-
ence tests). A sample s1 of 204 diabetic patients (labelled
here p1,1, p1,2,…, p1,204) was considered. On each of
those patients, one measurement of IT1 called a1,i,1 and
one of RT1 called rt1,i,1 is performed. The 2x204 = 408
processual entities are all part of a general tests execution
process labelled tests_executions1,IT1,RT1, which leads after
computation to the informational entity estimateSe1 , giving
the proportion of measure pairs in which IT1 led to a posi-
tive result among those in which RT1 led to a positive
result. This proportion is 83.8 %, and therefore, the
value f4(s1,IT1,RT1) of the informational entity estima-
teSe1 is 0.838.
Writing g the human population, we have s1 part_of g;

also, RT1 is_a RT0 and IT1 is_a IT0. Therefore,
f4(s1,IT1,RT1) provides an estimate of f2(g,IT0,RT0), which
is the sensitivity value of a point-of-care test in detecting al-
buminuria in the general population. However, other stud-
ies are pooled with this one by McTaggart and colleagues
[8] to provide a better estimate of f2(g,IT0,RT0). All together,
they lead to the value h(s1,IT1,RT1,…,s10,IT10,RT10) which
provides an estimate of the value of f2(g,IT0,RT0).
Note that the ten studies taken into account in this

meta-analysis include different kinds of patients. Seven
studies involve each a different sample of patients (let’s
call them s1, s2, …., s7) with diabetes mellitus, one of
them (s7) involving young patients with type 1 diabetes.
Two studies consider samples of patients (s8 and s9)
with kidney disease, diabetes mellitus, or both. Finally,
one study includes a sample (s10) of patients treated for
advanced chronic kidney disease in a renal outpatient
clinic. Let’s call g the human population, g1 the mem-
bers of g who have diabetes mellitus, g2 the members of
g who have a kidney disease and g0 the members of g
who have either diabetes mellitus or a kidney disease
(that is, g0 is the mereological sum of g1 and g2). All si
are part of g, the human population. Thus, the meta-
analysis made by McTaggart and colleagues [8] provides
an estimation of f2(g,IT0,RT0) or f2(g0,IT0,RT0). If the
meta-analysis had been performed on s1-s7 only, then it
would have provided an estimation of f2(g1,IT0,RT0); and
if it had been performed on samples of patients with
kidney disease only, then it would have provided an es-
timation of f2(g2,IT0,RT0).
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Note also that various cutoff values can be used to de-
fine the presence of albuminuria, varying between
2.65 mg/mmol to 3.4 mg/mmol, and those values are
chosen by the medical sub-community who is con-
ducting the study (the same cutoff value is taken for
both IT0 and RT0 in each study). Therefore, the clas-
ses IT0 and RT0, which mention ‘detecting albumin-
uria’ without specifying a cutoff value, are not
scientifically defined: those classes are not universals,
but rather collection of particulars [19] whose nature
is partly social ([8] acknowledge this limitation in
their meta-analysis).
Alternative meta-analysis could use a subset of those

studies to estimate various sensitivities, for example the
sensitivity f2(g1,IT1,RT1) of point-of-care test with a
reference of laboratory ACR test, with albuminuria de-
fined as ACR greater than 3.4 mg/mmol, in the refer-
ence class of patients with diabetes mellitus; or the
sensitivity f2(g2,IT2,RT2) of point-of-care test, with a
reference of laboratory ACR test, with albuminuria de-
fined as ACR greater than 2.65 mg/mmol, in the refer-
ence class of patients with kidney disease; etc. A well-
founded semantic representation of sensitivity should
thus make clear what is the reference class, as well as
the class of index test and reference test.

Discussion and conclusions
We have thus provided a practically tractable formalization
of IPs in a realist ontology, which clearly dissociates IPs’ real
values, their estimates and the related proportion measure-
ments. It has defined the central entities that are concerned
by an IP estimation in a way that is compliant with
OBO Foundry. In particular, it addresses the difficulty
of considering possible, non-actual conditions in a realist
ontology based on BFO by introducing dispositions.
This model could then be extended in three directions.

A first step would be to clarify the ontological status of
the two following entities: sample sizes on one hand;
and 95 % confidence interval for sensitivity and specifi-
city values on the other hand. A second step would be
to clarify the relations se_of_test and se_for_disease,
which could be reduced to basic relations and entities
already accepted in the OBO Foundry. A third step
would be to use this model in an ontology-based diag-
nostic system that would compute positive predictive
values or negative predictive values from the prevalence,
sensitivity and specificity values. More generally, it could
be articulated with medical Bayesian networks. As a
matter of fact, the notion of medical test used here could
be generalized to a very general notion of test consisting
in inferring the presence of an entity on the basis of the
knowledge of the presence of another entity; as such, it
could serve as a foundation for the integration of Bayes-
ian reasoning into ontologies.

This model could be used in two kinds of computer
applications targeted at two different kinds of audiences.
First, clinicians could determine more easily which kind
of sensitivity and specificity (or PPV and NPV) estimates
they could use when diagnosing a disease for a given pa-
tient, by having a clearer view of the subjects’ characteris-
tics in each samples on which those IP estimates are
based. As a matter of fact, section 3.4 illustrates how an
ontological analysis can make explicit what are the index
test, the reference test and the sample associated with a
sensitivity estimation. Universal qualities that are instanti-
ated by all members of the sample - such as having dia-
betes mellitus, being a man, being more than 65 years old,
etc. - would enable to determine what could be the refer-
ence class g associated with a sensitivity estimate. This en-
ables to determine, when applying some given IP values to
a specific patient with given characteristics, whether this
application is warranted or not.
Second, statisticians could determine more easily

which kind of sensitivity estimates they could aggregate
together. If several estimations of IPs are represented
ontologically according to the structure shown above,
one could use this ontological structure to determine
which estimations of IPs could be combined to obtain a
finer estimate. First, one would have to find a group g0
that would encompass the reference classes (such as g1
and g2) associated with those studies. Second, one would
have to analyze whether there exists some general index
test class such as IT0 (resp. some general reference test
class such as RT0) which would subsume the various
index tests classes such as IT1 and IT2 (resp. reference
tests such as RT1 and RT2) that are used in those studies.
Once those are found, one could use meta-analytic
methods to derive a value for f2(g0,IT0,RT0) from the
other studies. Future work will aim at building an ontol-
ogy of medical tests to facilitate finding such encompass-
ing index and reference test classes.
As it takes into account the dependence of IPs upon

the group of people considered, it has the potential to
contribute to the development of precision medicine
[23] in context of learning health systems [24, 25], an
emerging approach that takes into consideration patients
characteristics and dispositions, including individual
variability in genes, to offer more personalized prevent-
ive, diagnostic and therapeutic strategies.

Endnotes
1These will be abbreviated in the following as “a test

IT” and “the patient has M”. Note that a test may aim at
diagnosing a disease, in which case it can be called “indi-
cator of diagnostic performance”. However, it may also
aim at evaluating the presence of a disorder, a patho-
logical process [26], a predisposition to a disease, a sign,
a symptom, or other various medically relevant entities
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(such as a glycemia higher than 1.26 g/l). Several tests
results can then be considered to draw a diagnostic
conclusion for a disease. Therefore, in the general case,
indicators of performance are indicators of assay perform-
ance rather than indicators of diagnostic performance (we
thank an anonymous reviewer for this suggestion of ter-
minology). Also, a test does not need to be performed on
a human – it can be performed on a non-human animal.
In the following, we will consider tests aiming at diagnos-
ing a disease on a human, but our considerations can
be straightforwardly adapted to tests aiming at evaluat-
ing another medically relevant entity on a human or
non-human animal.

2In practice, such a test is not perfect; thus, it could be
analyzed as a chain of two tests: one that detects the
rheumatoid factor on the basis of e.g., some chemical re-
action, and another one that detects rheumatoid arthritis
on the basis of the presence of the rheumatoid factor.

3More specifically, it should be interpreted as the ex-
pected value of such a proportion – but we will ignore
here this additional subtlety.

4The article will concentrate on the case of sensitivity,
but it can be similarly adapted to other IPs.

5Here again (see footnote 3), this should be interpreted
as the expected value of such a proportion.

6At least for all practical purposes: from a theoretical
point of view, every measurement can be wrong, even
pure observations.

7If one assumes that the sample is representative of
the target population, there should be no selection
bias (which occurs when proper randomization is not
achieved). However, the sensitivity values that would
be obtained using two different samples could be
slightly different since randomness at the selection
process will yield slightly different samples. That is
why statisticians use confidence interval for character-
izing sensitivity and specificity.

8We might also speak of a “sensitivity in a sample” for
the function f2(s,IT,M), that is, the proportion of people
who are tested positive by IT among the diseased person
in the sample s. But it might be confusing to speak of
both the “sensitivity in a target population” and the “sen-
sitivity in a sample”; and the first and the second argu-
ments above may justify keeping the label “sensitivity”
for this proportion in a target population g – that is, for
f2(g,IT,M).

9Let us summarize. On one hand, f2(g,IT,M) is the
value of a non-actual proportion (because the test IT is
not performed on all members of g), which cannot be
known with certainty, but only estimated. On the other
hand, both f4(s,IT,RT) and f2(s,IT,M) (see footnote 8) are
values of actual proportions (because the tests IT and RT
are performed on all members of s); and although
f2(s,IT,M) cannot be known with certainty (because we

cannot know with certainty who has the disease: we can
only use a reference test – at best the gold standard – to
determine who are those individuals), f4(s,IT,RT) can be
known with certainty for all practical purposes (because
we can know with certainty who got a positive result
to RT).

10We have created an ontology according the lines of
what is described below, built on OBI, called BIPO
(Bayesian Indicator of Performance Ontology). It can be
found at https://github.com/OpenLHS/BIPO. It contains
24 classes, 12 object properties, 2 data properties and 42
logical axioms.

11We will not take a stance on whether Medical_test
should be interpreted as identical to OBI:Assay, as pro-
posed by [27].

12Note that in some cases, several pairs of tests will be
performed on a person. See e.g., Kimberger et al. (2007),
which measures the accuracy of a temporal artery
thermometer in detecting fever (defined as a temperature
greater than 37.8 °C), with respect to a reference standard
given by a bladder thermometer: four measurement pairs
of temporal artery temperature and bladder temperature
are performed on each of the seventy patients of the sam-
ple considered by the authors. To represent such a case,
one can introduce for every human pi a sequence of four
reference tests rt1,i,1, rt1,i,2, rt1,i,3 and rt1,i,4 .and four index
tests it1,i,1, it1,i,2, it1,i,3 and it1,i,4; but the formalization that
is described below remains similar.

13See e.g., http://vassarstats.net/clin1.html for an ex-
ample of webpage supporting this kind of computation.

14As a reminder, not only the values of PPV and NPV
but also the values of sensitivity and specificity depend
on the group under consideration (this is the spectrum
effect), and it is not the task of the ontologist to deter-
mine which ones should be idealized as constant (for all
practical matters) across groups and which ones should
be considered as variable: the task of the ontologist is to
represent those values and the entities those values de-
pend upon.

15[15] assigned a probability to a triplet (d,T,R) rather
than to a disposition d, because it had to take into ac-
count dispositions that may have several classes of trig-
gers or realizations (that is, multi-trigger and multi-track
dispositions [20]). However, in the present situation,
dSeg,M is simple-trigger and simple-track: all its triggers
are instances of TSe

g , and all its realizations are instances
of RSe

g,M. Therefore, the probability value assigned to
(dSeg,M,T

Se
g ,R

Se
g,M) can be, for practical matters, assigned dir-

ectly to dSeg,M.
16Such dispositions should not be confused with other

dispositions in the medical domain. First, diseases have
been formalized as dispositions by the Ontology for
General Medical Sciences (OGMS) [26]. Second, there
can be predispositions to diseases that could be
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formalized as disposition. However, the disposition to
draw randomly, among the individuals of g who have M,
someone who is tested positive by IT, exists independently
of whether the disease (or a predisposition to this disease)
is formalized or not as a disposition. Note also that this
disposition inheres in a group of people, whereas a disease
as a disposition (as formalized by OGMS), or a predispos-
ition to a disease, inheres in a single person.

17In general, we cannot determine in practice with cer-
tainty which individuals of g have M, and which do not
(see the discussion about gold standard tests above); but
the practical impossibility to realize this trigger does not
preclude to define this entity.

18We could also introduce the entity real_sensitivity-
g,IT,M instance of Data_item, as a sibling of estimateSe1 such
that real_sensitivityg,IT,M has_specified_value f2(g,IT,M)
(cf. [14], in which real_sensitivityg,IT,M was denoted
seg,IT,M). However, the value f2(g,IT,M) assigned to such an
entity will never be known with certainty. We could substi-
tute to this value the best estimate of the sensitivity value,
as was proposed in [14]; however, such a model could not
represent in a single ontology various estimates of the
same sensitivity – whereas it is possible in the present
framework, which also makes unnecessary the introduc-
tion of the informational entity real_sensitivityg,IT,M.

19It is important to differentiate what a sensitivity esti-
mate is about (namely a disposition) from how it has
been mathematically obtained (for example, by weight-
ing different proportion measurements) – as explained
earlier, the latter will not be represented in the ontology,
as various mathematical methods can be used.

Abbreviations

General abbreviations for indicators of performance
IP: (Bayesian) Indicators of performance; NPV: Negative predictive value;
PPV: Positive predictive value; Prev: Prevalence; Se: Sensitivity; Sp: Specificity
Other general abbreviations
ACR: Albumin-creatinine ratio; RF: Rheumatoid factor
Classes and instances abbreviations for disposition-related entities
dPrevg,M : Disposition (borne by the group g) that a person randomly drawn
among the individuals in g would have M; dSeg,IT,M: Disposition (borne by the
group g) that a person randomly drawn among the individuals of g who
have M would have a positive result to IT; this is an instance of DSe

IT,M; D
Se
IT,M: A

subclass of Sensitivity disposition such that DSe
IT,M se_for_disease M and DSe

IT,M

se_of_test IT; DSp
IT,M: A subclass of Specificity disposition such that DSp

IT,M

sp_for_disease M and DSp
IT,M sp_of_test IT; Tg: The process of drawing randomly

a person in g; the triggers of dPrevg,M are instances of Tg; T
Se
g,IT,M: The process of

performing test IT on the individuals in g, and then drawing randomly an
individual among those who have the disease M; the triggers of dSeg,IT,M are
instances of TSeg,IT,M; Rg,M: The process of drawing by Tg someone who has M;
the realizations of dPrevg,M are instances of Rg,M; R

Se
g,IT,M: The process of drawing

by TSeg,IT,M someone who got a positive result to IT; the realizations of dSeg,IT,M
are instances of RSeg,IT,M;
Other classes abbreviations
IT / IT0 / IT1 / IT2: A subclass of Medical test which is an index test (test whose
indicator of performance is being estimated); M: A subclass of Disease; RT /
RT0 / RT1 / RT2: A subclass of Medical test which is a reference test
Other instances abbreviations
g / g0 / g1 / g2: An instance of Collection of humans which is a general
human population; pi / qj: An instance of Human; it1,i (resp. it2,j): An instance

of (index) Medical test performed on person pi (resp. qj); rt1,i (resp. rt2,j): An
instance of (reference) Medical test performed on person pi (resp. qj); s / s1 /
s2: An instance of Sample of humans;
Functions abbreviations
f1(IT,M): Proportion of individuals who get a positive result to IT, among
individuals who have M; f2(g,IT,M): Proportion, among members of g who
have M, of those who would get a positive result to IT if the test IT was
realized on them; this is the real sensitivity value of IT for M;
f3(g,IT,RT): Proportion, among members of g who would get a positive result
to RT if the test RT was realized on them, of those who would get a positive
result to IT if the test IT was realized on them; f4(s,IT,RT): Proportion, among
members of sample s who had a positive result to RT, of those who got a
positive result to IT; this is an estimate of the real sensitivity value of IT for M,
performed on a sample s, with RT as a reference test; f’2(g,IT,M): Proportion,
among members of g who don’t have M, of those who would get a
negative result to IT if the test IT was realized on them; this is the real
specificity value of IT for M; f’4(s,IT,RT): Proportion, among members of sample
s who had a negative result to RT, of those who got a negative result to IT;
this is an estimate of the real specificity value of IT for M, performed on a
sample s, with RT as a reference test; h(s1,IT1,RT1,s2,IT2,RT2): Estimate of the
sensitivity value obtained by aggregating the estimate on sample s1 and the
estimate on sample s2
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