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Abstract

Background: Recently, more electronic data sources are becoming available in the healthcare domain. Electronic
health records (EHRs), with their vast amounts of potentially available data, can greatly improve healthcare.
Although EHR de-identification is necessary to protect personal information, automatic de-identification of Japanese
language EHRs has not been studied sufficiently. This study was conducted to raise de-identification performance
for Japanese EHRs through classic machine learning, deep learning, and rule-based methods, depending on the
dataset.

Results: Using three datasets, we implemented de-identification systems for Japanese EHRs and compared the de-
identification performances found for rule-based, Conditional Random Fields (CRF), and Long-Short Term Memory
(LSTM)-based methods. Gold standard tags for de-identification are annotated manually for age, hospital, person, sex,
and time. We used different combinations of our datasets to train and evaluate our three methods. Our best F1-
scores were 84.23, 68.19, and 81.67 points, respectively, for evaluations of the MedNLP dataset, a dummy EHR
dataset that was virtually written by a medical doctor, and a Pathology Report dataset. Our LSTM-based method
was the best performing, except for the MedNLP dataset. The rule-based method was best for the MedNLP dataset.
The LSTM-based method achieved a good score of 83.07 points for this MedNLP dataset, which differs by 1.16
points from the best score obtained using the rule-based method. Results suggest that LSTM adapted well to
different characteristics of our datasets. Our LSTM-based method performed better than our CRF-based method,
yielding a 7.41 point F1-score, when applied to our Pathology Report dataset. This report is the first of study
applying this LSTM-based method to any de-identification task of a Japanese EHR.

Conclusions: Our LSTM-based machine learning method was able to extract named entities to be de-identified
with better performance, in general, than that of our rule-based methods. However, machine learning methods are
inadequate for processing expressions with low occurrence. Our future work will specifically examine the
combination of LSTM and rule-based methods to achieve better performance.
Our currently achieved level of performance is sufficiently higher than that of publicly available Japanese de-
identification tools. Therefore, our system will be applied to actual de-identification tasks in hospitals.
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Background
Recently, more electronic data sources are becoming
available in the healthcare domain. Utilization of

electronic health records (EHRs), with their vast
amounts of potentially useful data, is an important task
in the healthcare domain. New legislation in Japan has
addressed the treatment of medical data. The “Act on
the Protection of Personal Information [1]” was revised
in 2017 to stipulate that developers de-identify “special
care-required personal information.” This legislation

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: kano@inf.shizuoka.ac.jp
1Faculty of Informatics, Shizuoka University, Johoku 3-5-1, Naka-ku,
Hamamatsu, Shizuoka 432-8011, Japan
Full list of author information is available at the end of the article

Kajiyama et al. Journal of Biomedical Semantics           (2020) 11:11 
https://doi.org/10.1186/s13326-020-00227-9

http://crossmark.crossref.org/dialog/?doi=10.1186/s13326-020-00227-9&domain=pdf
http://orcid.org/0000-0001-7864-842X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:kano@inf.shizuoka.ac.jp


further restricts the use of personal identification codes
including individual numbers (e.g. health insurance card
numbers, driver’s license card numbers, and governmen-
tal personnel numbers), biometric information (e.g. fin-
gerprints, DNA, voice, and appearances), and
information related to disability. This legislation can be
compared with the “Health Insurance Portability and
Accountability Act (HIPAA) [2]” of the United States, in
that the Japanese Act in 2017 includes additional codes,
with abstract specifications such as “you should strive
not to discriminate or impose improper burdens,” and
with exclusion of birth dates and criminal histories, as
stipulated by HIPAA. Another related act of Japanese le-
gislation, the “Act on Anonymously Processed Medical
Information to Contribute to Medical Research and De-
velopment [3]” was established in 2018. This legislation
allows specific third-party institutes to handle EHRs,
thereby promoting wider utilization of medical data.
De-identification of structured data in EHRs is easier

than that of unstructured data because it is straightfor-
ward to apply de-identification methods to structured
data such as numerical tables. Although de-identification
of unstructured data in EHRs is necessary, it is virtually
impossible to de-identify the huge number of documents
manually.
Several earlier works have examined EHR de-

identification. The Informatics for Integrating Biology &
the Bedside (i2b2) task [4] in 2006 was intended for
automatic de-identification of clinical records to satisfy
HIPAA requirements [2]. An earlier study prepared 889
EHRs, comprising 669 EHRs for training and 220 EHRs
for testing. Their annotations included 929 patient tags,
3751 doctor tags, 263 location tags, 2400 hospital tags,
7098 date tags, 4809 id tags, 232 phone_number tags,
and 16 age tags. The best performing method of i2b2 in-
corporated diverse features such as a lexicon, part-of-
speech identification, word frequencies, and dictionaries
for learning using an ID3 tree learning algorithm.
Grouin and Zweigenbaum [5] prepared 312 cardiovas-

cular EHRs in French, with 3142 tags annotated by two
annotators (kappa = 0.87). Their tags include 238 date
tags, 205 last_name tags, 109 first_name tags, 43 hospital
tags, 22 town tags, 8 zip_code tags, 8 address tags, 8
phone tags, 8 med_device tags, 3 serial_number tags. Of
the person tags, 75% were replaced with other French
person names. The other 25% were replaced with inter-
national names. They also collected 10 photopathology
documents, for which a single annotator assigned 29
date tags, 68 last_name tags, 53 first_name tags, 17 hos-
pital tags, 17 town tags, 13 zip_code tags, 14 address
tags, 1 phone tag, 1 med_device tag, and 7 serial_number
tags. They performed de-identification experiments
using 250 documents as their training data and 62 docu-
ments as their test data for the cardiology corpus. They

obtained better F1-scores (exact match, 0.883; overlap
match, 0.887) using conditional random fields (CRF)
than they obtained using their rule-based method (exact
match, 0.843; overlap match, 0.847). However, their
rule-based method was better for the photopathology
corpus (exact match, 0.681; overlap match, 0.693) than
their CRF-based method (exact match, 0.638; overlap
match, 0.638) because the data were fewer than those of
the cardiology corpus.
Grouin and Névéol [6] discussed annotation guidelines

for French clinical records. After collecting 170,000 doc-
uments of 1000 patient records from five hospitals, they
first prepared a rule-based system and their CRF-based
system from their earlier study [5], which we described
earlier. Their rule-based system relies on 80 patterns
specifically designed to process the training corpus, and
lists which they gathered from existing resources from
the internet. They randomly selected 100 documents
(Set 1) from their dataset and applied both systems. For
each document, they randomly showed one output of
the two systems to the annotators for revision. They ap-
plied their rule-based system to another set of 100 docu-
ments (Set 2), which were further reviewed and revised
by a human annotator. They re-trained their CRF-based
system using the revised Set 2 annotations, which is fur-
ther applied to the other set of 100 documents (Set 3).
Annotators reviewed these annotations in subsets for
different agreement analyses. The study also compared
human revision times among different annotation sets,
which was a main objective of their study. They anno-
tated 99 address tags, 101 zip_code tags, 462 date tags,
47 e-mail tags, 224 hospital tags, 59 identifier tags, 871
last_name tags, 750 first_name tags, 383 telephone tags,
218 city tags, in Set 1. They reported their rule-based
method as better (0.813) in terms of the F1-score than
their CRF-based method (0.519) when evaluated with 50
documents in Set 1. When trained with Set 2, the corpus
of the same domain, their CRF-based system performed
better, yielding 0.953 for Set 3 and 0.888 for Set 1 in
their F1-scores.
From the Stockholm EPR [7], a Swedish database of

more than one million patient records from two thou-
sand clinics, Dalianis and Velupillai [8] extracted 100 pa-
tient records to create gold standard for automatic de-
identifications based on HIPAA. They annotated 4423
tags, including 56 age tags, 710 date_part tags, 500 full_
date tags, 923 last_name tags, 1021 health_care_unit
tags, 148 location tags, and 136 phone_number tags.
They pointed out that Swedish morphology is more
complex than that of English. It includes more inflec-
tions, making the de-identification task in Swedish more
difficult.
Jian et al. [9] compiled a dataset of 3000 documents in

Chinese. It comprises 1500 hospitalization records, 1000
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summaries, 250 consulting records, and 250 death re-
cords. They extracted 300 documents from this dataset
randomly, discussed a mode of de-identification with
lower annotation cost. They annotated their tags to
these 300 documents (kappa = 0.76 between two annota-
tors for their 100 document subset). Then they applied
their pattern-matching module to these 300 documents,
yielding a dense set of 201 sentences that include PHI
(Protected Health Information). These 201 sentences in-
cluded 141 name tags, 51 address tags, and 22 hospital
tags.
Du et al. [10] conducted de-identification experiments

using 14,719 discharge summaries in Chinese: two stu-
dents annotated 25,403 tags. This dataset includes 6403
institution tags, 11,301 date tags, 33 age tags, 2078 pa-
tient_name tags, 3912 doctor_name tags, 326 province
tags, 310 city tags, 774 country tags, 917 street tags, 277
admission_num tags, 21 pathological_num tags, 23 x-
ray_num tags, 263 phone tags, 420 doctor_num tags, and
13 ultrasonic_num tags (inter-annotator agreement was
96%, kappa = 0.826). Their experiments demonstrated
that their method of combining rules and CRF per-
formed best, yielding a 98.78 F1-score. The Chinese lan-
guage shares some issues with the Japanese language:
they both require tokenization because no spaces exist
between words. This issue makes de-identification tasks
more difficult than they are in other languages.
The reports described above present a range of differ-

ent evaluation scores. However they adopted different
annotation criteria, which make direct comparison diffi-
cult. For instance, Grouin and Névéol used more de-
tailed annotations than those used by Jian et al., as
follows. Jian et al. introduced Doctor and Patient tags,
but evaluated both simply as Name. Grouin and Névéol
introduced ZipCode, Identifier, Telephone, and City tags,
none of which is annotated in the work of Jian et al.
Additionally, they assigned Last Name and First Name
tags, where performance of First Name was better than
Last Name by around 10 points. However, both are
worse than the results reported by Jian et al., probably
because Jian et al. applied their pattern-matching algo-
rithm to filter their training data. Regarding Address
tags, Jian et al. obtained a 94.2 point F-score, whereas
the Grouin and Névéol CRF method obtained scores of
fewer than 10 points. As Grouin and Névéol suggested,
eliminating City tags in street names can greatly improve
their results: their rule-based method yielded an 86 point
F-score.
Unfortunately, automatic de-identification of EHRs

has not been studied sufficiently for Japanese language.
De-identification shared tasks for Japanese EHRs were
held as tasks in MedNLP-1 [11]. Then named entity ex-
traction was attempted in MedNLP-2 [12] tasks using
datasets similar to MedNLP-1. We designate MedNLP-1

simply as MedNLP hereinafter because we specifically
examine de-identification tasks but not other tasks held
in the MedNLP shared task series.
Regarding machine learning methods, Support Vector

Machine (SVM) [13] and CRF [14] were used often in
earlier Named Entity Recognition (NER) tasks in
addition to rule-based methods. Recent deep learning
methods include Long-Short Term Memory (LSTM)
[15] with character-embedding and word-embedding
[16], which performed best for the CoNLL 2002 [17]
(Spanish and Dutch) and CoNLL 2003 [18] (English and
German) NER shared task data: these tasks require de-
tection of “personal”, “location”, “organization”, and
“other” tag types. Another LSTM model, which is similar
to earlier work [16], was also applied to a task of NER
from Japanese newspapers [19]. Although deep neural
network models have been showing better results re-
cently, rule-based methods are still often better than ma-
chine learning methods, especially when insufficient
annotated data are available.
To evaluate the effectiveness of such different methods

for the Japanese language, we implemented two EHR de-
identification systems for the Japanese language in our
earlier work [20]. We used the MedNLP shared task
dataset and our own dummy EHR dataset, which was
written as a virtual database by medical professionals
who hold medical doctor certification. Based on this
earlier work, we added a new dataset of pathology re-
ports to this study, for which we annotated the following
tags. De-identification tags of age, hospital, sex, time,
and person are annotated manually in all these datasets,
following the annotation standard of the MedNLP
shared task to facilitate comparison with earlier studies.
We assume these annotations as our gold standard for
our de-identification task. To these three datasets, we
applied a rule-based method, a CRF-based method, and
an LSTM-based method. Additionally, we have anno-
tated our own tags to these three datasets by three anno-
tators to calculate inter-annotator agreement. We have
observed the coherency of the original annotations of
the datasets. Overall, this study differs from our earlier
work [20] in that we added a new pathology dataset and
its annotations, trained and evaluated our machine
learning models using the new dataset, and evaluated
the results using newly created annotations by three an-
notators to observe characteristics of the original and
our own annotations.

Datasets
Our datasets were derived from three sources: MedNLP,
dummy EHRs, and pathology reports. Irrespective of the
dataset source, de-identification tags of five types are an-
notated manually: age (numerical expressions of sub-
ject’s ages including its numerical classifiers), hospital
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(hospital names), sex (male or female), time (subject re-
lated time expressions with its numerical classifiers), and
person (person names). Characteristics of these datasets
are presented in Table 1. It is noteworthy that texts of
the MedNLP and dummy EHRs are not actual texts, but
they were written by medical professionals, each of
whom holds medical doctor certification. However, char-
acteristics of the descriptions differ between these two
sources, probably because of differences of the writers.
The number of annotators is not described for the
MedNLP dataset, but a single annotator created the an-
notations of the dummy EHR dataset and the Pathology
Report dataset, individually.

MedNLP shared task dataset
We used the MedNLP de-identification task dataset for
comparison with earlier studies that have used the same
dataset. This dataset includes the dummy EHRs
(discharge summaries) of 50 patients. Although the
training dataset and test dataset were provided from the
shared task organizers, the test dataset of the formal run
is not publicly available now. It is not possible to
compare results directly with earlier works in the
MedNLP shared task formal run (Tables 2 and 3 show
the formal run results). However, both training and test
datasets were originally parts of a single dataset. There-
fore, we can discuss their characteristics in comparison
with those found in earlier works conducted using the
training dataset only. We calculated inter-annotator
agreement by three annotators for the training dataset.
The average F1-score of three pairs among these three
annotators was 86.1, in 500 sentences of this dataset.

Dummy EHRs
Another source is our original dummy EHRs. We
built our own dummy EHRs of 32 patients, assuming
that the patients were hospitalized. Documents of our
dummy EHRs were written by medical professionals
(doctors). We added manual annotations for de-
identification following the guidelines of the MedNLP
shared task. These annotations were originally
assigned by a single annotator. Additionally, we added

Table 1 Dataset characteristics

Dataset name MedNLP Dummy-EHRs Pathology Reports

# of documents 50 reports 32 pairs of records and summaries 1000 reports

# of sentences 2244 8183 3012

# of tokens 42,621 154,132 194,449

# of all tags 490 3017 295

# of age tags 56 39 0

# of hospital tags 75 170 31

# of person tags 0 135 224

# of sex tags 4 16 0

# of time tags 355 2657 40

Example in
original Japanese
text

工場に勤めている<a > 64
歳</a >の < x >男性</
x >。

施設入所中で寝たきりの<a > 86歳</a > <x >女
性</x >。全介助

<<院外標本 <h >静大皮フ科クリニッ
ク</h >、 < p >桑田 智</p>

Example
translated into
English

A < a > 64-year-old</a > <x >
man</x > works in a factory

An <a > 86-year-old</a > <x > woman</x >
bedridden in a nursing home. Total assistance
required

<<Ex-hospital sample < h > Shizudai
Dermatology Clinic</h > , < p > Satoshi
Kuwata</p>

Table 2 Overall results
P R F A

C3 89.59 91.67 90.62 99.58

B3 91.67 86.57 89.05 99.54

B1 90.05 87.96 88.99 99.49

B2 90.82 87.04 88.89 99.52

C1 92.42 84.72 88.41 99.49

A1 91.50 84.72 87.98 99.47

C2 91.50 84.72 87.98 99.46

A2 90.15 84.72 87.35 99.41

D1 86.10 74.54 79.90 99.36

G1 82.09 76.39 79.14 99.38

D3 85.87 73.15 79.00 99.35

D2 80.81 74.07 77.29 99.24

H2 76.17 75.46 75.81 99.28

H1 75.81 75.46 75.64 99.27

H3 74.88 74.54 74.71 99.26

P, R and F were calculated at the phrase level: P, precision; R, recall; F, F1-measure;
and A, accuracy. A was calculated in the word level (the agreement ratio of B-*, I-*
and O).
The first column stands for participants’ team names, where the first letter stands
for a team ID and the second numerical value stands for a submission run ID
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new annotations by three annotators to a part of this
dataset and calculated inter-annotator agreement. The
average F1-score of three pairs among these three
annotators was 76.1 for 730 sentences of the Dummy
EHR dataset.

Pathology reports
The other source is a dataset of 1000 short pathology
reports, that differ greatly from the EHRs above. Pathology
reports describe pathological findings by which personal
information (names of patients, doctors, hospitals, and
time expressions) frequently appears, but for which tags of
sex and age rarely appear. Personal names, hospital names,
and dates were manually de-identified beforehand by the
dataset provider, and replaced with special characters. For
machine learning methods to support realistic training
and evaluation, we replaced these special characters with
randomly assigned real entity names as follows. For the
hospital names, we collected 96,167 hospital names which
cover most of the Japanese hospital names, published by
the Japanese government. For the person names, we
manually created 20 dummy-family names and 20
dummy-first names using one of the last names only, or
combining one of the last names and one of the first
names. Additionally, we calculated the inter-annotator
agreement by three annotators. The average F1-score of
three pairs among these three annotators was 80.2 for 500
sentences of this dataset. This Pathology Report dataset is
the only real (not dummy) dataset among our three
datasets. Because we received manually de-identified
version of the original real pathology reports, no ethical
review was necessary.

Methods
We used a Japanese morphological analyzer, Kuromoji,1

for tokenization and part-of-speech (POS) tagging. We
registered our customized dictionary, derived from
Wikipedia entry names and entries of the Japanese
Standard Disease-code master [21], to this morphological
analyzer in addition to the analyzer’s default dictionary.
We implemented rule-based, CRF-based, and LSTM-

based methods.

Rule-based method
Unfortunately, the implementation of the best system for
the MedNLP-1 de-identification task [22] is not publicly
available. We implemented our own rule-based program
based on the descriptions in their paper, to replicate the
same system to the greatest extent possible. We present
their rules below for a target word x for each tag type.

Age
If x’s detailed POS is “numeral”, then apply the rules in
Table 4.

Hospital
If one of following keywords appeared in x, then mark it
as hospital: 近医 (a near clinic or hospital), 当院 (this
clinic or hospital), or 同院 (same clinic or hospital).
If x’s POS is “noun” and if detailed POS is not “non-au-

tonomous word”, or if x is either “●”, “◯”, “▲” or “■” (these
symbols are used for manual de-identification because the
datasets are dummy EHRs), and if suffix of x is one of the

Table 3 Detailed results for each privacy type in MedNLP-1 (De-identification task)
<a > age <x > sex <t > time <h > hospital name

P R F P R F P R F P R F

C3 90.32 87.5 88.89 100 100 100 87.16 91.49 89.27 97.30 94.74 96.00

B3 90.00 84.38 87.10 100 50.00 66.67 91.30 89.36 90.32 97.06 86.84 91.67

B1 93.33 87.5 90.32 100 100 100 90.65 89.36 90.00 89.47 89.47 89.47

B2 90.00 84.38 87.10 100 100 100 91.24 88.65 89.93 91.89 89.47 90.67

C1 96.67 90.62 93.55 100 50.00 66.67 91.18 87.94 89.53 93.55 76.32 84.06

A1 92.86 81.25 86.67 100 50.00 66.67 91.04 86.52 88.73 91.89 89.47 90.67

C2 96.67 90.62 93.55 100 50.00 66.67 89.13 87.23 88.17 96.77 78.95 86.96

A2 92.86 81.25 86.67 100 50.00 66.67 89.05 86.52 87.77 91.89 89.47 90.67

D1 92.31 75.00 82.76 100 50.00 66.67 82.84 78.72 80.73 96.15 65.79 78.12

G1 80.65 78.12 79.37 100 50.00 66.67 84.56 81.56 83.03 72.73 63.16 67.61

D3 88.89 75.00 81.36 100 50.00 66.67 83.08 76.60 79.70 96.15 65.79 78.12

D2 92.31 75.00 82.76 100 50.00 66.67 75.86 78.01 76.92 96.15 65.79 78.12

H2 83.87 81.25 82.54 100 100 100 73.79 75.89 74.83 77.78 73.68 75.68

H1 80.65 78.12 79.37 100 100 100 75.86 78.01 76.92 70.27 68.42 69.33

H3 83.87 81.25 82.54 100 100 100 73.79 75.89 74.83 70.27 68.42 69.33

P, R and F were calculated at the phrase level: P, precision; R, recall; F, F1-measure; and A, accuracy. A was calculated in the word level (the agreement ratio of B-*, I-* and O).
The first column stands for participants’ team names, where the first letter stands for a team ID and the second numerical value stands for a submission run ID

1https://www.atilika.com/ja/kuromoji/
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following keywords, then mark it as hospital: 病院 (hospital
or clinic),クリニック (clinic), or医院 (clinic).

Sex
If x is either 男性 (man), 女性 (woman), men, women,
man, woman (in English), then mark it as sex.

Time
If x’s detailed POS is “numeral” and if x consists
of four-digit-numbers+slash+two-or-one-digit-numbers
(corresponds to “yyyy/mm”) or two-or-one-digit-
numbers+slash+two-or-one-digit-numbers (corresponds to
“mm/dd”), then mark it as time.

Table 4 Rules used for our rule-based method, original Japanese with English translations

Option 1 main rule Option 2

翌
(next)

一昨年 two years ago より (from)

前
(before)

昨年 last year まで (until)

入院前
(before hospitalization)

先月 last month 代 (‘s)

入院後
(after hospitalization)

先週 last week 前半 (early)

来院から
(after visit)

昨日 yesterday 後半 (last)

午前
(a.m.)

今年 this year -- (from)

午後
(p.m.)

今月 this month -- (from)

発症から
(after onset)

今週 this week 以上 (over)

発症してから
(after onset)

今日 today 以下 (under)

治療してから
(after care)

本日 today から (from)

来年 next year 時 (when)

来月 next month 頃 (about)

来週 next week ごろ (about)

翌日 tomorrow ころ (about)

再来週 the week after next 上旬 (early)

明後日 day after tomorrow 中旬 (mid)

同年 same year 下旬 (late)

同月 same month 春 (spring)

同日 same day 夏 (summer)

翌年 following year 秋 (fall)

翌日 the next day 冬 (winter)

翌朝 the next morning 朝 (morning)

前日 the previous day 昼 (noon)

未明 early morning 夕 (evening)

その後 after that 晩 (night)

xx年 xx (year) 早朝 (early morning)

xx月 xx (month) 明朝 (early morning)

xx週間 xx (week) 以前 (before)

xx日 xx (day) 以降 (after)

xx時 xx (o’clock) 夕刻 (evening)

xx分 xx (minutes) ほど (about)
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If x’s detailed POS is “numeral” and followed by either
of 歳 (old), 才 (old), or代 (‘s), then mark it as time.
If x is followed further by either of “より”, “まで”, “前

半”, “後半”, “以上”, “以下”, “時”, “頃”, “ごろ”, “ころ”,
“から”, “前半から”, “後半から”, “頃から”, “ごろから”,
or “ころから”, then include these words in the span of
the marked time tag.

CRF-based method
We implemented a CRF-based system because many
participants used CRFs in the MedNLP-1 de-identification
task, including the second-best team and the baseline
system. The best participant used a rule-based system, as
described previously. We used the MALLET2 library for
CRF implementation. We defined five training features for
each token3: part-of-speech (POS), detailed POS, character
type (Hiragana, Katakana, Kanji, or Number), a binary
feature whether a token is included in our user dictionary
or not, and another binary feature whether a token is
beginning of its sentence or not.

LSTM-based method
Our LSTM-based method combines bidirectional LSTM
(bi-LSTM) and CRF, using character-based and word-
based embeddings (Fig. 1) following earlier work that
had been reported as successful for other languages [16].
For word-based embedding, we used the existing

Word2Vec [23] model, which was trained using Japanese
Wikipedia.4 We used bi-LSTM to embed characters;
then we concatenated these two embeddings. This
concatenated output was fed to another bi-LSTM and
then sent to a CRF to output IOB tags.
Our implementation has been made publicly available

in GitHub.5 Table 5 presents the parameter settings.

Results
Experiment settings and evaluation metrics
We followed the evaluation metrics of the MedNLP-1
shared task using IOB2 tagging [24]. We used four-fold
cross validation, whereas the rule-based method requires
no training data. We prepared five datasets: MedNLP
(MedNLP), dummy EHRs (dummy), pathology reports
(pathology), and MedNLP + dummy EHRs (MedNLP +
dummy). We also prepared a dataset that comprises
these three datasets (all). For each dataset, we applied
cross validation. The CRF and LSTM are trained with
three patterns of training data: the target dataset only,
one of other datasets only, MedNLP + dummy, and all.

Our evaluation uses a strict match of named entity
spans, calculating F1-scores, precisions, and recalls.
Table 6 presents the evaluation results.

Results obtained using the MedNLP dataset
In this MedNLP dataset, the total number of sex is very
small; that of person is zero. The rule-based system per-
formed best in terms of the F1-score because its rules
were tuned originally to the very MedNLP dataset.
LSTM performed best for age and time, probably be-
cause these tags exhibit typical patterns of less variation.
LSTM is superior to Rule, except for sex and hospital.
Regarding sex, we observe better performance when
LSTM uses more training data. Therefore, the data size
is expected to have been the reason why LSTM was not
good in sex.

Results obtained using the dummy EHR dataset
LSTM (M + d) performed best in terms of the F1-score.
CRF performed better when trained by M+ d dataset
than with the target dataset only. This performance in-
crease consists of decrease of age and increase of all
other tags, suggesting that these two datasets differ in
their age tag annotation scheme.
The overall performance of this dummy EHR dataset

is worse than the MedNLP dataset, suggesting that the
dummy EHR dataset is more difficult to de-identify.

Results obtained using the pathology report dataset
The LSTM-based method was better (81.67) than the
CRF-based method (74.26), as shown by the 7.41 point
F1-score when applied to our Pathology Report dataset.
Our rule-based system achieved very high recall, but

very low precision scores for time, exhibiting a difference
by 38 points. The pathology reports include many clin-
ical inspection values written in an “xx/yy” format, which
might engender confusion with dates expressed in an
“mm/dd” format. We applied a workaround to limit
[1 < = mm < = 12] and [1 < = dd < = 31], but it was insuf-
ficient: we need contextual information, not just rules.
In addition, hospital is better than time, with less differ-
ence (15 points) of precision and recall.
When trained with the Pathology Report dataset only,

its performance is better than our rule-based system.
When trained with the M+ d dataset, which does not
contain the pathology dataset, neither CRF nor LSTM
works fine because the pathology reports differ greatly in
terms of their styles of description and named entities.

Discussion
These results suggest that our datasets have quite differ-
ent characteristics in what context and in what form
their named entities appear, but LSTM adapted to these
differences well. Adding the Pathological Report dataset

2http://mallet.cs.umass.edu/
3Hereinafter, “token” means a “morpheme” of the Japanese language,
which does not have any space between tokens. A “morpheme” is the
smallest meaningful unit in a language.
4http://www.cl.ecei.tohoku.ac.jp/~m~suzuki/jawiki_vector/
5https://github.com/johokugsk
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to the training data seems to degrade the system per-
formance for other target test datasets because of the
different dataset characteristics (examples presented in
Table 1). For example, when trained with the Patho-
logical Report dataset, the hospital tags of the MedNLP
dataset show lower performance because of the different
descriptions of hospital names among these two data-
sets. The Pathological Report dataset has full hospital
names such as “Shizudai Dermatology Clinic,” but the
other two datasets have more casual descriptions such as

Fig. 1 Conceptual figure of our LSTM-based model, showing embedding and NER in separate figures. + means concatenation. The first figure
shows the embedding part, where Wx is an xth input word, Lx,i is an ith letter of the word Wx, r denotes right to left (forward) LSTM, l denotes left
to right (backward) LSTM, Vx is an intermediate node which corresponds to Wx. The second figure shows the NER part, where fl denotes forward
LSTM, bl denotes backward LSTM, c denotes concatenated vector, finally a CRF layer is shown with an example predicted named entities in the
BIO annotation style

Table 5 LSTM parameter settings

Word embedding size 200

Character embedding size 100

Hidden layer of character 100

Hidden layer of LSTM 300

Learning rate 0.001
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Table 6 Evaluation results for each tag and in total, for different methods (rule, CRF, LSTM) and different evaluation datasets
(MedNLP, dummy EHR, and pathology reports). M, d, and P respectively denote training data of MedNLP, dummy EHR, and
Pathology reports; M + d denotes that training data consist of MedNLP+dummy EHR, all stands for all of these three datasets; other
machine learning methods use the target evaluation dataset as its training data. In each cell, F1-score, precision, and recall are
shown (in values multiplied by 100). The best scores for each tag type for each evaluation metric are presented in bold typeface. All
evaluations were done by four-fold cross validations

Evaluation Results on MedNLP dataset

tag type #of tags scores Rule CRF CRF
d

CRF
P

CRF
M+ d

CRF
all

LSTM LSTM
d

LSTM
P

LSTM
M+ d

LSTM
all

total 490 F1 84.23 82.62 43.85 0.71 26.40 67.34 83.07 41.26 0.43 67.35 57.03

prec 78.90 85.63 46.20 2.50 21.51 66.54 81.33 41.07 0.48 66.98 57.94

recall 90.42 79.95 42.33 0.41 59.76 68.38 86.12 41.57 0.38 68.17 56.34

age 56 F1 93.43 71.12 30.00 0.00 32.55 53.04 95.83 71.11 0.00 84.72 87.50

prec 96.00 78.24 37.50 0.00 26.93 56.85 95.83 71.11 0.00 84.72 87.50

recall 91.16 65.47 28.13 0.00 46.05 50.00 95.83 71.11 0.00 84.72 87.50

hospital 75 F1 84.73 87.09 43.25 0.00 26.02 70.04 66.67 13.33 13.89 66.67 41.67

prec 80.75 93.52 66.67 0.00 20.55 91.67 75.00 11.11 10.67 70.83 45.83

recall 89.90 81.71 27.50 0.00 53.06 60.42 62.50 16.67 20.00 63.89 38.89

person 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

sex 4 F1 50.00 16.67 16.67 0.00 14.65 25.00 0.00 20.00 0.00 25.00 25.00

prec 50.00 25.00 12.50 0.00 8.68 25.00 0.00 20.00 0.00 25.00 25.00

recall 50.00 12.50 25.00 0.00 50.00 25.00 0.00 20.00 0.00 25.00 25.00

time 355 F1 50.00 16.67 47.43 0.98 14.65 70.57 96.14 67.22 42.98 89.78 82.67

prec 50.00 25.00 45.16 2.50 8.68 65.46 95.00 66.26 39.46 88.68 81.53

recall 50.00 12.50 50.19 0.61 50.00 76.50 97.41 68.30 47.94 91.00 82.67

Evaluation Results on Pathology Report dataset

tag type #of tags scores Rule CRF CRF
M

CRF
d

CRF
M+ d

CRF
all

LSTM LSTM
M

LSTM
d

LSTM
M+ d

LSTM
all

all 71 F1 13.97 74.26 0.00 0.62 1.45 57.63 81.67 0.00 0.00 1.45 81.25

prec 8.65 86.72 0.00 1.47 10.00 64.98 86.88 0.00 0.00 10.00 82.48

recall 43.33 65.16 0.00 0.39 0.78 54.06 78.84 0.00 0.00 0.78 80.15

age 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

hospital 31 F1 31.19 0.00 0.00 0.00 0.00 0.00 25.00 0.00 13.33 0.00 58.33

prec 26.47 0.00 0.00 0.00 0.00 0.00 25.00 0.00 13.33 0.00 58.33

recall 41.28 0.00 0.00 0.00 0.000 0.00 25.00 0.00 13.33 0.00 58.33

person 224 F1 0.00 91.08 0.00 0.00 6.25 71.31 95.19 0.00 0.00 0.00 95.83

prec 0.00 95.83 0.00 0.00 10.00 74.79 95.19 0.00 0.00 0.00 95.83

recall 0.00 87.21 0.00 0.00 4.55 69.63 95.19 0.00 0.00 0.00 95.83

sex 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

time 40 F1 9.25 10.57 0.00 2.00 0.00 18.82 25.00 3.81 0.00 6.25 19.44

prec 5.25 16.67 0.00 1.79 0.00 20.83 25.00 6.67 0.00 10.00 19.44

recall 43.09 9.09 0.00 2.27 0.00 19.32 25.00 2.67 0.00 4.55 19.44
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“近医 (hospital nearby)” and “当院 (our hospital)”. The
Pathology Report dataset has different contextual pat-
terns that could have learned by machine learning
methods such as “院外標本 (ex-hospital sample)” imme-
diately before hospital tags, and a suffix/prefix such as
“xx hospital” or “xx clinic”. These words, “hospital” and
“clinic”, might have been learned as semantically similar
by Word2Vec.
Another difference of datasets is the coherence of an-

notations. We compared the original annotations of the
datasets with our own new annotations created for this
study by three annotators. These new annotations were
created to calculate inter-annotator agreement as de-
scribed in the Dataset section. The original versus new
inter-annotator agreement (and inter-annotator agree-
ment of the three annotators) in average F1-scores were
0.566 (0.861), 0.342 (0.761), and 0.772 (0.802), respect-
ively, for the MedNLP, Dummy, and Pathology Report
datasets. As these scores strongly suggest, the original
annotations were insufficiently coherent. By contrast,
our new annotations are much more coherent because
we have included more detailed annotation guidelines.
For example, our guidelines include specifications of

prefixes, suffixes and classifiers.. Annotating larger data-
sets with this coherent guideline is anticipated as a sub-
ject for future work. It is particularly interesting that our
system performance was better than the inter-annotator
agreement in the Pathology Report dataset. One reason
is expected to be the remaining vague part of the guide-
line, such as inclusion of particles when assigning named
entities. We applied the automatic tagger for pre-
annotation; then human annotators reviewed the results.
However, annotators sometimes overly depend on auto-
matically annotated parts-of-speech without considering
the context and semantics; alternatively, the part-of-
speech tagger can simply fail. Therefore, an annotation
guideline including precise part-of-speech specifications
will be required.
An earlier study that applied a similar LSTM-based

method to de-identify English medical data [25] found
lower F1-scores for LOCATION and NAME tags on the
i2b2 2014 dataset and MIMIC-III dataset [26], which
includes records of 61,532 patients in an intensive care
unit (ICU); performance of naïve CRF was very low. This
LOCATION tag corresponds to our hospital tag, exhi-
biting similar characteristics among different languages.

Table 6 Evaluation results for each tag and in total, for different methods (rule, CRF, LSTM) and different evaluation datasets
(MedNLP, dummy EHR, and pathology reports). M, d, and P respectively denote training data of MedNLP, dummy EHR, and
Pathology reports; M + d denotes that training data consist of MedNLP+dummy EHR, all stands for all of these three datasets; other
machine learning methods use the target evaluation dataset as its training data. In each cell, F1-score, precision, and recall are
shown (in values multiplied by 100). The best scores for each tag type for each evaluation metric are presented in bold typeface. All
evaluations were done by four-fold cross validations (Continued)

Evaluation Results on Dummy EHR dataset

tag type #of tags scores Rule CRF CRF
M

CRF
P

CRF
M+ d

CRF
all

LSTM LSTM
M

LSTM
P

LSTM
M+ d

LSTM
all

total 3017 F1 43.74 66.97 44.01 19.67 67.13 65.79 63.99 20.33 1.60 69.82 68.19

prec 42.89 66.77 67.35 56.72 67.60 68.27 68.76 26.68 2.22 72.79 80.26

recall 44.75 67.34 33.28 12.34 66.69 63.63 60.20 17.03 1.25 67.24 60.04

age 39 F1 51.13 48.46 29.35 0.00 38.87 33.82 50.00 22.38 0.00 50.00 41.67

prec 51.97 65.25 28.85 0.00 41.56 35.72 50.00 19.05 0.00 50.00 45.83

recall 50.46 53.74 30.00 0.00 36.71 32.50 50.00 32.38 0.00 50.00 41.67

hospital 170 F1 15.98 47.85 33.19 0.00 48.62 35.73 22.22 35.79 0.00 40.00 43.33

prec 10.07 53.18 38.75 0.00 44.91 35.90 28.33 34.48 0.00 37.50 45.83

recall 39.06 43.73 29.42 0.00 53.60 37.81 29.17 37.33 0.00 43.75 41.67

person 135 F1 0.00 26.96 0.00 0.00 28.36 15.48 50.00 0.00 0.00 45.83 37.50

prec 0.00 26.79 0.00 0.00 29.91 19.64 50.00 0.00 0.00 45.83 37.50

recall 0.00 30.71 0.00 0.00 27.99 13.39 50.00 0.00 0.00 45.83 37.50

sex 16 F1 93.75 35.92 29.17 0.00 90.08 33.93 0.00 40.00 0.00 50.00 50.00

prec 100.0 44.27 50.00 0.00 95.83 50.00 0.00 40.00 0.00 50.00 50.00

recall 90.00 43.13 20.83 0.00 85.63 27.08 0.00 40.00 0.00 50.00 50.00

time 2657 F1 49.48 71.28 42.14 21.20 70.60 68.33 83.93 51.97 48.89 85.70 88.20

prec 51.81 71.44 64.94 59.35 71.24 70.94 84.82 52.59 48.89 86.51 89.24

recall 47.38 71.15 32.08 13.58 70.00 66.08 83.29 51.46 48.89 84.93 87.23
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The LSTM-based method can be regarded as effective in
Japanese medical de-identification tasks as well. If a
larger dataset were available, then it would yield better
performance.
Japanese-specific issues include the following difficul-

ties: Japanese (and Chinese) have no spaces between to-
kens, which makes tokenization much more difficult and
ambiguous. The number of letter types is much greater
than in other languages, including tens of thousands of
kanji letters, 50 hiragana letters, 50 katakana letters, nu-
merals, and alphabets. The languages also have more
synonyms than in other languages.
Our system performance almost reaches to the inter-

annotator agreement, which can be regarded as upper
bound of system performance. The current performances
are sufficiently high compared to other publicly available
Japanese de-identification tools. Therefore, we plan to apply
our system to actual de-identification tasks in hospitals.

Conclusions
We implemented three de-identification methods for
Japanese EHRs and applied these methods to three data-
sets, which are derived from two dummy EHR sources
and one real Pathology Report dataset. These datasets
have manually annotated de-identification tags, following
the MedNLP shared task annotation guideline.
Our best F1-scores over all the tag types are 84.23 (rule-

based), 68.19 (LSTM), and 81.67 (LSTM) points, respect-
ively, for the MedNLP dataset, the dummy EHR dataset,
and the Pathology Report dataset. Our LSTM-based
method performed best in two datasets, whereas our rule-
based method performed best in the MedNLP dataset.
However, our LSTM-based method also achieved a good
score of 83.07 points in the MedNLP dataset, which only
differs 1.16 points from the best score of the rule-based
method. Our results demonstrate that the bi-LSTM based
method with character-embedding and word-embedding
tends to work better than other methods, exhibiting more
robustness than CRF over different data sources. The
LSTM-based method was better than the CRF-based
method, exhibiting a 7.41 point F1-score difference when
applied to our Pathology Report dataset. This report is the
first describing a study applying this LSTM-based method
to any de-identification task of Japanese EHRs.
Machine learning methods can extract named entities

of de-identification comparable to a rule-based method
that is tuned manually to specific target data. However,
machine learning methods are still less adequate for ap-
plication to expressions with low occurrence. Probably
because of the insufficient data size, our methods yielded
worse evaluation scores than were obtained with the
other languages when applied to the i2b2 task and
MIMIC-III. Combinations of LSTM and rule-based
methods are left as a subject for future work.

The current performance is sufficiently high among
publicly available Japanese de-identification tools. There-
fore, we plan to apply our system to actual de-
identification tasks in hospitals. Although it is still diffi-
cult to make real EHRs publicly available, we could use
our large amount of EHRs inside our hospitals. Increas-
ing the size of annotated datasets for such internal usage
is left as another subject for future work.
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