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Abstract

Background: MeSH indexing is the task of assigning relevant MeSH terms based on a manual reading of scholarly
publications by human indexers. The task is highly important for improving literature retrieval and many other
scientific investigations in biomedical research. Unfortunately, given its manual nature, the process of MeSH
indexing is both time-consuming (new articles are not immediately indexed until 2 or 3 months later) and costly
(approximately ten dollars per article). In response, automatic indexing by computers has been previously proposed
and attempted but remains challenging. In order to advance the state of the art in automatic MeSH indexing, a
community-wide shared task called BioASQ was recently organized.

Methods: We propose MeSH Now, an integrated approach that first uses multiple strategies to generate a
combined list of candidate MeSH terms for a target article. Through a novel learning-to-rank framework, MeSH Now
then ranks the list of candidate terms based on their relevance to the target article. Finally, MeSH Now selects the
highest-ranked MeSH terms via a post-processing module.

Results: We assessed MeSH Now on two separate benchmarking datasets using traditional precision, recall and F1-
score metrics. In both evaluations, MeSH Now consistently achieved over 0.60 in F-score, ranging from 0.610 to 0.
612. Furthermore, additional experiments show that MeSH Now can be optimized by parallel computing in order to
process MEDLINE documents on a large scale.

Conclusions: We conclude that MeSH Now is a robust approach with state-of-the-art performance for automatic
MeSH indexing and that MeSH Now is capable of processing PubMed scale documents within a reasonable time
frame. Availability: http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/MeSHNow/.

Background
The rapid growth of scholar publications in biomedicine
makes the search of relevant information in literature in-
creasingly more difficult, even for specialists [1, 2]. To
date, PubMed—the U.S. National Library of Medicine
(NLM) premier bibliographic database—contains over 24
million articles from over 5,600 biomedical journals with
more than a million records added each year. To facilitate
searching these articles in PubMed, a controlled vocabu-
lary called Medical Subject Headings (MeSH)1 was created
and updated annually by the NLM since 1960s. Currently,
MeSH 2015 consists of over 27,000 terms representing a
wide spectrum of key biomedical concepts (e.g. Humans,
Parkinson Disease) in a hierarchical structure. MeSH

terms are primarily used to index articles in PubMed for
improving literature retrieval: The practice of manually
assigning relevant MeSH terms to new publications in
PubMed by the NLM human indexers is known as MeSH
indexing [3]. Assigned MeSH terms can then be used im-
plicitly (e.g., automatic query expansion using MeSH) or
explicitly in PubMed searches [4]. Compared with the
commonly used keyword-based PubMed searches, MeSH
indexing allows for semantic searching (using the relation-
ship between the subject headings) and searching against
concepts not necessarily present in the PubMed abstract.
In addition to its use in PubMed, MeSH indexing re-

sults have also been used creatively in many other scien-
tific investigation areas, including information retrieval,
text mining, citation analysis, education, and traditional
bioinformatics research (see Fig. 1). When applied to in-
formation retrieval, MeSH and its indexing results have
been used to build “tag clouds” for improving the
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visualization of search results [5, 6] and to help distin-
guish between publication authors with identical names
[7, 8]. Another major use of MeSH indexing is in bio-
medical text mining, where it has been applied to prob-
lems such as document summarization [9], document
clustering [10], and word sense disambiguation [11].
MeSH indexing also serves several key roles in cit-
ation analysis, from identifying emerging research
trends [12, 13] to measuring similar journals [14] and
characterizing research profiles for an individual re-
searcher, institute or journal [15]. In the era of
evidence-based practice, MeSH becomes increasingly
important in assessing and training the literature
search skills of healthcare professionals [16, 17], as
well as in assisting undergraduate education in bio-
logical sciences [18]. Finally, much bioinformatics re-
search, such as gene expression data analysis [19, 20],
greatly benefits from MeSH indexing [21–25].
Like many manual annotation projects [26–30],

MeSH indexing is a labour-intensive process. As
shown in [3, 31], it can take an average of 2 to
3 months for an article to be manually indexed with
relevant MeSH terms after it first enters PubMed. In
response, many automated systems for assisting
MeSH indexing have been previously proposed. In
general, most existing methods are based on the following
techniques: i) pattern matching, ii) text classification, iii)
k-Nearest Neighbours, iv) learning-to-rank, or v) combin-
ation of multiple techniques. Pattern-matching methods
[32] search for exact or approximate matches of MeSH
terms in free text. Automatic MeSH indexing can also be
regarded as a multi-class text classification problem where
each MeSH term represents a distinct class label. Thus
many multi-label text classification methods have been
proposed, such as neural networks [33], Support Vector
Machines (SVM) [34, 35], Inductive Logic Programming

[36], naïve Bayes with optimal training set [37], Stochastic
Gradient Descent [38], and meta-learning [39]. While the
pattern matching and text classification methods use only
the information in the MeSH thesaurus and document it-
self, the k-Nearest Neighbours (k-NN) approach takes ad-
vantage of the manual annotations of documents similar
to the target document, e.g. [40, 41]. Additional informa-
tion, such as citations, can also be utilized for auto-
matic MeSH indexing. For example, Delbecque and
Zweigenbaum [42] investigated computing neighbour
documents based on the cited articles and cited au-
thors. More recently, Huang et al. [3] reported a
novel approach based on learning-to-rank algorithms
[43]. This approach has been shown to be highly suc-
cessful in the recent BioASQ2 challenge evaluations
[44–46] and has also been adopted by many others
[47, 48]. Finally, many methods attempt to combine
results of different approaches [49, 50]. For instance,
the current production system in MeSH indexing at
the NLM is called Medical Text Indexer (MTI),
which is a hybrid system that combines both pattern
matching and k-NN results [51] via manually-
developed rules and continues to be improved over
the years [52, 53]. The proposed method in this work
is also a hybrid system but unlike MTI, which only
uses machine learning to predict a small set of MeSH
terms, it combines individual results and ranks the
entire set of recommendations through machine
learning instead of heuristic rules.
Despite these efforts, automatic MeSH indexing re-

mains a challenging task: the current state-of-the-art
performance remains at about 0.6 in F-measure [54].
Several factors contribute to this performance bottle-
neck: First, since each PubMed article can be assigned
with multiple MeSH terms, i.e. class labels, the task of
automatic MeSH indexing can be seen as a multi-class

Fig. 1 Applications of MeSH
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classification problem. In this regard, the size of the
MeSH vocabulary makes automatic classification chal-
lenging: 2014 MeSH includes more than 27,000 main
subject headings and they are not equally used in index-
ing [31]. Second, MeSH indexing is a highly complex
cognitive task. It has been reported that the consistency
between human indexers is only 48.2% for main heading
assignment [55]. Lastly, both the MeSH vocabulary and
indexing principles keep evolving over time. For in-
stance, in response to emerging new concepts in the bio-
medical research, MeSH 2014 includes almost five times
more concepts than the edition of MeSH in 1963 that
only contains 5,700 descriptors. On the other hand, the
articles in PubMed are not re-indexed when MeSH gets
updated. Thus, it is not always obvious in selecting
benchmarking data sets for system development and
comparison.
In this paper, we propose a new method, MeSH Now,

to the automatic MeSH indexing task. MeSH Now is
built on our previous research [3] but has a number of
significant advancements: First, MeSH Now combines
different methods through machine learning. Second,
new post-processing and list-pruning steps are now
added in MeSH Now for improved performance. Third,
from a technical perspective, MeSH Now is optimized
using the latest MeSH lexicon and recent indexed arti-
cles for system training and development. Finally, MeSH
Now is implemented to operate in a parallel computing
environment, making it possible for large-scale process-
ing needs (e.g., providing computer results of new
PubMed articles for assisting human indexing). For
evaluation, we first test MeSH Now on a previous data-
set that was widely used in benchmarking. Furthermore,
we created a new benchmarking dataset based on the re-
cent BioASQ 2014 challenge task data. Our experimental
results show that MeSH Now achieves state-of-the-art
performance on both data sets.

Methods
Approach overview
Our approach reformulates the MeSH indexing task as a
ranking problem. Figure 2 shows the three main steps:
First, given a target article, we obtain an initial list of
candidate MeSH terms from three unique sources. Next,
we apply a learning-to-rank algorithm to sort the candi-
date MeSH terms based on the learned associations be-
tween the document text and each candidate MeSH
term. Finally, we prune the ranked list and return a
number of top candidates as the final system output.
Prior to these steps, some standard text processing was
performed such as removing stop words and applying a
word-stemming algorithm.

Input source I: K-nearest neighbours
We first adapt the PubMed Related Articles algorithm
[56] to retrieve k-nearest neighbours for each new
PubMed article. The assumption is that documents simi-
lar in content would share similar MeSH term annota-
tions. Previous work [3] has supported this assumption
by showing that over 85% of the gold-standard MeSH
annotations for a target document are present in its
nearest 20 neighbours.
Furthermore, we found that retrieving neighbours

from the whole MEDLINE database performed worse
than only retrieving neighbours from a subset of the
database (e.g., articles in the BioASQ Journal List, or
newly published articles). In particular, the results of
our approach are best when limiting the neighbour
documents to articles indexed in the last 5 years (i.e.
the articles were assigned with MeSH terms after
2009). As mentioned before, MeSH terms evolve
every year but the articles already indexed will never
be re-indexed. The same article would likely be
assigned with different MeSH terms in 2014 versus
20 years ago. Thus there are many outdated MeSH

Fig. 2 System overview
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terms in those neighbour documents, which can be
harmful to the accuracy of our approach. Moreover,
the word frequencies are also different in the older and
more recent articles, which are closely related to the simi-
larity score for two articles. Therefore, we built our index
with only articles that were assigned with MeSH terms
after 2009, and retrieved the neighbour documents using
such a new index instead of retrieving similar documents
from the whole PubMed. When building our document
index for the PubMed Related Articles algorithm3, we also
make sure that all annotated MeSH terms are removed
such that they are not used in the computation of the
neighbour documents. In other words, the similarity be-
tween two documents is solely based on the words they
have in common.
The parameter k was fixed (k = 20) in [3], which

means the same number of neighbours will be in-
cluded for all target articles. However, we observed
that some articles may only have a few very similar
documents. We therefore adjust the parameter k dy-
namically between 10 to 40 in this work according to
the similarity scores of the neighbours: the smaller
the average similarity score of the neighbours, the
fewer neighbours will be used. Once those k-nearest
neighbour documents are retrieved, we collect all of
the unique MeSH terms associated with those neigh-
bour documents. Note that we only considered the
main headings and removed subheadings attached to
the main headings.

Input source #2: multi-label text classification
Motivated by [57], we implemented a multi-label text
classification approach where we treat each MeSH con-
cept as a label and build a binary classifier accordingly.
More specifically, we first train individual classification
models for each of the most frequently indexed 20,000
MeSH terms, as the remaining ones are rarely used in
indexing. Then we apply these models to the new article
and add those positively classified MeSH concepts as
candidates to the initial list. We also keep those associ-
ated numerical prediction scores and use them as fea-
tures in the next step.
Our implementation is based on the cost-sensitive

SVM classifiers [58] with Huber loss function [59]. Cost-
sensitive SVMs have been shown to be a good solution
for dealing with imbalanced and noisy data in biomed-
ical documents [60]. Let C+ denote the higher misclassi-
fication cost of the positive class and C− denote the
lower misclassification cost of the negative class, the cost
function is formulated as:

λ

2
wk k2 þ Cþ

X
i:yi¼1

h yi θ þ w⋅xið Þð Þ þ C−

X
i:yi¼−1

h yi θ þ w⋅xið Þð Þ

where MeSH terms are treated as class labels C in the

classification, xi is a document of a given class (ie
assigned with a specific MeSH term), λ is a
regularization parameter, w is a vector of feature
weights, and θ is a threshold. The function h is the
modified Huber loss function and has the form:

h zð Þ ¼
−4⋅z;
1−zð Þ2;
0;

8
<

:

z≤−1
−1 < z < 1

1≤z

We can choose C+ to be greater than C− to overcome
the dominance of negative points in the decision process
(here we set C+ = rC− and the ratio r to be 1.5). To train
these 20,000 classifiers, we used the MEDLINE articles
that were indexed with MeSH terms between January
2009 and March 2014.

Input source #3: MTI results
MTI is used as one of the baselines in the BioASQ Task,
which primarily uses MetaMap to map the phrases in
the text to UMLS (Unified Medical Language System)
concepts [61]. We thus add all MeSH terms predicted
by MTI as candidates, and obtained the feature vectors
for those MeSH terms. This is useful since the MTI re-
sults can return correct MeSH terms not found by the
other two methods.

Learning to rank
Once an initial list of candidate MeSH terms from
all three sources are obtained, we approached the
task of MeSH indexing as a ranking problem. In our
previous work, we trained the ranking function with
ListNet [62], which sorts the results based on a list
of scores. In this work we evaluated several other
learning-to-rank algorithms [43] on the BioASQ test
dataset, including MART [63], RankNet [64], Coord-
inate Ascent [65], AdaRank [66], and LambdaMART,
which are available in RankLib v2.24, and found that
LambdaMART achieved the best performance.
LambdaMART [67] is a combination of MART and
LambdaRank, where the MART algorithm can be
viewed as generalizations of logistic regression [63]
and LambdaRank is a method for learning arbitrary
information retrieval measures [68]. To train such a
model, LambdaMART uses gradient boosting to
optimize a ranking cost function where the base
learners are limited-depth regression trees. New trees
are added to an ensemble sequentially that best ac-
count for the remaining regression error of the train-
ing samples, i.e., each new tree greedily minimizes
the cost function. LambdaMART uses MART with
specified gradients and Newton’s approximation.
LambdaMART is briefly presented as follows [67]:
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First, we obtained a training set consisting of biomedical
articles with human assigned MeSH terms from MED-
LINE. For each article, we obtain an initial list of MeSH
terms from its neighbour documents. Each MeSH term is
then represented as a feature vector. For the list of MeSH
terms from its neighbour documents, denoted by {M1,
M2, …, MN}, where N is the number of feature vectors and
Mi is the ith feature vector, we obtain a corresponding list
{y1, y2, …, yN}, where yi∈{0,1} is the ith class label. yi = 1 if
the MeSH term was manually assigned to the target article
by expert indexers of the NLM, otherwise yi =0.
BioASQ provided approximately 12.6 million PubMed

documents for system development. Since all PubMed
documents can be used as training data, we randomly
selected a set of 5,000 MEDLINE documents from the
list of the journals provided by BioASQ for training and
optimizing our learning-to-rank algorithm.

Features
We reused many features developed previously: neighbour-
hood features, word unigram/bigram overlap features,

translation probability features [69], query-likelihood fea-
tures [70, 71], and synonym features.
For neighbourhood features, we calculate both neigh-

bourhood frequency – the number of times the MeSH
term appears in the neighbours, and neighbourhood
similarity – the sum of similarity scores for these
neighbours.
For translation probability features, we use the IBM

translation model [69], which uses title and abstract as
source language, and MeSH terms as target language.
We then utilize an EM-based algorithm to train the
translation probabilities.
For query-likelihood features, we treat each MeSH

term as Query (Q), title and abstract as document, and
use two genres of query models: classic BM25 model
[70] and translation-based query model [71], to calculate
the probability of whether a MeSH term should be
assigned to the article.
In this work, we added a new domain-specific know-

ledge feature. We used a binary feature indicating
whether a candidate term is observed by MTI, which
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relies heavily on the domain-specific UMLS Meta-
thesaurus [72], for generating its results.
To compute the average length of documents and the

document frequency for each word, a set of approxi-
mately 60,000 PubMed documents is assembled. These
documents are sampled from recent publications in the
BioASQ Select Journal List. The translation model and
the background language model were built through
training with this data set accordingly.

Post-processing and list pruning
We further improve our results with some post-
processing steps.
First, we observed that the Check tags (a special set of

MeSH Headings that are mentioned in almost every art-
icle such as human, animal, male, female, child, etc.5) es-
pecially the tags for the age factor are most difficult for
our approach. The reason is that the Check tags are fre-
quently present in the neighbour documents, e.g., an art-
icle describing a disease in children might have many
similar documents discussing about the same disease in
adults, which will result in assigning the undesirable
Check tag “Adult” to the new article. On the other hand,
it is improper to simply exclude the tag “Adult” if
“Child” already exists, because many articles in PubMed
indeed include both “Adult” and “Child” as MeSH terms.
More importantly, many Check tags related to age infor-
mation are added according to the full text article. In
BioASQ, we add the age check tags identified from the
abstract text. We first find the numbers near the explicit
“age” in the abstract, then predict the correct Age Check
Tag according to those numbers and the rules for age
check tags.
Second, to improve the precision, we remove the par-

ental MeSH terms when a more specific term is also
predicted. This heuristic is based on the principle that
indexers should prefer the most specific term applicable
instead of more general terms. Therefore in the candi-
date list, if a child term is ranked higher than its parent
term, we will remove the latter accordingly.
Finally, after each MeSH term in the initial list is

assigned a score by the ranking algorithm described
above, the top N ranked MeSH terms will be considered
relevant to the target article. N was set to be a fixed
number (N = 25) previously. We found, however, that
the average number of MeSH terms per article in the
BioASQ training data was only 12.7. Thus, we used an
automatic cut-off method to further prune the results
from the top ranked MeSH terms as follows:

Siþ1 < Si⋅ log ið Þ⋅λ

where Si is the score of the predicted MeSH term at pos-
ition i in the top ranking list. The rationale for Formula

(1) is that if the (i + 1)th MeSH term was assigned with a
score much smaller than the ith MeSH term, the MeSH
terms ranked lower than i would not be considered rele-
vant to the target article. Formula (1) also accounts for
the fact that the difference between lower-ranked MeSH
terms is subtler than the difference between higher-
ranked MeSH terms. The parameter λ was empirically
set to be 0.3 in this research, and it can be tuned to gen-
erate predictions favouring either recall or precision.

Results
Benchmarking datasets
To demonstrate the progress of our development over
time and compare with other systems, we report our
system performance on two separate data sets. One of
them was widely used in previous studies: NLM2007 [3].
The NLM2007 dataset contains 200 PubMed documents
obtained from the NLM indexing initiative6. The other
is created from the BioASQ 2014 test datasets:
BioASQ5000.
In 2014, the BioASQ challenge task [45] ran for six

consecutive periods (batches) of 5 weeks each. For each
week, the BioASQ organizers distributed new unclassi-
fied PubMed documents, and participants have a limited
response time (less than 1 day) to return their predicted
MeSH terms. As new manual annotations become avail-
able, they were used to evaluate the classification per-
formance of participating systems. To be more general
(each BioASQ test set contains continuous PMIDs which
may belong to a limited set of journals), we randomly se-
lected 5,000 PubMed documents from the latest 9
BioASQ test sets (start from Batch 2 Week 2 in order to
avoid overlap with our system training data) to create
BioASQ5000, with their corresponding MeSH terms
already assigned by December 6, 2014. Compared to
NLM2007, BioASQ5000 is much larger in size and con-
tains more recent articles in 2014.

Comparison of different methods
Here we present our results when evaluated on the two
datasets. We first show results on the previously re-
ported benchmarking dataset, NLM2007 [3] in Table 1.
For comparison, we show the results of our previous
work as “Huang et al., [3]”, and the results of the

Table 1 Evaluation results on NLM 2007 test set

Methods Precision Recall F1

MTI – 2011 0.318 0.574 0.409

Huang et al. 2011 [3] 0.390 0.712 0.504

Text Classification 0.655 0.355 0.461

MTI – 2014 0.568 0.525 0.545

MeSH Now 0.622 0.602 0.612

Bold data are the best value
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previous and current versions of MTI (“MTI 2011” and
“MTI 2014”). It should be noted that here we used
MeSH 2010 and retrieved neighbour documents pub-
lished before the articles in NLM2007, and our learning-
to-rank model was trained with documents published
before the articles in NLM2007, because the newly pub-
lished articles are assigned with new MeSH terms which
are not available in NLM2007. We can see that MeSH
Now makes significant improvement over our previous
method. We also notice that the results of MTI-2014 are
much better than those of its previous version. Both
MTI-2014 and text classification results (results of input
source #2) contribute to the MeSH Now performance
with better results generated by MTI than text
classification.
Table 2 shows the results on the BioASQ5000 dataset.

For comparison, we added the results of MTI First Line
(MTIFL_2014) and MTI Default (MTIDEF_2014), both
of which were used as baselines of the BioASQ chal-
lenge. This further verifies that our new approach out-
performs existing methods.

System throughput
The time complexity of large-scale automatic indexing is
crucial to real-world systems but rarely discussed in the
past. In Table 3, we present the average processing time
of each step of our method based on BioASQ5000 on a
single computer. We can see that text classification ap-
pears to be a bottleneck given the large size of the classi-
fiers (20,000). However, this step can be performed in
parallel so that the overall time can be greatly reduced.
For example, our current system takes approximately
9 h to process 700,000 articles via a computer cluster
where 500 jobs can run concurrently.

Discussion and conclusions
To better understand the differences between the
computer-predicted and human-indexed results, we
conducted an error analysis based on the results of
MeSH Now on BioASQ5000 dataset. First, we found
that the predicted MeSH terms with the lowest per-
formance belong to MeSH Category E: “Analytical,
Diagnostic and Therapeutic Techniques and Equip-
ment”, especially the “Statistics as Topic” subcategory,

such as “Chi-Square Distribution”, “Survival Analysis”,
etc. This is most likely due to the lack of sufficient
positive instances in the training set (i.e. the numbers
of these indexed terms in the gold standard are rela-
tively small). On the other hand, the most incorrectly
predicted MeSH terms are Check Tags (e.g. “Male”,
“Female”, “Adult”, “Young Adult”, etc.) despite that
the F1 scores of these individual Check Tags are rea-
sonably high (most are above the average). Because of
their prevalence in the indexing results, however, im-
proving their prediction is critical for increasing the
overall performance.
As mentioned before, MeSH Now was developed in

2014 based on the learning-to-rank framework we first
proposed in 2010 [3] for automatic MeSH indexing. At
the same time, our ranking framework was adopted by
several other state-of-the-art systems such as MeSHLa-
beler [73] and DeepMeSH [74]. MeSHLabeler is very
similar to MeSH Now with the major difference in using
a machine learning model to predict the number of
MeSH terms instead of heuristics. DeepMeSH further
incorporates deep semantic representation into MeSH-
Labeler for improved performance (0.63 in the latest
BioASQ challenge in 2016).
There are some limitations and remaining chal-

lenges in this work for the automatic MeSH indexing
task. First, our previous work revealed that 85% of
the gold-standard MeSH annotations should be
present in the candidate list based on the nearest 20
neighbours. However, our current best recall is below
65%, suggesting there is still room for improving the
learning-to-rank algorithm to promote the relevant
MeSH terms higher in the ranked list. Second, our
current binary text classification results are lower
than previously reported [35], partly because for all
classifiers we simply used the same training data,
which is quite imbalanced. We believe that the per-
formance of MeSH Now could be further improved
if better text classification results are available to be
integrated. Finally, we are interested in exploring the
opportunities of using MeSH Now in practical
applications.

Table 2 Evaluation results on BioASQ5000 test set

Methods Precision Recall F1

Huang et al. 2011 [3] 0.357 0.701 0.473

Text Classification 0.689 0.400 0.506

MTIFL – 2014 0.621 0.517 0.564

MTI – 2014 0.587 0.559 0.573

MeSH Now 0.612 0.608 0.610

Bold data are the best value

Table 3 Processing time analysis for different steps

Key steps in MeSH Now Average time per
document (ms)

Obtaining candidate terms via k-NN 1890.82

Obtaining candidate terms via MTI 570.33

Obtaining classification results from
each binary text classifier

25.63

Learning to Ranking 103.86

Post-Processing and List Pruning 1.85
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Endnotes
1http://www.ncbi.nlm.nih.gov/mesh/
2http://www.bioasq.org/
3http://www.ncbi.nlm.nih.gov/books/NBK3827/
4http://sourceforge.net/p/lemur/wiki/RankLib/
5http://www.nlm.nih.gov/bsd/indexing/training/

CHK_010.html
6http://ii.nlm.nih.gov/DataSets/
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