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Abstract

Background: Image segmentation is a difficult and classic problem. It has a wide range of applications, one of
which is skin lesion segmentation. Numerous researchers have made great efforts to tackle the problem, yet there
is still no universal method in various application domains.

Results: We propose a novel approach that combines a deep convolutional neural network with a grabcut-like user
interaction to tackle the interactive skin lesion segmentation problem. Slightly deviating from grabcut user
interaction, our method uses boxes and clicks. In addition, contrary to existing interactive segmentation algorithms
that combine the initial segmentation task with the following refinement task, we explicitly separate these tasks by
designing individual sub-networks. One network is SBox-Net, and the other is Click-Net. SBox-Net is a full-fledged
segmentation network that is built upon a pre-trained, state-of-the-art segmentation model, while Click-Net is a
simple yet powerful network that combines feature maps extracted from SBox-Net and user clicks to residually
refine the mistakes made by SBox-Net. Extensive experiments on two public datasets, PH2 and ISIC, confirm the
effectiveness of our approach.

Conclusions: We present an interactive two-stage pipeline method for skin lesion segmentation, which was
demonstrated to be effective in comprehensive experiments.
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Background
After years of rapid growth, the DIKW (data, informa-
tion, knowledge, and wisdom) hierarchy [1] has been
closely related to the development of artificial
intelligence and, more precisely, deep learning. As a
paradigm of deep learning, AI algorithms hierarchically
transform data into information, then knowledge, and fi-
nally wisdom by building deep layers of the network to
represent different levels of abstraction. Artificial
intelligence has contributed to the resolution of a variety
of biomedical problems, including cancer and have the

potential to deliver better management services to deal
with chronic diseases. Nowadays, artificial intelligence
methods have been progressively established as suitable
tools for use in clinical daily practice. Deep learning is a
subfield of artificial intelligence, which is highly flexible
and have been applied in various areas of both basic and
clinical research. One of the applications of deep learn-
ing that greatly benefits from this paradigm is image
segmentation.
Image segmentation has an important role in medical

diagnosis and research. Its results can help professionals
to obtain accurate pathological regions, thus reducing
the possibility of artificial empirical misjudgment. In its
early days, experienced professionals worked assiduously
to delineate diseased areas for better diagnosis. This kind
of complete manual segmentation approach requires a
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significant amount of domain knowledge. Besides, it is
time-consuming and laborious and could be severely af-
fected by inter- and intra-observer variability [2]. In
order to reduce the burden of manual segmentation, re-
searchers have developed many automatic approaches
[3–5] for medical image segmentation. These ap-
proaches range from early stage low-level-feature based
methods such as Otsu [6], region growth [7], and grab-
cut [8] to deep convolutional neural network-based
methods such as FCNs (fully convolutional networks)
[9] and U-Net [10]. In medical image segmentation, U-
Net is one of the most popular network architectures
and has been commonly used in various medical im-
aging modalities [10, 11]. Fully automatic segmentation
methods do not require user interaction, which greatly
decreases the costs. However, this is a double-edged
sword since there is no means for them to refine the
segmentation result when it is not satisfactory. Thus,
even the more sophisticated DCNN (deep convolutional
neural network)-based methods could not achieve accur-
ate and robust results that are clinically useful.
To address the limitations of automatic segmentation

approaches, a trade-off was made between complete
manual and fully automatic approaches. The interactive
segmentation approach, which uses user interactions as
input signals to guide segmentation, could alleviate the
clinician’s burden and, at the same time, achieve satisfac-
tory segmentation results by incremental refinement.
ITK-SNAP [12] provides an interactive segmentation
mechanism that employs an active contour model for
segmentation that accepts user-provided seeds or blobs
as a starting point. Although it is ‘Interactive’, it lacks
the ability to refine the segmentation result, and its
underpinning model is not powerful enough to model
the variability of our target medical images. Similar ap-
proaches such as random walks [13], graph cuts [14] and
grabcut [8] provide mechanisms to incrementally refine
the segmentation result, but the performances of those
methods are limited by the representativeness of the
underpinning model since they only incorporate primi-
tive low-level features for inference. Li [15] proposed a
stacked adversarial learning (SAL) method based on an
FCN to improve the dermoscopic image segmentation
method. The authors build upon generative adversarial
networks with a novel SAL architecture such that skin
lesion features can be learned iteratively in a class-
specific manner. However, the stability of the generated
samples is not satisfactory; and complex parameter ad-
justment is required, which increases the time costs of
the training model. Liu [16] proposed efficient skin le-
sion segmentation based on an improved U-net model,
which mainly includes batch normalization and dilated
convolution. However, the model regards dark regions
as regions of interest, and the segmentation performance

of the model was poor in a few cases where the region
of interest was brighter than the surrounding skin re-
gion. Qin [17] proposed an asymmetric encode-decode
network with two decoding paths for skin lesion seg-
mentation. A skip pathway was designed to transfer the
more representative features from the encoder to the de-
coder. However, in clinical work, the images are much
more complex than the experimental data. Without the
interaction of medical personnel, it is difficult to obtain
a satisfactory segmentation result.
Due to the recent explosive growth of deep neural net-

works [18, 19] and their application in semantic segmen-
tation problems [9, 10, 20, 21], the method for
interactive object segmentation has experienced a swift
change from traditional low-level-feature-based algo-
rithms [13, 14, 22, 23] to deep convolutional neural net-
works [24–31]. Consequently, the results, in terms of
accuracy and the intensity of user interaction, have im-
proved tremendously.
In this article, in order to compensate for the defects

of traditional methods that cannot effectively extract the
deep information of images and because the depth
model is not flexible enough for clinical use, we pro-
posed a novel algorithm that combines the representa-
tional power of deep convolutional neural networks
(DCNNs) and the flexibility of grab-cut (8)-like user
interaction. While previous methods normally combine
the initial segmentation task with the following refine-
ment task in a single network, we explicitly separate
them by designing individual sub-networks. One sub-
network is SBox-Net, and the other sub-network Click-
Net. Compared to the current skin lesion segmentation
methods, our model has the characteristics of flexibility
and precision. Clinicians can judge whether the segmen-
tation results are satisfactory according to the segmenta-
tion model of the first-stage SBox-Net. If the
segmentations are satisfactory, further refinement is not
required. Otherwise, we can click on the pathological
pictures. Click-Net will automatically process clinicians’
clicks and refine the segmentation results. Comprehen-
sive experiments are then conducted to demonstrate the
effectiveness of our approach. The workflow of our
method is shown in Fig. 1.

Methods
The network structure consists of three main parts: 1.
The network encoder, which was used to encode the fea-
tures of different levels of abstraction. 2. SBox-Net. In
addition to the feature encoder, we obtain features of
two abstract levels, namely, low-level features and high-
level features. SBox-Net highlights high-level features by
reducing the number of channels of low-level feature
mapping and obtains rough prediction segmentation. 3.
Click-Net, whose main goal is to restore details
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according to the user’s clicks. We generated a Gaussian
distance map with the same size as the input image by
using the user’s clicks and used the Gaussian distance
map as the weight of the segmentation results of the
final upsampling layer of Click-Net. Finally, the segmen-
tation results of Click-Net are refined according to the
weight. The architecture of our proposed method is
illustrated in Fig. 2.

SBox-Net
Our SBox-Net was designed to be a binary segmentation
network. Except for the last inference layer, there is no
difference between our SBox-Net and a normal semantic
segmentation network. Thus, SBox-Net could smoothly
utilize a pre-trained state-of-the-art semantic segmenta-
tion network by simply replacing the top segmentation
layer of an existing state-of-the-art model with our bin-
ary segmentation layer. We can then fine-tune the net-
work to fit our goal. This strategy saves us considerable
training time and computational resources. As for the

simulation of a user drawing a surrounding box, we take
the bounding box of the ground truth mask jittered ran-
domly by up to 30 px in each direction. In this way, the
randomness of user behaviour is well modelled.
As shown in Supplementary Fig. 1, in SBox-Net, in

order to concatenate the shallow and deep features in the
encoder, the features extracted from the encoder should
be ‘concatenated’ first. Then, the 3 × 3 convolution is used
to refine the features, and the refined features have deeper
semantic features. During the upsampling process, fac-
tor = 4 bilinear interpolation is used to recover the pixel-
wise prediction of the image resolution entered in the en-
coder. We define this prediction as a rough prediction;
and in clinical segmentation, if the physician is satisfied
with this result, he can obtain a satisfactory result without
any manipulation. Otherwise, he can use Click-Net for re-
finement. Section “User interaction simulation” and “User
interaction transformation” introduce some preliminary
information about Click-Net, and section “Click-Net”
describes Click-Net in detail.

Fig. 1 The workflow of our method. First, a box is drawn by the user who possesses domain knowledge to delineate the region of interest (ROI).
The ROI is then cropped out to exclude most of the useless background and fed into a fully convolutional neural network to generate a
segmentation. Most of the time, this segmentation will be very satisfactory. In addition, no further process is required. However, not all situations
are ideal. Take the one in the figure as an example. There is a blot that we would like to remove. To address this type of situation, the user can
provide another FCN with positive and negative clicks, which are transformed into Gaussian centred distance maps, to further refine
the segmentation
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User interaction simulation
Surrounding box simulation is quite straight-forward, as
previously stated in section “SBox-Net”. Click simulation
requires slightly more caution.
Before delving into the details of click simulations, we

need to go through the workflow of a typical interactive
object segmentation process. First, a user draws a sur-
rounding box around the target object. Based on the sur-
rounding box, the SBox-Net will perform one pass of
inference on the patch of the image cropped by the sur-
rounding box. If the result needs to be refined, typically,
it would contain two types of mistakes, namely, extra
pixels and left-behind pixels (from a user’s perspective).
In these two types of mistakes, a user adds clicks to re-
fine the segmentation result.
By separating our architecture into SBox-Net and

Click-Net, we can perfectly simulate those two types of
mistakes during training time. After a forward pass of
SBox-Net, we obtain a preliminary result. We then can
calculate the differences between the preliminary result
and the ground truth mask, obtaining the false positives
and false negatives of the preliminary result, which are a
close simulation of the two types of mistakes previously
mentioned. Thus, we can directly sample clicks on false
positives and false negatives (see Fig. 2). Our strategy for

simulating user clicks is simpler, more straightforward
and more effective than that introduced by [24].

User interaction transformation
At the inference time of our Click-Net, a user can pro-
vide positive and negative clicks to refine the results of
SBox-Net. All user interactions can be grouped into two
sets: a positive click set S1, which contains all user-
proved positive clicks; and a negative click set S2, which
contains all user-provided negative clicks. A Gaussian
distance transformation was used to transform those
two sets into two separate channels G1 and G2, respect-
ively. Both G1 and G2 were initialized to zero. Let G1

ðm;nÞ
and G2

ðm;nÞ be the elements at location (m, n) in matrices

G1 and G2, respectively, which are calculated by:

G1
m;nð Þ ¼ max

si; j∈S1
e−

4� m−ið Þ2þ n− jð Þ2ð Þ
R2 ð1Þ

G2
m;nð Þ ¼ max

si; j∈S2
e−

4� m−ið Þ2þ n− jð Þ2ð Þ
R2 ð2Þ

where R is a radius parameter that controls the area of
influence of a user click. After the transformation of user
clicks, we concatenate the feature maps extracted from

Fig. 2 The overall architecture of our proposed method. It is composed of three major parts: a feature encoder for encoding features at different
abstract levels, an SBox-Net for initial segmentation and a Click-Net for refinement. Using the feature encoder, we obtain feature maps at two
levels of abstraction, namely, low-level features and high-level features. Our SBox-Net is used to predict segmentation at a coarse level; thus, we
highlight our high-level features by reducing the number of channels of low-level feature maps. In addition, in our Click-Net, we reduce the
channels of high-level features since our goal is to recover details according to user clicks. All previously mentioned channel reduction operations
are performed by 1*1 convolution. Finally, we simulate user clicks by sampling from differences of SBox-Net segmentation and the ground truth
(denoted by ⊗ in the figure)
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SBox-Net with G1 and G2, which are then fed into
Click-Net for further processing.

Click-Net
The workflow of Click-Net is shown in Supplementary
Fig. 2. On the basis of SBox-Net segmentation, our
Click-Net was designed specifically for responding to
user clicks when a user is seeking to refine the segmen-
tation result. In order to achieve this, the training data
for Click-Net must be collected carefully. The click
simulation strategy is described in detail in section “User
interaction simulation”. In Click-Net, we first transform
the positive and negative clicks into two Gaussian
centred maps. We then concatenate the transformed
Gaussian maps with feature maps extracted from SBox-
Net, which are then fed into Click-Net to generate our
final segmentation. Contrary to previous works [24–26],
we do not concatenate the transformed user clicks with
raw images directly but with feature maps instead. The
main motivation behind this is to decouple the segmen-
tation process and the refinement process. Besides, it is
obvious that user clicks are informative both semantic-
ally (positive or negative) and spatially (the absolute pos-
ition of the clicks inside the surrounding box). Thus,
their level of abstraction is more compatible with high-
level features instead of low-level features such as raw
pixels.
Inspired by the famous ResNet [19], which incorpo-

rates residual blocks to tackle the exploding gradient
problem and significantly boosts the performance of
artificial networks, we designed our Click-Net as a re-
sidual refinement network. Before yielding the final seg-
mentation, our Click-Net fuses its output with that of
the SBox-Net, which makes it in effect a residual refine-
ment network. The fusion process considers the number
and position of user clicks. We transform the user clicks
into a weight map using Gaussian distance transform-
ation. Unlike in user interaction transformation depicted
in 2.3, we do not differentiate between positive and
negative clicks. Besides, instead of setting the pixel value
to the maximum Gaussian distance from all click points,
we add those distances up. Finally, the radius parameter,
R, which controls the area of influence of a user click, is
set to a much larger value, allowing each click to adjust
the weight of a much broader area. The final weight
map is given as:

W m;nð Þ ¼
X

si; j∈ S1∪S2ð Þ
e−

4� m−ið Þ2þ n− jð Þ2ð Þ
R2 ð3Þ

In Formula 3, W(m, n) represents the sum of the Gauss-
ian distances between all the click points and the elem-

ent at location (m, n) in matrix W. e−
4�ððm−iÞ2þðn− jÞ2Þ

R2

represents the Gaussian distance from a single click
point si, j in the set S1 ∪ S2 to the element at location (m,
n) in matrix W.
After obtaining the weight map, we can fuse the SBox-

Net result, denoted B, with the Click-Net result, denoted
C, to produce our final result, denoted F, using the
formula:

F ¼ W�C þ B ð4Þ

where ∗ is the bitwise multiplication operator and + is
the bitwise addition operator.

Results
Datasets
Our method has been trained and evaluated on two pub-
licly available datasets, the ISIC dataset [32] and PH2
[33]. The ISIC dataset was used for a skin image analysis
challenge hosted by the International Skin Imaging Col-
laboration (ISIC). The challenge was hosted in 2018 at
the Medical Image Computing and Computer Assisted
Intervention (MICCAI) conference in Granada, Spain.
The dataset included over 12,500 images across 3 tasks,
including lesion segmentation, attribute detection, and
disease classification. To train and evaluate our inter-
active segmentation method, we selected the dataset for
lesion segmentation, which consists of 2596 skin lesion
images with corresponding segmentation masks. We div-
ide the dataset into two independent and equally distrib-
uted parts: one part for training and the other part for
model evaluation.
The other dataset, PH2, was provided by a joint collab-

oration between the University of Porto and University
of Lisbon in conjunction with the Department of
Dermatology at the Pedro Hispanio Hospital in Matosi-
nos, Portugal. The dataset was mainly created to provide
a common dataset that may be used for the performance
evaluation of different computer-aided dermoscopic
image diagnosis systems. The dataset consists of 200
dermoscopic images with corresponding segmentations,
including 80 common nevi, 80 atypical nevi, and 40 ma-
lignant melanomas. All images are 8-bit RGB colour im-
ages with a resolution of 768*560 px. All dermoscopic
images were carefully acquired using a magnification of
20* under unchanged conditions.

Training configuration
Our SBox-Net utilizes the DeepLab V3+ model pre-
trained on the Pascal VOC dataset with the last infer-
ence layer replaced. We then fine-tune our model using
stochastic gradient descent with a batch size of 8 objects
for 50 epochs. The learning rate is set to 0.01 with a mo-
mentum of 0.9 and a weight decay of 0.0005. Inspied by
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[34], we exploit the ‘poly’ learning rate policy, which
multiplies the learning rate by (1 − iter/ max _ iter)power .
We trained our Click-Net with a learning rate of 0.1,

while the other hyper-parameters remained the same.
The objects we used to train Click-Net are those that
are not accurately segmented by SBox-Net (IoU less
than 0.9). We simulate user clicks by randomly sampling
the false positives and false negatives of the SBox-Net
prediction.
The experiments are conducted using the PyTorch

framework. All our networks are trained on a single
NVIDIA GeForce GTX TITAN X GPU with 12 GB of
memory. The training of SBox-Net takes approximately
11 h, and Click-Net takes 6 h. The hyper-parameters of
Sbox-Net and Click-Net are shown in Supplementary
Table 1. We trained our Click-Net with a learning rate
of 0.1 while the other hyper-parameters remained the
same.

Performance evaluation metrics
Our proposed method is composed of two loosely
coupled modules with Click-Net using the feature maps
extracted from SBox-Net, while our SBox-Net works
fairly well without the knowledge of Click-Net. We
evaluate our method in two stages. In the first stage, the
performance of SBox-Net is evaluated. Then, we will
show how our Click-Net improves the segmentation re-
sult of SBox-Net. The following performance metrics
were used in evaluating our algorithm: the sensitivity
(Sen), specificity (Spe), dice coefficient (Dic), accuracy
(Acc) and intersection over union (IoU). The sensitivity,
also known as the true positive rate, is the number of
correctly segmented lesion pixels, and the specificity is
the ratio of correctly segmented non-lesion pixels. The
Dice coefficient evaluates the similarity between the seg-
mented lesions and the underlying ground truth. The ac-
curacy shows the overall pixel-wise segmentation
performance. Finally, IoU, as its name implies, measures
the proportion of the intersection over the union be-
tween the segmentation and the ground truth. All afore-
mentioned evaluation metrics are calculated by the
following formulas:

Acc ¼ TP þ TN
TP þ FN þ TN þ FP

ð5Þ

Sen ¼ TP
TP þ FN

ð6Þ

Spe ¼ TN
TN þ FP

ð7Þ

Dic ¼ 2�TP
2�TP þ FN þ FP

ð8Þ

IoU ¼ Area of intersection
Area of union

ð9Þ

Segmentation performance
We demonstrate our algorithm on two publicly available
datasets, ISIC 2018 and PH2. First, we present the per-
formance of SBox-Net on those two datasets as it is the
first stage of our proposed pipeline. Table 1 summarizes
the segmentation performance of SBox-Net. From this
table, it is obvious that all the evaluation metrics results
on the ISIC dataset are higher than those on the PH2
dataset. The major reason is that the ISIC dataset is lar-
ger than the PH2 dataset. As a result, the model with
more training data has better performance. As we can
see, the proposed model achieves compelling results on
both datasets, reaching an accuracy, a sensitivity, a speci-
ficity, a Dice coefficient, and an intersection over union
of 94.40, 94.27, 91.60, 91.60, and 88.22% on PH2, re-
spectively; compared to 96.23, 97.58, 92.52%, 92.93, and
90.89% on ISIC, respectively. Additionally, Fig. 3 illus-
trates some examples of the segmentation results of our
SBox-Net.
In Table 2, the performance of stacking a Click-Net on

top of SBox-Net is listed. The performance improvement
is significant considering the relatively small amount of
computation required by the light-weight Click-Net. The
table shows that the improvement made on the PH2
dataset is larger than that on the ISIC dataset. This is
partly because our SBox-Net already did a very good job
on the ISIC dataset (reaching a 90% IoU). There is less
room left for improvement. Conversely, the PH2 dataset
provides a good place for our Click-Net to shine.
In Fig. 4, the overall performance of our method on

each single image instance of both datasets is depicted
as scatter plots. These plots show that our method
achieved very good scores on most of the samples in
those two datasets. In the figure, the horizontal axis rep-
resents the index for each sample, and the vertical axis
represents the evaluation metric score. Some outliers
with metric scores lower than 0.7 can be spotted. Each
of these outliers corresponds to a sample, and these
samples are difficult to segment because the labelling is
not precise or the sample is inherently hard.

Interactive performance
In this subsection, we present the performance of our al-
gorithm in terms of user interactions. In Table 3, both

Table 1 Skin lesion segmentation performance of SBox-Net

Datasets Acc (%) Sen (%) Spe (%) Dic (%) IoU (%)

PH2 94.40 94.27 91.60 91.60 88.22

ISIC 96.23 97.58 92.52 92.93 90.89
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the number of clicks and estimated time required to
achieve a certain IoU on the two datasets are listed.
Since our SBox-Net requires at least 2 clicks to draw a
surrounding box, we fix the amount of user interaction
of our SBox-Net to 2 clicks. Drawing a surrounding box
is an easy task that takes less than 1 s on average. Identi-
fying an ill-segmented area and then clicking requires
more attention. Our simulation experiments showed that
this process takes 1.4 s on average. In the evaluation
process, we adopted the same sampling strategy as
depicted in section “User interaction simulation”.

Residual refinement performance
In Fig. 5, we illustrate our residual refinement process.
After a user draws a surrounding box around the target
lesion region, our SBox-Net produces an initial segmen-
tation. In cases where the initial segmentation is unsatis-
factory, Click-Net will be invoked. After each click a
user inputs, Click-Net transforms the clicks into Gauss-
ian distance maps. Concatenated with feature maps ex-
tracted from SBox-Net, the newly formed input is then
fed into Click-Net to generate its immediate output. Be-
fore yielding the final segmentation, our Click-Net first
reevaluates its output by multiplying the weight map
(see “Click-Net”) pixel-wise. The output is then added to

that of SBox-Net, reaching the final segmentation. Note
that the process can be repeated to refine the result step
by step. A few examples are illustrated in Fig. 5.

Ablation study
Global Context Extractor: As a common practice in re-
cent deep segmentation methods, various types of global
context extractors have been proven to be very useful.
The most successful ones are Atrous Spatial Pyramid
Pooling (ASPP) and Pyramid Scene Parsing (PSP). We
conducted experiments to evaluate the effectiveness of
ASPP and PSP in our interactive segmentation task. As a
comparison, we have also experimented with a naive
convolution layer as our global context extractor. The
results of our experiments are shown in Table 4. As the
table shows, if we only use a naive convolution layer as
our global context extractor, its performance only
reaches an MIoU of 83.23%. We add the PSP module to
obtain more abundant global features and significantly
improved segmentation results. It is important to note
that ASPP is superior to PSP in the experimental results,
and ASPP achieves the optimal performance, reaching
an MIoU of 88.22% with SBox-Net alone and an MIoU
of 90.36% when combined with Click-Net.

Fig. 3 Example segmentations produced by our SBox-Net. The first row presents the original skin lesion images. The green boxes in those
images are surrounding boxes provided by users that serve as guiding signals for SBox-Net. The middle row lists the segmentation confidence
map generated by SBox-Net for the region of interest cropped by the surrounding box. The third row shows cropped images with
corresponding overlayed segmentations

Table 2 Skin lesion segmentation performance of SBox-Net + Click-Net with the number of clicks restricted to 2. The numbers in
parentheses are the relative improvements made by adding a Click-Net

Datasets Acc (%) Sen (%) Spe (%) Dic (%) IoU (%)

PH2 95.53(+ 1.13) 96.34(+ 2.07) 93.82(+ 2.22) 93.12(+ 1.52) 90.36(+ 2.14)

ISIC 96.86(+ 0.63) 98.48(+ 0.90) 92.63(+ 0.11) 94.06(+ 1.13) 92.31(+ 1.42)
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Discussion
Related works
Image Segmentation: For the first time, an FCN [9]
adopted convolutional neural networks (CNNs) for
dense prediction by replacing fully connected layers with
convolutional layers. This innovation enables the FCN
to process different sized input images and produce seg-
mentation maps accordingly. Almost all the subsequent
state-of-the-art approaches for segmentation followed
this paradigm. To address the resolution loss due to
pooling layers in CNNs, two types of architectures have
emerged. The first one is the encoder-decoder architec-
ture. U-Net [10] is one of the representatives of this
class. The encoder module gradually reduces the spatial
resolution with pooling layers while the decoder recovers
the object details and spatial dimension using shortcut
connections. Another branch of architectures drops
pooling layers altogether and instead uses a special type
of convolution layer, called dilated/atrous convolution.
Representatives of this class include DeepLab [35] and
PSPNet [36].
Interactive Segmentation: Various types of user inter-

action have been exploited for interactive segmentation.
Xu et al. [24] proposed a method to incorporate user
clicks into an FCN [9] model by transforming user clicks
into Euclidean distance maps, which are then
concatenated with the RGB channel of the original
image and fed into the iFCN model. This paradigm is

followed by subsequent interactive segmentation archi-
tecture. A follow-up model by Liew et al., called RIS-Net
[26], improved the result of Xu et al. [24] by focusing on
local regions that are poorly segmented. RIS-Net exploits
the local regional context around the user click pair
along with multiscale global contextual information to
improve the segmentation result. DEXTR [25], a more
recent method proposed by Maninis et al., uses four ex-
treme points on the object as a supervisory signal to
guide the segmentation. Slightly different from previous
methods, DEXTR encodes these points as a Gaussian
map. DeepIGeoS [37] strictly followed the iFCN para-
digm but transformed user-provided clicks and scribles
into a geodesic distance map instead of a Euclidean dis-
tance map for interactive medical image segmentation.
In the research of Wang et al. [38], a method for image-
specific fine-tuning at test time for a CNN model was
proposed.
To segment an object in an image, a box around the

object, which we called the surrounding box, is first
drawn by users. Unlike a tight, accurate bounding box,
the surrounding box is much looser and thus a user-
friendlier version of the bounding box. The surrounding
box is a user-provided guiding signal to exclude most of
the background from the image. After feeding the patch
of the image cropped by the surrounding box into SBox-
Net, an initial segmentation result is directly returned. If
the result is satisfactory, no more user interaction is re-
quired. Otherwise, users provide positive and negative
clicks, which are then transformed into Gaussian-
centred maps. Those maps together with feature maps
extracted from SBox-Net are then fed into Click-Net for
further refinement. Through careful architectural design,
our method requires only one feed-forward pass through
SBox-Net while Click-Net reuses the feature maps com-
puted by SBox-Net in the following refinement itera-
tions. Another key improvement that separates our
method from the existing methods is that our Click-Net

Fig. 4 The distribution of performance metrics on both datasets. We can see from the scatter plot that apart from a few outliers, our method
achieved very good scores on most of the samples, concentrated at approximately 0.9 and above

Table 3 Number of clicks and estimated time to achieve a
certain IoU on 2 datasets

Datasets IoU (%) Clicks Time (seconds)

PH2 90 3.67 3.4

95 6.72 7.6

ISIC 90 2 < 1

95 4.84 4.9
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is designed specifically for responding to user clicks
when a user seeks to refine an unsatisfactory result. We
achieve this by applying a simple, straightforward, yet ef-
fective sampling strategy in the training process of
Click-Net. User intentions are well captured by our
Click-Net. Apart from addressing the issues stated
above, the modulization design of our architecture
brings us several advantages. First, since SBox-net

operates directly on raw images, instead of (image, trans-
formed user interaction) pairs as in [24–26], our SBox-
Net can smoothly repurpose pre-trained, state-of-the-art
semantic segmentation models for our task by simply re-
placing the inference layer. This strategy saves us a huge
amount of training time and computational resources.
Second, as SBox-net and Click-Net are only loosely
coupled, we could conveniently test different Click-Nets
in a plug-and-play style. For instance, we could test an
aggressive Click-Net at some time and a moderate
Click-Net at others. Alternatively, to push the limit even
further, we could test a totally different refinement net-
work with another type of user interaction, such as
scribbles. Our architecture, therefore, can be seen more

Fig. 5 Residual refinement process of our proposed method. In the rare situation of our SBox-Net producing unsatisfactory segmentation results,
our Click-Net can be invoked to refine the results. First, a surrounding box (the green box in column a) is drawn by the user to select the region
of the target lesion. Based on the surrounding box, a preliminary result is returned by SBox-Net. While the results are not satisfactory, the user can
provide positive clicks (the green check marks in column a) and negative clicks (the red cross marks in column a) to further refine the
segmentations. The third column shows the fused segmentation maps of Click-Net and SBox-Net compared to the SBox-Net results and ground
truth masks in the second and fourth columns, respectively. In the final column, the fused segmentations overlayed on the cropped original
images are presented

Table 4 Comparison of different global context extractors

Global Context Extractor PSP ASPP Naive

SBox IoU (%) 0.8632 0.8822 0.8323

SBox + Click IoU (%) 0.8942 0.9036 0.8532
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broadly as a flexible framework for interactive skin le-
sion segmentation and can be readily extended to ac-
commodate various types of user interactions. However,
this paper focuses only on clicks, leaving others for fu-
ture research.
In summary, the key contributions of this paper are

summarized as follows:

� We combined a deep convolutional neural network
with a grabcut-like user interaction to tackle the
interactive skin lesion segmentation problem.

� We decoupled the refinement task with the initial
segmentation task using the modularized design of
the network architecture, which greatly enhances
the flexibility of our model, facilitates reusing
computations at inference time and allows our
Click-Net to be trained in a way that fully captures
the intention of users.

� We exploit the pre-trained, state-of-the-art semantic
segmentation model for SBox-Net. With few
changes in the model and a small training time
budget, we could achieve a compelling result.

Conclusion
In this paper, we present an interactive method for skin
lesion segmentation. We approach the problem as a
two-stage pipeline. First, a user uses a surrounding box
to select the skin lesion of interest. A preliminary seg-
mentation result is returned by our SBox-Net. Then, if
the result in the first step is unsatisfactory, a light-
weight Click-Net is invoked to further refine the seg-
mentation. Extensive experiments on two public data-
sets, PH2 and ISIC, proved the effectiveness of our
approach.
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