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Abstract

Background: Readmission after discharge from a hospital is disruptive and costly, regardless of the reason. However,
it can be particularly problematic for psychiatric patients, so predicting which patients may be readmitted is critically
important but also very difficult. Clinical narratives in psychiatric electronic health records (EHRs) span a wide range of
topics and vocabulary; therefore, a psychiatric readmission prediction model must begin with a robust and
interpretable topic extraction component.

Results: We designed and evaluated multiple multilayer perceptron and radial basis function neural networks to
predict the sentences in a patient’s EHR that are associated with one or more of seven readmission risk factor domains
that we identified. In contrast to our baseline cosine similarity model that is based on the methodologies of prior
works, our deep learning approaches achieved considerably better F1 scores (0.83 vs 0.66) while also being more
scalable and computationally efficient with large volumes of data. Additionally, we found that integrating clinically
relevant multiword expressions during preprocessing improves the accuracy of our models and allows for identifying
a wider scope of training data in a semi-supervised setting.

Conclusion: We created a data pipeline for using document vector similarity metrics to perform topic extraction on
psychiatric EHR data in service of our long-term goal of creating a readmission risk classifier. We show results for our
topic extraction model and identify additional features we will be incorporating in the future.

Keywords: Natural language processing, Risk prediction, Machine learning, Electronic health record, Psychotic
disorders

Background
Psychotic disorders typically emerge in late adolescence
or early adulthood [1, 2] and affect approximately 2.5-
4% of the population [3, 4], making them one of the
leading causes of disability worldwide [5]. A substantial
proportion of psychiatric inpatients are readmitted after
discharge [6]. Readmissions are disruptive for patients
and families, and are a key driver of rising healthcare
costs [7, 8]. Reducing readmission risk is therefore a
major unmet need of psychiatric care. Developing clin-
ically implementable machine learning tools to enable
accurate assessment of risk factors associated with read-
mission offers opportunities to inform the selection of
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treatment interventions and implement appropriate pre-
ventive measures.
In psychiatry, traditional strategies to study readmission

risk factors rely on clinical observation and manual ret-
rospective chart review [9, 10]. This approach, although
benefitting from clinical expertise, does not scale well
for large data sets, is effort-intensive, and lacks automa-
tion. An efficient, more robust, and cheaper alternative
approach based on Natural Language Processing (NLP)
has been developed and met with some success in other
medical fields [11]. However, this approach has seldom
been applied in psychiatry because of the unique charac-
teristics of psychiatric medical record content.
There are several challenges for topic extraction when

dealing with clinical narratives in psychiatric EHRs. First,
the vocabulary used is highly varied and context-sensitive.
A patient may report “feeling ‘really great and excited”
– symptoms of mania – without any explicit mention
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of keywords that differ from everyday vocabulary. Also,
many technical terms in clinical narratives are multiword
expressions (MWEs) such as ‘obsessive body image’, ‘lin-
ear thinking’, ‘short attention span’, or ‘panic attack’. These
phrasemes are comprised of words that in isolation do not
impart much information in determining relatedness to a
given topic but do in the context of the expression.
Second, the narrative structure in psychiatric clini-

cal narratives varies considerably in how the same phe-
nomenon can be described. Hallucinations, for example,
could be described as “the patient reports auditory hal-
lucinations,” or “the patient has been hearing voices for
several months,” amongst many other possibilities.
Third, phenomena can be directly mentioned with-

out necessarily being relevant to the patient specifically.
Psychosis patient discharge summaries, for instance, can
include future treatment plans (e.g. “Prevent relapse of a
manic or major depressive episode.”, “Prevent recurrence
of psychosis.”) containing vocabulary that at the word-
level seem strongly correlated with readmission risk. Yet
at the sentence-level these do not indicate the presence
of a readmission risk factor in the patient and in fact
indicate the absence of a risk factor that was formerly
present.
Lastly, given the complexity of phenotypic assessment

in psychiatric illnesses, patients with psychosis exhibit
considerable differences in terms of illness and symp-
tom presentation. The constellation of symptoms leads
to various diagnoses and comorbidities that can change
over time, including schizophrenia, schizoaffective disor-
der, bipolar disorder with psychosis, and substance use
induced psychosis. Thus, the lexicon of words and phrases
used in EHRs differs not only across diagnoses but also
across patients and time.
Taken together, these factors make topic extraction a

difficult task that cannot be accomplished by keyword
search or other simple text-mining techniques.
To identify specific risk factors to focus on, we not

only reviewed clinical literature of risk factors associated
with readmission [12, 13], but also considered research
related to functional remission [14], forensic risk factors
[15], and consulted clinicians involved with this project.
Seven risk factor domains – Appearance, Mood, Interper-
sonal, Occupation, Thought Content, Thought Process,
and Substance – were chosen because they are clini-
cally relevant, consistent with literature, replicable across
data sets, explainable, and implementable in NLP algo-
rithms. These seven risk factor domains collectively cover
the essential clinical aspects of a patient’s symptoms and
functioning. Although hospitals may differ in terms of
narrative structure, all of a patient’s admission notes and
discharge summaries typically include text of these seven
domains. Many hospitals in the US include each of these
risk factors as a heading or subheading.

In our present study, we evaluate multiple approaches to
automatically identify which risk factor domains are asso-
ciated with which sentences in psychotic patient EHRs1.
We perform this study in support of our long-term goal of
creating a readmission risk classifier that can aid clinicians
in targeting individual treatment interventions and assess-
ing patient risk of harm (e.g. suicidal risk, homicidal risk).
Unlike other contemporary approaches in machine learn-
ing, we intend to create a model that is clinically explain-
able and flexible across training data while maintaining
consistent performance.
To incorporate clinical expertise in the identification of

risk factor domains, we undertake an annotation project,
detailed in the “Annotation task” subsection of the
“Methods” section. We identify a test set of over 5000
EHR sentences which a team of three domain-expert
clinicians annotate sentence-by-sentence for relevant risk
factor domains. The “Inter-Annotator agreement” sub-
section of the “Methods” section describes the results of
this annotation task. We then use the gold standard from
the annotation project to assess the performance of mul-
tiple neural classification models trained exclusively on
institutional EHR data, described in the “Results” section.
To further improve the performance of our model, we
incorporate domain-relevant MWEs identified using all
in-house data.

Related work
McCoy et al. [16] constructed a corpus of web data based
on the Research Domain Criteria (RDoC)[17], and used
this corpus to create a vector space document similarity
model for topic extraction. They found that the ‘negative
valence’ and ‘social’ RDoC domains were associated with
readmission. Using web data (in this case data retrieved
from the Bing API) to train a similarity model for EHR
texts is problematic since it differs from the target data
in both structure and content. Based on reconstruction of
the procedure, we conclude that many of the informative
MWEs critical to understanding the topics of sentences
in EHRs are not captured in the web data. Additionally,
RDoC is by design a generalized research construct to
describe the entire spectrum of mental disorders and does
not include domains that are based on observation or
causes of symptoms. Important indicators within EHRs
of patient health, like appearance or occupation, are not
included in the RDoC constructs.
Rumshisky et al. [18] used a corpus of EHRs from

patients with a primary diagnosis of major depressive
disorder to create a 75-topic Latent Dirichlet Allocation
(LDA) topic model that they then used in a readmission
prediction classifier pipeline. Like with McCoy et al. [16],
the data used to train the LDA model was not ideal as

1This study has received IRB approval.
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the generalizability of the data was narrow, focusing on
only one disorder. Their model achieved readmission pre-
diction performance with an area under the curve of .784
compared to a baseline of .618. To perform clinical valida-
tion of the topics derived from the LDAmodel, they man-
ually evaluated and annotated the topics, identifying the
most informative vocabulary for the top ten topics. With
their training data, they found the strongest coherence
occurred in topics involving substance use, suicidality, and
anxiety disorders. But given the unsupervised nature of
the LDA clustering algorithm, the topic coherence they
observed is not guaranteed across data sets.

Methods
Data
Two non-overlapping but highly compatible datasets were
used for training (Research Patient Data Registry, RPDR)
and for testing (McLean Meditech) of our models. Our
test set (McLean) consists of a corpus of discharge sum-
maries, admission notes, individual encounter notes, and
other clinical notes from 220 patients in the OnTrackTM
program at McLean Hospital. OnTrackTM is an outpa-
tient program, focusing on treating adults ages 18 to 30
who are experiencing their first episodes of psychosis. The
length of time in the program varies depending on patient
improvement and insurance coverage, with an average of
two to three years. The program focuses primarily on
early intervention via individual therapy, group therapy,
medication evaluation, and medication management. See
Table 1 for a demographic breakdown of the 220 patients,
for which we have so far extracted approximately 240,000
total EHR sentences spanning from 2011 to 2014 using
Meditech, the software employed by McLean for storing
and organizing EHR data.
These patients are part of a larger research cohort of

approximately 1800 psychosis patients, which will allow
us to connect the results of this EHR study with other
ongoing research studies incorporating genetic, cognitive,
neurobiological, and functional outcome data from this
cohort.

Table 1 Demographic breakdown of the target cohort

Mean Age (2014) 20.7

Gender (Male) 79%

Race

Asian 6%

Black 7%

Caucasian 77%

Latino 5%

Multiracial 5%

Insurance (Public)2 5.5%

30-day Inpatient Readmission Rate 14%

We also use an independent, non-overlapping data set
for identifying training data for our vector space model,
comprised of EHR texts queried from the RPDR, a cen-
tralized regional data repository of clinical data from
all institutions in the Partners HealthCare network (e.g.,
Massachusetts General Hospital, Brigham and Women’s
Hospital). These records are highly comparable in style
and vocabulary to the McLean data set. The corpus con-
sists of discharge summaries, encounter notes, and visit
notes of patients admitted to the system’s hospitals with
psychiatric diagnoses and symptoms, totaling approxi-
mately 8,000,000 EHR sentences consisting of 340,000,000
tokens. This breadth of data captures a wide range of clin-
ical narratives, creating a comprehensive foundation for
topic extraction.
After using the RPDR query tool to extract EHR sen-

tences from the RPDR database, we created a training
corpus by categorizing the extracted sentences according
to their risk factor domain using a lexicon of 120 key-
words that were identified by the clinicians involved in this
project. Certain domains – particularly those involving
thoughts and other abstract concepts – are often iden-
tifiable by MWEs rather than single words. The same
clinicians who identified the keywords manually exam-
ined the bigrams and trigrams with the highest Term Fre-
quency – Inverse Document Frequency scores (TF-IDF)
for each domain in the categorized sentences, identifying
those which are conceptually related to the given domain.
We then used this lexicon of 775 keyphrases to iden-
tify more relevant training sentences in RPDR and treat
them as (non-stemmed) unigrams when generating the
matrix (see supplementary data). By converting MWEs
such as ‘shortened attention span’, ‘unusual motor activity’,
‘wide-ranging affect’, or ‘linear thinking’ to non-stemmed
unigrams, the predictive value of these terms is magnified.
In total, we constructed a corpus of roughly 85,000,000
tokens across 2,100,000 EHR sentences for training our
model.

Annotation task
In order to evaluate our models, we created an anno-
tated test corpus McLean-specific EHR data extracted
from Meditech. 5154 sentences were annotated by three
licensed clinicians for the clinically relevant domains
described in Table 2. The corpus was selected by clinicians
(P. C. and K. B.) who treat patients at McLlean OnTrack
program and M.H.H who conducts clinical research at
the McLean Psychotic Disorders Division. It is comprised
entirely of McLean-specific EHR data, which are disjoint
from the RPDR but are highly compatible in style and
vocabularies with the RPDR dataset.
All sentences were removed from the surrounding

EHR context to ensure annotators were not influenced
by the additional contextual information. Our domain
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Table 2 Annotation scheme for the domain classification task

Domain Description Example Example Keywords

Appearance Physical appearance, gestures,
and mannerisms

“A well-appearing, clean
young woman appearing
her stated age, pleasant and cooperative. Eye contact
was good."

Disheveled, clothing,
groomed, wearing, clean

Thought Content Suicidal/homicidal ideation,
obsessions, phobias, delusions,
hallucinations

“No SI, No HI, No hallucinations, Ideas of reference, Paranoid
delusions"

Obsession, delusion,
grandiose, ideation, suicidal,
paranoid

Interpersonal Family situation, friendships,
and other social relationships

“Pt. overall appears to be functioning very well despite this
conflict with a romantic interest of hers."

Boyfriend, relationship, peers,
family, parents, social

Mood Feelings and overall disposition “Pt. indicates that his mood is becoming more ‘depressed.’" Anxious, calm, depressed,
labile, confused, cooperative

Occupation School and/or employment “Pt. followed through with decision to leave college at this
point in time."

Boss, employed, job, school,
class, homework, work

Thought Process Pace and coherence of
thoughts. Includes linear,
goal-directed, perseverative,
tangential, and flight of ideas

“Disorganized (Difficult to communicate with patient.), Paucity
of thought, Thought-blocking."

Linear, tangential, prosody,
blocking, goal-directed,
perseverant

Substance Drug and/or alcohol use “Patient used marijuana once which he believes triggered the
current episode."

Cocaine, marijuana, ETOH,
addiction, narcotic

Other Any example that does not fall
into any of the other seven
domains

“Maintain mood stabilization, prevent future episodes of
mania, improve self-monitoring skills."

–

classification models consider each sentence indepen-
dently and thus we designed the annotation task to mirror
the information available to the models.
The annotators were instructed to label each sentence

with one or more of the seven risk factor domains. In
instances where more than one domain was applicable,
annotators assigned the domains in order of prevalence
within the sentence. An eighth label, ‘Other’, was included
if a sentence did not align with any of the seven risk factor
domains. The annotations were then reviewed by a team
of two clinicians who adjudicated collaboratively to create
a gold standard. Basic statistics on the corpus, including
the number of sentences labeled for greater than one risk
factor domain are listed in Table 3. The gold standard
and the clinician-identified keywords and MWEs have

Table 3 Distribution of gold standard sentences and tokens
across risk factor domains

Total Sentences Total Tokens

Appearance 670 11648

Mood 793 17672

Interpersonal 574 11674

Occupation 664 14166

Thought Content 756 18785

Thought Process 663 11203

Substance Use 727 14793

Totals 4847 99941

Sentences With >1 Domain 222 8912

received IRB approval for release to the community. They
are available as supplementary data to this paper.

Inter-Annotator agreement
Inter-annotator agreement (IAA) was assessed using a
combination of Fleiss’s Kappa (a variant of Scott’s Pi that
measures pairwise agreement for annotation tasks involv-
ing more than two annotators) [19] and Cohen’s Multi-
Kappa as proposed by Davies and Fleiss [20]. Table 4
shows IAA calculations for both overall agreement and
agreement on the first (most important) domain only. Fol-
lowing adjudication, accuracy scores were calculated for
each annotator by evaluating their annotations against the
gold standard.
Overall agreement was generally good and aligned

almost exactly with the IAA on the first domain only.
Out of the 1654 annotated sentences, 671 (41%) had
total agreement across all three annotators. We defined
total agreement for the task as a set-theoretic complete
intersection of domains for a sentence identified by all
annotators.
98% of sentences in total agreement involved one

domain. Only 35 sentences had total disagreement, which
we defined as a set-theoretic null intersection between

Table 4 Inter-annotator agreement

Labels Fleiss’s Kappa Cohen’s Multi-Kappa Mean Accuracy

Overall 0.575 0.571 0.746

First Domain Only 0.536 0.528 0.805
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the three annotators. An analysis of the 35 sentences with
total disagreement showed that nearly 30% included the
term “blunted/restricted”. In clinical terminology, these
terms can be used to refer to appearance, affect, mood,
or emotion. Because the sentences being annotated were
extracted from larger clinical narratives and examined
independently of any surrounding context, it was diffi-
cult for the annotators to determine the most appropriate
domain. This lack of contextual information resulted in
each annotator using a different ‘default’ label: Appear-
ance, Mood, and Other. During adjudication, Other was
decided as the most appropriate label unless the sentence
contained additional content that encompassed other
domains, as it avoids making unnecessary assumptions.
A Fleiss’s Kappa of 0.575 lies on the boundary between

‘Moderate’ and ‘Substantial’ agreement as proposed by
Landis and Koch [21]. This is a promising indication
that our risk factor domains are adequately defined by
our present guidelines and can be employed by clinicians
involved in similar work at other institutions.
The fourth column in Table 4, Mean Accuracy, was cal-

culated by averaging the three annotator accuracies as
evaluated against the gold standard. This provides us with
an informative baseline of human parity on the domain
classification task.

Topic extraction
Figure 1 illustrates the data pipeline for generating our
training and testing corpora, and applying them to our
classification models.
We use the Universal Sentence Encoder (USE) [22], a

deep averaging neural network that is pretrained on a
very large volume of general-domain web data, to convert
sentences to 512-dimensional embedding vectors, stem-
ming tokens with the Porter Stemmer tool provided by
the NLTK library [23]. USE has the advantage of being
sensitive to word ordering and can encode sequences of
variable lengths, in addition to being integrated directly
into TensorFlow. We have found in previous unpub-
lished observations performed by Holderness, Meteer,
Pustejovsky, and Hall that despite being pretrained on

general-domain web data, USE outperforms other state-
of-the-art embedding models such as ELMo, FastText, or
Doc2Vec.
Starting with the approach taken by McCoy et al. [16],

who used aggregate cosine similarity scores to compute
domain similarity directly from a TF-IDF vector space
model, we extend this method by training a suite of
three-layer multilayer perceptron (MLP) and radial basis
function (RBF) neural networks using a variety of param-
eters to compare performance. We employ the Keras deep
learning library [24] using a TensorFlow backend [25] for
this task. The architectures of our highest performing
MLP and RBF models are summarized in Table 5. Pro-
totype vectors for the nodes in the hidden layer of our
RBF model are selected via k-means clustering [26] on
each domain megadocument individually. The RBF trans-
fer function for each hidden layer node is assigned the
same width, which is based off the maximum Euclidean
distance between the centroids that were computed using
k-means.
To prevent overfitting to the training data, we utilize a

dropout rate [27] of 0.2 on the input layer of all models
and 0.5 on the MLP hidden layer.
Since our classification problem is multiclass, multil-

abel, and open-world, we employ seven nodes with sig-
moid activations in the output layer, one for each risk
factor domain. This allows us to identify sentences that fall
into more than one of the seven domains, as well as deter-
mine sentences that should be classified as Other. Unlike
the traditionally used softmax activation function, which
is ideal for single-label, closed-world classification tasks,
sigmoid nodes output class likelihoods for each node inde-
pendently without the normalization across all classes that
occurs in softmax.
We find that the risk factor domains vary in the degree

of homogeneity of language used, and as such certain
domains produce higher similarity scores, on average,
than others. To account for this, we calculate thresh-
old similarity scores for each domain using the formula
min=avg(sim)+α*σ (sim), where σ is standard deviation
and α is a constant, which we set to 0.5 for our P model

Fig. 1 Data pipeline for training and evaluating our risk factor domain classifiers
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Table 5 Architectures of our highest-performing MLP and RBF
networks

Network MLP RBF

Input Layer

Nodes 512 512

Dropout 0.2 0.2

Activation ReLU ReLU

Hidden Layer

Nodes 250 700

Dropout 0.5 0.0

Activation ReLU RBF

Output Layer

Nodes 7 7

Activation Sigmoid Linear

Optimizer Adam Adam

Loss Function Categorical Cross Entropy Mean Squared Error

Training Epochs 60 50

Batch Size 128 128

and 1.25 for our RBF model through trial-and-error.
Employing a generalized formula as opposed to manually
identifying threshold similarity scores for each domain
has the advantage of flexibility in regards to the target
data, which may vary in average similarity scores depend-
ing on its similarity to the training data. If a sentence does
not meet threshold on any domain, it is classified as Other.

Results
Table 6 shows the performance of ourMLP and RBFmod-
els on classifying the sentences in our gold standard. To
assess relative performance of feature representations, we
also include performance metrics of our models without
MWEs. Because this is a multilabel classification task we
compute precision, recall, and F1 scores for each sentence
in the test set usingmacro-averaging, where performances
are calculated for each risk factor domain individually and
then averaged. In identifying the seven risk factor domains
individually, our models achieved the highest per-domain
scores on Substance (F1 ≈ 0.9) and the lowest score on
Mood (F1 ≈ 0.75).
Despite prior research indicating that similar classifica-

tion tasks to ours are more effectively performed by RBF
networks [28–30], we find that our MLP model performs
marginally better with significantly less computational
complexity (i.e. k-means and width calculations). Figure 2
illustrates the distribution of sentences in vector space
using 2-component Linear Discriminant Analysis (LDA)
[31], and shows that Thought Process, Appearance, Sub-
stance, and – to a certain extent – Occupation clearly
occupy specific regions, whereas Interpersonal, Mood,

Table 6 Overall and domain-specific Precision, Recall, and F1
scores for our models

Precision Recall F1

Aggregate Cosine Similarity Scores 0.626 0.692 0.657

MLP Baseline (No MWEs) 0.816 0.830 0.823

RBF Baseline (No MWEs) 0.795 0.808 0.801

MLP (w/ MWEs) 0.821 0.835 0.828

Appearance 0.953 0.825 0.884

Interpersonal 0.843 0.897 0.869

Mood 0.723 0.816 0.767

Occupation 0.945 0.834 0.886

Substance 0.898 0.946 0.921

Thought Content 0.830 0.685 0.751

Thought Process 0.792 0.878 0.833

Other 0.509 0.614 0.557

RBF (w/ MWEs) 0.814 0.799 0.806

Appearance 0.952 0.803 0.871

Interpersonal 0.929 0.882 0.905

Mood 0.748 0.759 0.754

Occupation 0.956 0.847 0.898

Substance 0.826 0.927 0.874

Thought Content 0.866 0.685 0.765

Thought Process 0.958 0.818 0.883

Other 0.405 0.411 0.408

and Thought Content occupy the same noisy region where
multiple domains overlap. In RBF networks, the magni-
tude of activation for a given hidden layer neuron is based
on the Euclidean distance from the input vector to the
prototype centroid associated with that neuron. Smaller
distances lead to more robust activations. To identify
these prototype centroids, we apply the k-Means cluster-
ing algorithm to identify the training examples for each
class that most closely describe the distribution of the
examples in vector space. With large training sets such as
ours, the RBF prototype centroids will be more precise
and therefore the RBF model is more powerful in differ-
entiating between classes in crowded regions of vector
space. This is reflected by the results in Table 6, where
the RBF network performs as well as or stronger than the
MLP network in the four overlapping domains (0.905 vs
0.869 for Interpersonal, 0.754 vs 0.767 for Mood, 0.898
vs 0.886 for Occupation, and 0.765 vs 0.751 for Thought
Content) whereas the MLP network – with the exception
of Thought Process – performs as well as or stronger than
the RBF network when predicting the non-overlapping
domains (0.874 vs 0.921 for Substance, 0.871 vs 0.884
for Appearance, and 0.883 vs 0.833 for Thought Process).
We also observe a similarity in the words and phrases
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Fig. 2 2-component linear discriminant analysis of the RPDR training data

with the highest Term Frequency – TF-IDF scores across
the overlapping domains: many of the Thought Content
words and phrases with the highest TF-IDF scores involve
interpersonal relations (e.g. ‘fear surrounding daughter’,
‘father’, ‘family history’, ‘familial conflict’) and there is a
high degree of similarity between high-scoring words for
Mood (e.g. ‘meets anxiety criteria’, ‘cope with mania’, ‘ocd’)
and Thought Content (e.g. ‘mania’, ‘feels anxious’, ‘feels
exhausted’). Please refer to the “Methods” section of this
paper for more information on our TF-IDF analysis and
its implications in building our training corpus.
The most significant discrepancy in model perfor-

mances is in classifying sentences that do not involve any
of the seven risk factor domains. While both are fairly
inaccurate at identifying these ‘Other’ sentences, ourMLP
model has a markedly higher F-score (0.557) compared to
our RBF model (0.408).

Discussion
Results clearly indicate that our MLP and RBF deep
learning models outperform the cosine similarity base-
line. Additionally, our models are more scalable and

computationally efficient to handle large volumes of data.
In our initial work on risk factor domain topic extrac-
tion with a training data set of only 100,000 sentences,
we found performance to increase by 15% when factor-
ing in MWEs, a marked improvement over our models
that did not incorporate them. However, with our cur-
rent training data set of 2,100,000 sentences, factoring
MWEs into our models increased classification perfor-
mance by only 1% uniformly across all risk factor domains,
both overlapping and non-overlapping. This aligns with
our expectations that MWEs comprised of a quotidian
vocabulary hold more clinical significance than when
the words in the expressions are treated independently
but that as the amount of training data increases, these
MWEs are captured organically. Even with the larger vol-
ume of training data, the clinician-identified keywords
and MWEs continue to play an important role when gen-
erating the training data set, as training sentences are
identified by regular expression pattern matching of these
keywords and MWEs. Therefore, including MWEs at this
step increases the scope and variety of training sentences,
leading to more robust downstream performance.
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The wide variance in per-domain performance is due
to a number of factors. Most notably, the training sen-
tences we extracted from RPDR – while very comparable
in structure and style to our target OnTrackTM data –
may not have an adequate variety of content and range of
vocabulary. Although using keyword and MWE matching
to create our training corpus has the advantage of being
significantly less labor intensive than manually labeling
every sentence in the corpus, it is likely that the homo-
geneity of language used in the training sentences is higher
than it would be otherwise. Additionally, all of the sen-
tences in the training data are assigned exactly one risk
factor domain even if they actually involve multiple risk
factor domains, making the clustering behavior of the
sentences more difficult to define.
Threshold similarity scores also play a large role in

determining the precision and recall of ourmodels: setting
higher classification thresholds leads to a smaller number
of false positives and a greater number of false negatives
for each risk factor domain. Conversely, more sentences
are incorrectly associated with one or more risk factor
domains when thresholds are set lower. Since our classi-
fier will be used in future work as an early step in a data
analysis pipeline for determining readmission risk, mis-
classifying a sentence with an incorrect risk factor domain
at this stage can lead to greater inaccuracies at later stages.
Sentences misclassified as Other, however, will be dis-
carded from the data pipeline. Therefore, we intentionally
set a conservative threshold where only the most confi-
dently labeled sentences are assigned membership in a
particular domain. In addition to the challenges associ-
ated with fine-tuning threshold similarity scores, Other as
a domain is much broader in scope than the seven risk fac-
tor domains, encompassingmost of the space surrounding
the clusters in Fig. 2. Because the function describing this
space is more complex than the functions delineating the
regions of vector space occupied by the specific risk fac-
tor domains, model accuracy is predictably lower when
classifying these out-of-domain examples.
The IAA that we report on our annotation task falls in

the upper end of ’Moderate’ agreement and is only 0.03
away from being considered ’Substantial’ agreement as
proposed by Landis and Koch [21]. From a clinical psy-
chiatric perspective, it is in fact satisfactory and the first
of its kind in the psychosis clinical NLP literature. As
described in the Background Section, dealing with clinical
narratives in psychotic EHRs are challenging for a num-
ber of reasons. Also, our annotation task is multiclass,
multilabel, and open-world (i.e., 7 risk factor domains
plus “other” for sentences that are not relevant to those
domains), making high IAA very difficult to achieve. The
degree of difficulties specific to each domain also affect
the overall IAA. Some domains such as “Substance” pro-
duced high IAA because it is easy for annotators to agree

on sentences involving substance (e.g., cocaine, cannabis).
Whereas other domains with a larger vocabulary over-
lap, such as Mood, Thought Content, and Interpersonal
are more challenging (see Fig. 2). For example, “Pt is a 32
year old single Caucasian male with a history of Schizoaf-
fective Disorder, two prior psychiatric hospitalizations,
with increasing disorganized thought process, paranoia,
and command auditory hallucinations in the context of
discontinuing his psychiatric medications” was annotated
to be “Thought Process” & “Thought Content” by two
annotators and “Appearance” & “Thought Content” &
“Thought Process” by the third annotator, resulting in
partial agreement among annotators. For each sentence,
the gold standard was created by a majority agreement
among annotators when two or more annotators were in
total agreement. For the remaining sentences, high qual-
ity, domain-expert adjudications were made by a team of
two clinicians who worked collaboratively. Therefore, we
believe that the resulting corpus can be used as a “gold
standard”.
In terms of computational complexity, our MLP model

significantly outperforms our RBF model during training
and outperforms both the RBF model and the cosine sim-
ilarity baseline at evaluation. Whereas our MLP model
trains in O(n) time, requiring only one pass through each
datapoint for each epoch of training, our RBF model
trains in O(nw) time, where w is equivalent to the num-
ber of prototype centroids in the hidden layer, as each
training example is evaluated against each prototype cen-
troid in the network. In addition, the k-Means clustering
that must be performed before training the RBF network
to identify the prototype centroids runs in O(n) time.
Although the cosine similarity baseline model does not
have a training phase, it runs in O(n2) at evaluation since
the distance between each element in the test corpus and
each element in the training corpus must be computed.
Although both the RBP and MLP models performed

roughly equivalently, the MLP is a simpler model and is
faster to train and evaluate compared to an RBF network.
Given the intention of implementing this model in a larger
clinical NLP pipeline, the lower latency MLP model is
preferred.

Conclusions
To achieve our goal of creating a framework for a readmis-
sion risk classifier, the present study performed necessary
evaluation steps by updating and adding to our model
iteratively. In the first stage of the project, we focused
on collecting the data necessary for training and testing,
and on the domain classification annotation task. At the
same time, we began creating the tools necessary for auto-
matically extracting domain relevance scores at the sen-
tence and document level from patient EHRs using sev-
eral forms of vectorization and topic modeling. In future
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versions of our risk factor domain classification model
we will explore increasing robustness through sequence
modeling that considers more contextual information.
Our current feature set for training a machine learn-

ing classifier is relatively small, consisting of sentence
domain scores, bag-of-words, length of stay, and number
of previous admissions, but we intend to factor in many
additional features that extend beyond the scope of the
present study. These include a deeper analysis of clini-
cal narratives in EHRs: in a different line of development,
we have extended our EHR data pipeline by distinguish-
ing between clinically positive and negative phenomena
within each risk factor domain [32]. This involved a
series of annotation tasks that allowed us to generate
lexicon-based and corpus-based sentiment analysis tools.
In future work, we intend to use these clinical sentiment
scores to generate gradients of patient improvement or
deterioration over time with respect to each of the seven
risk factor domains for readmission.
We will also take into account structured data that

have been collected on the target cohort throughout the
course of this study such as brain based electrophysiologi-
cal (EEG) biomarkers, structural brain anatomy fromMRI
scans, social and role functioning assessments, personal-
ity assessments (NEO-FFI), and various symptom scales
(PANSS, MADRS, YMRS). For each feature we consider
adding, we will evaluate the performance of the classifier
with and without the feature to determine its contribution
as a predictor of readmission.
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