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Abstract

Background: Infectious diseases claim millions of lives especially in the developing countries each year.
Identification of causative pathogens accurately and rapidly plays a key role in the success of treatment. To support
infectious disease research and mechanisms of infection, there is a need for an open resource on pathogen–disease
associations that can be utilized in computational studies. A large number of pathogen–disease associations is
available from the literature in unstructured form and we need automated methods to extract the data.

Results: We developed a text mining system designed for extracting pathogen–disease relations from literature. Our
approach utilizes background knowledge from an ontology and statistical methods for extracting associations
between pathogens and diseases. In total, we extracted a total of 3420 pathogen–disease associations from literature.
We integrated our literature-derived associations into a database which links pathogens to their phenotypes for
supporting infectious disease research.

Conclusions: To the best of our knowledge, we present the first study focusing on extracting pathogen–disease
associations from publications. We believe the text mined data can be utilized as a valuable resource for infectious
disease research. All the data is publicly available from https://github.com/bio-ontology-research-group/padimi and
through a public SPARQL endpoint from http://patho.phenomebrowser.net/.
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Background
Each year, millions of people die due to infectious diseases.
The World Health Organisation (WHO)[1] reported that
11̇ million deaths were due to HIV/AIDS in 2015 alone.
Infectious diseases cause devastating results not only on
global public health but also on the countries’ economies.
Developing countries, especially the ones in Africa, are the
most affected by infectious diseases.
Several scientific resources have been developed to

support infectious disease research. A large number of
these resources focus on host–pathogen interactions [2, 3]
as well as particular mechanisms of drug resistance [4].
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Additionally, there are several resources that broadly char-
acterize different aspects of diseases [5]. However, rela-
tively little structured information is available about the
relationships between pathogens and disease, information
that is also needed to support infectious disease research.
For example, pathogen–disease relations (and the result-
ing relations between pathogens and phenotypes elicited
in their hosts) provide complementary information to
molecular approaches to discover host–pathogen interac-
tions [6]. More generally, however, while there is often
a direct correspondence between an infectious disease
and a type of pathogen, the relation between disease and
the pathogen causing it needs to be available in a struc-
tured format to allow automatic processing and linking
of phenotypes (i.e., disease) to the molecular mecha-
nisms (i.e., the pathogens and their molecular interac-
tions). Such information is further useful as some diseases
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can be caused by multiple types of pathogens, and the
same pathogen may cause different types of diseases (e.g.,
depending on the anatomical site of infection).
Currently, pathogen–disease associations are mainly

covered in structured format by proprietary databases
such as the Kyoto Encyclopedia of Genes and Genomes
(KEGG) [7]; KEGG’s DISEASE database contains a
detailed classification of infectious diseases and links
them to the taxon or the taxa that are known to cause
the disease. For example, KEGG links the disease Tuber-
culosis (H00342) to two taxa:Mycobacterium tuberculosis
and Mycobacterium canettii. Pathogen–disease associa-
tions are also described in the biomedical literature and
public resources such as Wikipedia [8], or in the Human
Disease Ontology [5] in natural language form. Auto-
mated methods are needed to extract these associations
from natural language.
Here, we further developed and evaluated a text

mining system for extracting pathogen–disease asso-
ciations from literature [9]. While most of the exist-
ing text mining studies related to infectious disease
focus on extracting host–pathogen interactions from text
[10, 11] and archiving this data [2, 3], to the best
of our knowledge, we present the first text mining
system which focuses on extracting pathogen–disease
associations. Our literature-extracted associations are
available for download from https://github.com/bio-
ontology-research-group/padimi and are included in
PathoPhenoDB [12] and accessible through a public
SPARQL endpoint at http://patho.phenomebrowser.net/.

Materials &methods
Ontologies and resources used
We used the latest archived version of the Open
Access full text articles subset of PubMed Central
(http://europepmc.org/ftp/archive/v.2017.12/, containing
approximately 1.8 million articles) from the Europe PMC
database [13]. We used the NCBI Taxonomy [14] (down-
loaded on 22-08-2017) and the Human Disease Ontol-
ogy (DO) [5] (February 2018 release) to provide the
vocabulary to identify pathogen and infectious disease
mentions in text. We selected these two comprehen-
sive OBO ontologies due to the fact that our method
utilizes ontology structure to propagate information in
relation extraction as well as interoperablity reasons. Fur-
thermore, in a relevant study [15], we link pathogens
to disease phenotypes in support of infectious disease
research by utilizing the mappings from DO to phe-
notpes. We generated two dictionaries from the labels
and synonyms in the two ontologies and refined them
before applying text mining. In the refinement pro-
cess, we filtered out terms which have less than three
characters and terms that are ambiguous with common
English words (e.g., “Arabia” as a pathogen name). We

extracted the taxon labels and synonyms belonging to
all fungi, viruses, bacteria, worms, insects, and proto-
zoa from the NCBI Taxonomy to form our pathogen
dictionary. The final pathogen and disease dictionar-
ies cover a total of 1,519,235 labels and synonyms
belonging to 1,250,373 distinct pathogen taxa and 1380
labels and synonyms belonging to 438 distinct infectious
diseases.

Pathogen and disease class recognition
A class is an entity in an ontology that characterizes a
category of things with particular characteristics. Classes
usually have a set of terms attached as labels or synonyms
[16]. We used the Whatizit text mining workflow [17] to
annotate pathogen and disease classes in text with the two
dictionaries for diseases and pathogens. Because disease
name abbreviations can be ambiguous with some other
names (e.g., ALS is an abbreviation both for “Amyotrophic
Lateral Sclerosis” and “Advanced Life Support”), we used
a disease abbreviation filter for screening out the non-
disease abbreviations that could be introduced during the
annotation process [18]. Briefly, this filter operates based
on rules utilizing heuristic information. First, it identifies
abbreviations and their long forms in text by using regu-
lar expressions. Second, it utilizes several rules to decide
whether to keep the abbreviation annotated as a disease
name or filter out. The rules cover keeping the abbrevia-
tion either if any of its long forms from DO exists in the
document or its long form contains a keyword such as
“disease”, “disorder”, “syndrome”, “defect”, etcṫhat describes
a disease name.

Pathogen–Disease association extraction
Our association extraction method is based on identifica-
tion of pathogen–disease co-occurrences at the sentence
level and applying a filter based on co-occurrence statis-
tics (total number of co-occurrences of a given pair is cal-
culated by considering the total number of co-occurrences
across all sentences in all documents) and an extended
version of Normalized Point-wise Mutual Information
(NPMI) [19] association strength measurement to reduce
noise possibly introduced by the high recall, low preci-
sion co-occurrence method. We selected the associations
(between pathogen and disease classes) having an NMPI
value above 0.2 and co-occurring at least 10 times in the
literature.
We extended NPMI, which is a measure of collocation

between two terms, to a measure of collocation between
two classes. Hence, we reformulated the NPMI measure
for our application. First, we identify, for every class,
the set of labels and synonyms associated with the class
(Labels(C) denotes the set of labels and synonyms of C).
We then define Terms(C) as the set of all terms that can be
used to refer to C: Terms(C) := {x|x ∈ Labels(S)∧S � C}.
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We calculate the NPMI between classes C and D as

npmi(C,D) = log nC,D·ntot
nC ·nD

− log nC,D
ntot

(1)

where ntot is the total number of sentences in our cor-
pus in which at least one pathogen and one disease name
co-occur (i.e., 4,427,138), nC,D is the number of sentences
in which both a term from Terms(C) and a term from
Terms(D) co-occur, nC is the number of sentences in
which a term fromTerms(C) occurs, and nD is the number
of sentences in which a term from Terms(D) occurs.

Results
Statistics on extracted pathogen–Disease associations
We extracted a total of 3420 distinct pathogen–disease
pairs belonging to 316 1357 distinct diseases and
pathogens respectively from over 1.8 million Open Access
full text articles. To identify the associations, we used
a combination of lexical, statistical, and ontology-based
rules. We used lexical matches to identify whether the
label or synonym of a pathogen or disease is mentioned
in a document; we used a statistical measure, the nor-
malized point-wise mutual information, to determine
whether pathogen and disease mentions co-occur sig-
nificantly often in literature; and we used ontologies as
background knowledge to expand sets of terms based on
ontology-base inheritance.

Performance evaluation
To evaluate the text mined pathogen–disease associa-
tions, we used several manually curated resources includ-
ing the KEGG [7] database, DO [5], and a list of pathogen–
disease associations in Wikipedia [8] as reference, and
we compare our results to the information contained in
them. We could identify 744 pathogen–disease associa-
tions (between 455 distinct pathogens and 331 distinct
diseases) in KEGG, 353 pathogen–disease associations
in Wikipedia (between 250 distinct pathogens and 245
distinct diseases) and 94 pathogen–disease associations
in DO (between 90 distinct pathogens and 41 distinct
diseases) for which we could map the pathogen and dis-
ease identifiers from NCBI Taxonomy and DO to their
identifiers/names in KEGG, DO and Wikipedia. Figure 1
shows the overlapping and distinctly identified pathogen–
disease associations from these resources and literature.
The recall of our method is 29.4% (219) for KEGG,

50.7% (179) for Wikipedia, 45.7% (43) for DO. There are
525 pairs in KEGG, 174 pairs in Wikipedia and 51 pairs in
DO which we could not cover by text mining. The main
reason we cannot identify an association is due to limita-
tions in our named entity and normalization procedure as
well as its non-existence in the literature.
In addition to the information contained in existing

databases, we extracted many more associations from lit-
erature (3121 in total). To determine the accuracy of these
associations, first we randomly selected 50 pathogen–
disease pairs and all of the evidence sentences linked to
them. We applied our threshold values based on NPMI

Fig. 1 Overlapping pathogen–disease associations between literature and other resources
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and number of co-occurrences to distinguish between
positive and negative associations; we then manually ana-
lyzed the evidence sentences linked to these associations
(each association are extracted from one or more sen-
tences) to classify each positive association as either False
Positive or True Positive and each negative association
either as True Negative or False Negative (manual evalua-
tion data is freely available [20]).
In our manual evaluation, we achieve a precision of 64%,

a recall of 89% and an F-score of 74%. The false pos-
itives were mainly due to ambiguous abbreviations and
pathogen names. For example, “Katanga” which is a geo-
graphical place name was annotated as a pathogen name
(NCBITaxon:966285) by our method.
Some false negatives were due to rejections by the sys-

tem based on the threshold settings. For example, “Bar-
tonellosis” (DOID:11102) and “Bartonella ancashensis”
(NCBITaxon:1318743) which is also covered by KEGG
co-occurred only two times (in two different articles,
PMCID:4102455 and PMCID:5382735) in our corpus
and therefore the association between them was rejected
as we limited our analysis to pathogen–disease pairs that
co-occurred ten or more times. Other false negatives were
due to missing pathogen or disease labels in our dictionar-
ies. For example, our system could not identify a KEGG
covered association between “necrotizing ulcerative gin-
givitis” (DOID:13924) and “Fusobacterium nucleatum”
(NCBITaxon:851) since we included only the infections
disease branch of DO in our disease dictionary while
“necrotizing ulcerative gingivitis” is not a sub-class of
“infectious disease” in DO.

Discussion
By using ontologies as background knowledge to expand
our sets of terms and labels, it is possible to identify
pathogen–disease associations even if the labels and syn-
onyms directly associated with the pathogen or disease
are not directly found to co-occur in text. For exam-
ple, we extracted a total of 44 distinct pathogen–disease
associations relevant to dengue disease (DOID:11205).
Twelve our of 44 associations are the direct associ-
ations of dengue disease (i.e., a label or synonym of
the disease is explicitly mentioned in text) while the
remaining 32 are indirect associations obtained from
associations with labels and synonyms of the sub-
classes asymptomatic dengue (DOID:0050143), dengue
hemorrhagic fever (DOID:12206), and dengue shock
syndrome (DOID:0050125). In total, we found 812
pathogen–disease associations which do not directly co-
occur in literature but are inferred through the ontology.
The performance of our system depends on two

parameters: the NPMI value and the number of co-
occurrences used as a threshold. In the future, we may
use these two values to automatically determine optimal

threshold based on a more comprehensive evaluation set
of pathogen–disease associations which needs to be cre-
ated and could also be useful for developing machine
learning based methods. While our initial text mining
approach performs at a promising level (F-score 74%),
there is still some room for improvements. As we found
the pathogen names to be ambiguous with other domain
specific names, we plan to further improve the abbrevia-
tion and name filters we apply. For improving the recall
of our system, it may be possible to expand our dictio-
naries with other resources covering disease and pathogen
names such as the Experimental Factor Ontology (EFO)
[21] and the Unified Medical Language System (UMLS)
[22] for diseases, and the Encyclopedia of Life [23] for
pathogens.

Conclusion
Here, we present a text mining method for extracting
pathogen–disease associations from the biomedical liter-
ature. Our method performed at a promising level with
some room for improvements. In future, we plan to
improve our text mining method by developing and inte-
grating a pathogen abbreviation filter and expanding the
coverage of our pathogen and disease dictionaries. In the
scope of infectious disease research, we have included our
results in a database of pathogens and the phenotypes they
elicit in humans. We believe that our results can further
support infectious disease research.
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