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Abstract

Background: The activation degree of the orbitofrontal cortex (OFC) functional area in drug abusers is directly
related to the craving for drugs and the tolerance to punishment. Currently, among the clinical research on drug
rehabilitation, there has been little analysis of the OFC activation in individuals abusing different types of drugs,
including heroin, methamphetamine, and mixed drugs. Therefore, it becomes urgently necessary to clinically
investigate the abuse of different drugs, so as to explore the effects of different types of drugs on the human brain.

Methods: Based on prefrontal high-density functional near-infrared spectroscopy (fNIRS), this research designs an
experiment that includes resting and drug addiction induction. Hemoglobin concentrations of 30 drug users (10 on
methamphetamine, 10 on heroin, and 10 on mixed drugs) were collected using fNIRS and analyzed by combining
algorithm and statistics.

Results: Linear discriminant analysis (LDA), Support vector machine (SVM) and Machine-learning algorithm was
implemented to classify different drug abusers. Oxygenated hemoglobin (HbO2) activations in the OFC of different
drug abusers were statistically analyzed, and the differences were confirmed. Innovative findings: in both the Right-
OFC and Left-OFC areas, methamphetamine abusers had the highest degree of OFC activation, followed by those
abusing mixed drugs, and heroin abusers had the lowest. The same result was obtained when OFC activation was
investigated without distinguishing the left and right hemispheres.

Conclusions: The findings confirmed the significant differences among different drug abusers and the patterns of
OFC activations, providing a theoretical basis for personalized clinical treatment of drug rehabilitation in the future.

Keywords: Drug addiction, fNIRS, Clinical data analysis, Classification of different drug users, OFC activation

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: yangbanghua@shu.edu.cn; swgao@shu.edu.cn;
wangwen@fmmu.edu.cn
1School of Mechanical and Electrical Engineering and Automation, Shanghai
University, Shanghai 200444, China
2Department of Radiology & Functional and Molecular Imaging Key Lab of
Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi’an
710038, Shaanxi, China
Full list of author information is available at the end of the article

Gu et al. Journal of Biomedical Semantics           (2021) 12:21 
https://doi.org/10.1186/s13326-021-00256-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s13326-021-00256-y&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:yangbanghua@shu.edu.cn
mailto:swgao@shu.edu.cn
mailto:wangwen@fmmu.edu.cn


Background
Clinically, there has been little theoretical support for
the effects of brain functions abusing different types of
drugs such as heroin, methamphetamine, and mixed
drugs. Moreover, the high degree of OFC activations in
drug users indicates a high degree of cravings for drugs
and a high tolerance to punishment.
The paper mainly highlights the following six points:

Forehead fNIRS is first applied to drug addiction clinics;
Designing a special experimental paradigm process to
collect clinical data of people taking different types of
addictive drugs; Traditional evaluation of drug abuse
types uses statistical scales and addicts’ account, which
is subjective. This article proposes using LDA, SVM and
CNN algorithms to classify people taking different drugs,
and objectively judge the types of drug abuse, overcom-
ing the shortcoming of traditional evaluation mode of
being subjective; Statistics is used to analyze the differ-
ences of OFC functional area activation; Warning people
on social impacts, informing them of the harmfulness of
drugs and necessity to refuse drugs; Clinically, providing
a theoretical basis for doctors in differentiated rehabilita-
tion treatment.
fNIRS is a new research field, and its advantages are

received by researchers. Optical brain imaging functional
near infrared spectroscopy [1, 2] is a spectral measure-
ment based on scalp detection. It measures the
hemodynamic function of brain tissues based on optic
injection and detection points, and records blood oxygen
level [3]. Compared with the emerging brain function
imaging modality of EEG, NIRS is easy to wear, resistant
to interference, and portable [4]. The oxyhemoglobin
(HbO2) and deoxyhemoglobin (Hbb) in human body
have specific absorption for the near-infrared light with
a wavelength of 600 nm to 900 nm, while other bio-
logical tissues in the brain are relatively transparent in
this range of wavelength. Therefore, NIRS is an ideal
choice to measure the changes in the intensity of near-
infrared light with a wavelength of 600 nm to 900 nm
injected into the brain tissue, while the indirect brain
function changes are measured with the hemodynamic
data conversed based on the Beer-Lambertd law [5, 6].
The near-infrared spectroscopy is widely used in evalu-
ation, such as the evaluation of brain damage among
drug users who take different types of drugs.
Dresler et al., using fNIRS, studied the neurotoxic effects

of drinking and the nerve recovery related to alcohol with-
drawal. They divided the experimental and control groups,
designed the experiments, and obtained results compatible
with an increase in frontal brain activity from alcohol de-
pendence over abstinence up to normal functioning [7].
Okada, N et al. compared the activations in the prefrontal
cortex between methamphetamine-associated psychosis
and schizophrenia, and obtained the similarities and

differences in prefrontal cortex dysfunction between the
two conditions [8]. Yamamuro et al. Took Metaphetamine
abuse as the research object. The Stroop Color word task
experiment was designed, and the reduced hemodynamic
responses in the prefrontal cortex might reflect higher
levels of importance in patients with metaphase induced
psychosis were obtained [9]. Ceceli et al. demonstrate the
involvement of the prefrontal cortex in emotional, cogni-
tive, and behavioral alterations in drug addiction, with
particular attention to the impaired response inhibition
and salience attribution (iRISA) framework. Consistent in-
sights from human and non-human primate studies sug-
gest that chronic drug use leads to iRISA-based prefrontal
cortex damage [10].
Human prefrontal cortex (PFC) does not only partici-

pate in the generation and control of emotions, but is
deemed to be closely related to attention, cognition and
motivation [11, 12]. fNIRS can detect changes in the ac-
tivation of oxyhemoglobin and deoxyhemoglobin in the
brain [13–16]. The NIRS detection results suggest ab-
normal activation of the prefrontal cortex, orbital frontal
cortex and anterior cingulate gyrus among long-term
methamphetamine users [17–21].
Relevant studies have found that there is a significant

correlation between the neural activity in the orbitofron-
tal cortex and the behavioral indicators of rewards [22].
Findings on lesion studies show that orbitofrontal cortex
plays a key role in cognitive flexibility [23]. Many studies
on animals and humans have confirmed that damage to
orbitofrontal cortex cost the cognitive flexibility of spe-
cies [24, 25]. Existing studies on neuroimaging have con-
firmed the important role of human orbitofrontal cortex
in backward learning. As orbitofrontal cortex is key to
the regulation of cognitive and emotional processes
(such as cognitive flexibility), regulation disorder would
take place when neural changes occur in the orbitofron-
tal cortex [26–31]. The disorders further lead to addict-
ive disorders. At the same time, given stimuli associated
with negative results cannot change the decision-making
behavior of addicts (who have high tolerance to punish-
ment) [32, 33].
In this paper, different types of drug abusers were

studied to explore the effects of abusing different drugs
on the human body, so as to guide the clinical treatment
for drug rehabilitation. Thirty drug abusers were selected
based on the demographic scale, oral narration, and
medical tests. Using the fNIRS device, the experimental
paradigm was designed to obtain fNIRS data. First, the
machine learning model was used to classify the differ-
ent types of drug abusers. Then the statistical software
was employed to analyze the OFC activations in individ-
uals abusing different types of drugs. This study would
be of great significance to the clinical treatment for drug
rehabilitation.
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Methods
Participates
Study participate criteria: 1. Meet the diagnostic criteria
for disorders caused by DSM-5 psychoactive substances;
2. Patients within six months of the withdrawal period;
3. Junior high school education and above; 4. Years of
Age 18–41; 5. Voluntary participation in this study and
sign the informed consent form. Exclusion criteria: 1.
Severe cognitive dysfunction, unable to cooperate with
the completion of project-related assessment and testing;
2. Patients with severe physical diseases; 3. Severe psych-
otic symptoms; 4. Have other mental activities Substance
abuse (except nicotine). The study was conducted in
accordance with the declaration of Helsinki and was ap-
proved by the Ethics Committee of Shanghai University
(Approval No. ECSHU2020–071).

Drug users description
According to the demographic scale made in the early
stage, the most important items of 30 people (All male),
such as drug use type, drug history, average drug dosage
and drug use frequency, were accurately inquired and
counted.
Methamphetamine easily causes intense excitement,

which is difficult to eradicate after addiction.
Heroin is a psychoanaesthetic drug. Once a person be-

comes addicted, their physiological reaction is intense,
and they have a compulsion to seek medication.
“Mixed drug abusers” refers to drug users who attempt

to mix two or three drugs at a time. The main types of
drugs used are: LSD, Flunitrazepam, N2O, Pethidine
hydrochloride, MDMA, Cannabis, ketamine, etc. Table 1
is the personal information of the selected 30 subjects.

NIRS technology equipment introduction
This paper uses a high-density NIRS device (NIRSIT;
OBELAB, Seoul, Korea), and its specific hardware parame-
ters and wearing methods are as follows: the specific hard-
ware parameters are shown in Table 2. Figure 1 NIRSIT
wearing method in the experiment.

NIRS channel and functional area division
The four advanced functional areas detected by the
forehead fNIRS device are divided into the dorsolateral
prefrontal cortex, the ventrolateral prefrontal cortex,
frontopolar prefrontal cortex, and the orbital frontal
cortex. The specific channel distribution: the right
dorsolateral prefrontal cortex is 1,2,3,5,6,11,17,18 chan-
nels. There were 19, 20, 33, 34, 35, 38, 39 and 43 chan-
nels in the left dorsolateral prefrontal lobe. There are
4,9,10,40,44,45 channels in ventrolateral prefrontal cor-
tex of left and right hemispheres. There are 14, 15, 16,
29, 30, 31, 32, 46, 47, 48 channels in the left and right
orbital frontal cortex. Frontopolar prefrontal cortex is
7,8,12,13,21,22,23,24,25,26,27,28,36,37,41,42 channels.
Fig. 2 NIRS channel and functional area division.

Near-infrared imaging theory
When light passes through a uniform, non-scattering
medium, only the absorption effect of the medium on
the photons is considered. According to the Beer–Lam-
bert law [34–37], the attenuation of light intensity is
expressed as follows:

OD ¼ log
I
I0

¼ −εðλÞcd log e

where I0 is the incident light intensity, I is the incident
light intensity, ε(λ) is the extinction coefficient of the
substance at a wavelength of λ, determined by the ab-
sorbing medium and the wavelength of the light, c is the
medium concentration, and d is the thickness of the
medium. The absorption coefficient μa is defined as
follows:

μa ¼ ε λð Þc

The total absorption coefficient of the medium can be
expressed as a linear superposition of the absorption co-
efficients of each medium:

Table 1 Personal information of drug addicts

N 30

Sex(M/F) Male

Age range (Year) 19–41

Years of education 10±2.72

Years of drug abuse 8.2 ± 4.74

Drug abuse per week: Most people 3–5 times a week.

withdrawals 1.4 ± 0.98

Reasons for taking drugs decompression needs ; sex ;
emotion; curiosity; emotional
frustration;

Table 2 NIRSIT specific hardware parameters

NIRSIT OBELAB, Seoul, Korea

Light source type dual-wavelength VCSEL laser

Light source technology: CW

Wavelength 780 nm, 850 nm

Number of light sources 24

Number of detectors 32

SD distance 1.5 cm, 2.12 cm, 3.0 cm, 3.35 cm

Number of channels 204

Detection distance 0.2 cm, 0.6 cm, 1.0 cm, 1.4 cm, 1.8 cm

Spatial resolution 4x4mm2

Sampling frequency 8.13 Hz
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μa λð Þ ¼
XN
i

εi λð Þci

The optical density is the product of the medium thick-
ness d and the total absorption coefficient μa [38, 39]:

OD ¼ log
I
I0

¼ d
XN
i

εi λð Þci

The actual biological tissue is very complex and is a
strong light scatterer, and light undergoes multiple scat-
terings during its output before it can be detected. The
attenuation of light in tissues includes absorption and
scattering, and to capture the effect of scattering on light
loss, Deply et al. proposed a modified Beer–Lambert law
[40], expressed as follows:

OD ¼ log
I
I0

¼ DPFðλÞ � dcεþ G

where G denotes the light loss due to scattering and
other boundary losses. DPF is the differential path factor,
whose value is the ratio between the actual optical path

length traveled by light in the tissue and d. The DPF
values in different tissues can be obtained from the lit-
erature [41].

Measurement of changes in hemodynamic parameters
To detect changes in hemodynamic parameters using
NIRS, a reference state is usually selected in near-
infrared measurements to detect relative changes in the
concentration of absorbing chromophores Δc, based on
the modified Beer–Lambert law [42, 43]:

ΔOD ¼ log
I
I0

¼ DPF λð Þ � dΔcε

When detecting relative changes in HbO2 and HHb
concentrations:

ΔODλ ¼ ελHboΔ HbO2½ � þ ελHHbΔ HHb½ �� �
DPF λð Þ � d

where Δ[HbO2] and Δ[HHb] are the variations in
HbO2and HHb concentrations, the selected incident
near-infrared wavelengths λ1 and λ2, brought into the
above equation have [44, 45].

Fig. 1 NIRSIT wearing method in the experiment

Fig. 2 NIRS channel and functional area division
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ΔODλ1 ¼ ελ1HboΔ HbO2½ � þ ελ1HHbΔ HHb½ �
� �

DPF λ1ð Þ � d

ΔODλ2 ¼ ελ2HboΔ HbO2½ � þ ελ2HHbΔ HHb½ �
� �

DPF λ2ð Þ � d

When the value of DPF is known, solving the above
equation for the system of equations yields the change
in HbO2 concentration Δ[HbO2] and the change in HHb
concentration Δ[HHb], expressed as follows:

Δ HbO2½ � ¼
ελ2HHb

ΔODλ1

DPF λ1ð Þ−ε
λ1
HHb

ΔODλ2

DPF λ2ð Þ
d ελ2HHbε

λ1
HbO2

−ελ1HHbε
λ2
HbO2

� �

Δ HHb½ � ¼
ελ2HbO2

ΔODλ1

DPF λ1ð Þ−ε
λ1
HbO2

ΔODλ2

DPF λ2ð Þ
d ελ2HHbε

λ1
HbO2

−ελ1HHbε
λ2
HbO2

� �

Experiment design and data acquisition
We used E-prime software package (Psychology Software
Tools, Pittsburgh, PA) to write the experimental para-
digm, with each map numbered. A complete experimen-
tal paradigm consists of the following three stages.
The first stage of the experimental paradigm, 10 min

in total, during which the subjects need to close their
eyes for 5 min and then open their eyes for 5 min.
The second stage, it lasts 6 min and is divided into

drug maps and neutral maps. Among them, each block
lasts 10 s. There are a total of 16 maps, and the display
time of each map is 0.6 s. At the beginning, the first four

maps are displayed randomly, during which there are
two drug maps. After displaying the first four maps, the
remaining 12 neutral maps are displayed randomly.
After a block ends, there will be a 4-s interval map with
a white background and a black cross. Figure 3, the ex-
amples of drug abuse-related maps used in the experi-
mental paradigm.
The third stage, it lasts a total of 4.6 min, during

which the maps are all neutral, with each block last-
ing 10 s. There are 16 maps in total, with a display
speed of 0.6 s. There will be a 4-s interval between
each block. Figure 4, the examples of neutral maps
used in the experimental paradigm. Figure 5, The
whole process of experimental paradigm.

Linear discriminant analysis algorithm principle
Linear discriminant analysis (LDA) is a supervised pat-
tern recognition method. The LDA classifier reduces the
dimensions of the data, reduces complex features into
low-dimensional features through projection, and
searches for specific classification surfaces to maximize
the discrimination between the two types of task classifi-
cation in order to realize feature classification [46].
LDA is the most traditional linear classifier; there are

k linear functions for a k-classification problem.

yK xð Þ ¼ wT
k xþ wk0

When yk > yj for all j, then x belongs to class k. When
k = 2, it becomes a binary problem.

Fig. 3 Examples of drug abuse-related maps in the experimental paradigm
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Support vector machine algorithm principle
Support vector machine (SVM): For nonlinear feature input,
we design mapping rules to map nonlinear features to high-
dimensional space and ensure that the features are distrib-
uted linearly in high-dimensional space. Then, we can easily
construct the optimal classification hyperplane in high-
dimensional space based on the structural risk minimization
criterion so that this optimal classification hyperplane can
correctly separate as many of the two types of samples on
the one hand and maximize the classification interval be-
tween the two types on the other [47].
The sample set is designated as (xi, yi), i= 1, 2, ⋯, l, xi ∈R

d,
where yi ∈ {1,−1} is the category number. The linear separ-
able and linear non-separable cases are explored jointly, and

the relaxation variable is introduced ξi≥ 0, where ξi= 0 repre-
sents linear separability, and ξi > 0 represents nonlinear separ-
ability. If the classification surface equation is w · x+ b= 0 (w
is the weight vector, and b is the offset), the classification
interval is equal to 2

kwk. Maximizing the classification interval

is equivalent to minimizing ‖w‖ or (‖w‖2). To make the clas-
sification surface classify all samples correctly as much as
possible, it is necessary to meet the following constraints:

yi w � xið Þ þ b½ �−1þ ξ i≥0; i ¼ 1; 2;⋯; l

Therefore, if the constraint formula is satisfied, the
(‖w‖2) minimum classification surface can be the opti-
mal classification surface.

Fig. 4 Examples of neutral maps in the experimental paradigm

Fig. 5 The whole process of experimental paradigm
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Machine learning algorithm classification
In this paper, we propose and design a neural network
algorithm model that extracts the hidden features in the
0.625-s fNIRS data after drug map stimulation by convo-
lution to define the type of drugs of abuse. In this paper,
a convolutional neural network (CNN) model is de-
signed. It is used to implement the classification of
people who abuse different type of addictive drugs. The
Structure of CNN used in this paper is shown in Fig. 6.

Data preprocessing
Butterworth filter, the frequency response curve in the
passband has a relatively flat and undulating character,
and gradually decreases to zero at the edge of the stop-
band. In this paper, a Butterworth filter based on infinite
impulse response is selected to band-pass filter the ac-
quired Near infrared signals for the purpose of physio-
logical artifact removal. The expression for the n-order
Butterworth filter is as follows:

H fð Þj j2 ¼ 1

1þ f
f c

� �2n ¼ 1

1þ ϵ2 f
f p

� �2n

Where n is the order, fc is the cutoff frequency, and fp
is the passband edge frequency.
In this paper, n is 6 and the frequency band range is

0.01 Hz to 3 Hz. This band range can remove the inter-
ference of heartbeat respiration and slow drift to the raw
data, and also can maximize the preservation of
hemodynamic characteristics.
The formula for each structure in the CNN network is

as follows:

Convolutional layer
Convolutional layers are the core of convolutional neural
networks [48]. The calculation form is as follows:

xlj ¼ f
X
i∈M j

xl−1i � klij þ blj

0
@

1
A

xlj is the jth feature of the layer l. klij is the jth feature

of the layer l and the ith feature of the layer l − 1. blj is a

bias parameter, f(•) is the activation function.

Pooling layer
The pooling layer sub-samples the input features accord-
ing to specific rules in order to make the network robust
to small changes in previously learned features [49]. The
calculation form is as follows:

xlj ¼ f βl1ndown xl−1j
� �

þ blj
� �

xlj is the jth feature of the layer l.βl1 is the Subsampling

coefficient. blj is the bias parameter, down(•) is a sub-

sampling function, f(•) is the activation function.

Normalization of data
Batch standardization layer: in training convolutional
neural network, the input data are usually whitened,
which can speed up the training speed.
Set the data value input = {x1…xm} of the input data

block, the parameters to be learned are γ and β, first cal-
culate the average value of each data block:

μB ¼ 1
m

Xm
i¼1

xi

Calculate the variance of each data block:

σ2B ¼ 1
m

Xm
i¼1

xi−μBð Þ2

Normalize each set of data:

x̂i ¼ xi−μBffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2B þ ε

p

Using the parameters that need to be learned in the
network and linear transformation:

yi ¼ γx̂i þ β ≡ BNγβ xið Þ

Activation function
In this paper, the activation function uses a modified lin-
ear unit (ReLU), and the corresponding calculation for-
mula is as follows:

Fig. 6 Structure of convolutional neural network
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ReLU ¼ x; x≥0
x; x < 0

�
¼ max 0; xð Þ:

The results show that the derivation of the activation
function is simple, and the output of some neurons is 0,
which realizes the sparsity of the network, reduces the
interdependence of parameters [50].

Full connection layer
Each feature must be converted to one-dimensional be-
fore it can be used as the input of the fully connected
layer [51]. The calculation as follows:

hw;b xð Þ ¼ θ wTxþ b
� �

hw, b(x) is the output value of the neuron. x is the in-
put feature vector of the neuron. w is the weight. b is
the bias parameter. θ(∙) is the activation function; The
first fully connected layer in this paper uses the ReLU
activation function.

Softmax layer
In CNN, if the final output result is single-label multi-
classification, the softmax function is usually used to
normalize and map to the probability value, and the
Softmax calculation formula is as follows:

zi ¼ Softmax oið Þ ¼ exp oið ÞP
c exp ocð Þ

oi is the value of the output neuron corresponding to
the Ith category.

Results
Accuracy comparison of LDA, SVM, and CNN
LDA and SVM use the original data as the training set
and test set. The classification model selects 21 data
points as the training set and 9 as the test set and cross
validates the model. Finally, we obtain their own 3-class
accuracy. The classification accuracy of LDA is stable
between 45 and 58%. The classification accuracy of SVM
is stable between 60 and 69%.
The feature extraction method and classification ac-

curacy of the CNN model are as follows:
The data feature 16 channels and 56 trials for each

subject. The data fragment is 0.625 s after the drug pic-
ture appears. The CNN network includes 24 subjects’

training data, 3 subjects’ validation data and 3 subjects’
testing data.
The CNN model shows a stable decreasing trend in

loss and convergence after 1200 epochs, which proves
that the network structure is stable. After several experi-
ments, the optimal model basically appears between
1000 and 1300 epochs. At this time, the 3-class accuracy
of different drug abusers is between 70 and 80%. The ac-
curacy rates tested using LDA, SVM, and CNN algo-
rithms, respectively, are given in the table. A comparison
between the three is shown in the figure. Table 3 Three-
class accuracy statistics. Figure 7 Comparison of 3-class
accuracy between LDA, SVM and CNN.

Analysis methods of drug abusers
Statistical analyses were performed using GraphPad
Prism 6.5 software (GraphPad Software Inc., San Diego,
USA). The independent sample t-test and the non-
parametric Mann–Whitney U test were used in the
study. The relevant laws of brain activation of people
who abuse different drugs were obtained. Especially in
the OFC functional area of the brain, people who abuse
different drugs obtain significantly different results.

Right-OFC activated for people who abuse different drugs
To begin with, five channels in both the left and right
hemispheres of the brain of 30 addicts who take heroin,
methamphetamine and mixed drugs were chosen to get
the near-infrared data induced by drug pictures. Then
the mean of OFC data of 30 subjects was calculated. The
data of each type of drug addicts was saved in one col-
umn and processed with GraphPad Prism6.5 software.
For Heroin VS Methamphetamine in right OFC, the

independent sample T test results were t = 1.020, df = 98,
P = 0.312, F = 31.90, DFn = 49, Dfd = 49, P < 0.0001; and
for Mixed drug VS Methamphetamine, the results were
t = 0.7409, df = 98, P = 0.4605, F = 1.048, DFn = 49, Dfd =
49, P = 0.8707.
For Heroin VS Mixed drug, the results were t = 0.8400,

df = 98, P = 0.4030, F = 33.42, DFn = 49, Dfd = 49, P <
0.0001. This is caused by heterogeneity variance. For
Heroin VS Methamphetamine, the results of the non-
parametric Mann Whitney test were Exact, Two-tailed,
P = 0.0048 < 0.05 (significant difference); for Metham-
phetamine VS Mixed drug, the results were Exact, Two-
tailed, P = 0.2215 (insignificant difference); and for Her-
oin VS Mixed drug, the results were Exact, Two-tailed,

Table 3 3-class accuracy statistics

1 2 3 4 5 6 7 8 9 10

LDA 58.24% 54.29% 53.83% 45.66% 49.52% 48.90% 47.96% 46.19% 45.24% 45.91%

SVM 69.39% 68.57% 66.90% 64.83% 64.29% 63.27% 62.38% 62.09% 61.81% 60%

CNN 77.04% 72.96% 74.74% 75.77% 75.26% 74.59% 73.47% 76.79% 73.47% 76.28%
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P = 0.0852 (insignificant difference). As for the activation
of right OFC by three types of drugs (in mMol/L), the
HbO2 of heroin addicts was − 0.0007433 ± 0.04683,
methamphetamine addicts 0.006117 ± 0.008292, and
mixed addicts 0.004902 ± 0.00810. The activation of right
OFC is highest among methamphetamine addicts,
followed by mixed types and heroin. The result is the
same for left- OFC. Figure 8, Right-OFC and Left-OFC ac-
tivation differences among the three types of drug abusers.

Activation of the left and right hemispheres of the brain
in drug addicts
For methamphetamine, mixed drugs, and heroin addicts,
the left and right hemispheres of the brain are activated in
OFC. The average values of the oxygenated hemoglobin
concentration and deoxygenated hemoglobin concentra-
tion of the three types of subjects within 0–10 s are shown
in Fig. 9. There is a difference in activation between the
left and right hemispheres of the brain.

Fig. 7 Comparison of 3-class accuracy between LDA, SVM, and CNN

Fig. 8 Right-OFC and Left-OFC activation differences among the three types of drug abusers
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Fig. 9 time series of hemoglobin concentration
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Abuse of different drugs differs in OFC activation
The results of activation of the three types of personnel
on OFC were analyzed using a non-parametric Kruskal–
Wallis test. The number of tested groups was three, and
the total number of values was 300. The Kruskal–Wallis
test statistic was 8.355 (P = 0.0153). There were signifi-
cant differences among the three types of personnel.
Activation of the right OFC was the highest among
methamphetamine addicts, followed by mixed types, and
lastly, heroin addicts. Figure 10 shows differences in
OFC activation among the three types of drug abusers.

Differences in prefrontal cortex activation across drug
addicts
From the prefrontal cortex activation results in Fig. 11,
we can see the differences in activation of the OFC cor-
tex in the black box. The darker the red color, the higher
the degree of activation. Methamphetamine abusers had
the highest average blood oxygen levels in the OFC,
followed by mixed drug abusers, and heroin abusers had
the lowest.

Discussion
This study first uses the LDA, SVM and machine-
learning algorithm to classify the addicts of heroin,
methamphetamine and mixed drugs. Analysis on the
brain activation and OFC activation is made to three
types of drug addicts, which is of clinical significance.

Based on the analysis of addicts who take different
types of drugs, the research finds that the activation of
right OFC is highest among methamphetamine addicts,
followed by mixed types and heroin. The result is the
same for left OFC, but with significant difference in the
methamphetamine group. The findings show the differ-
ence in the impact on human bodies among addicts who
take heroin, methamphetamine and mixed drugs.
The final results obtained demonstrate that the abuse

of different drugs produces differences in OFC activa-
tion. OFC activation changes after the addicts use drugs.
The results are consistent with those arrived at by other
scholars. Some researchers only proved the difference in
OFC between drug addicts and healthy people. No re-
search has been made to study the differences in pre-
frontal cortex activation caused by different drugs.
The four characteristics of addiction: impaired cogni-

tive and motivational functions, increased craving for ad-
dictive cues, preference for rewards while ignoring risks,
and impulse control disorder [52–54]. Another typical
feature of addiction is that the individuals tend to pursue
rewards for addictive behaviors while ignoring the risks
in their cognitive decision-making [55, 56]. Heroin ad-
dicts showed higher impulsivity in the Go/Nogo experi-
mental tasks, and the activation in their cognitive
control loop was weakened [57]. Long-term abuse of ad-
dictive drugs not only harms the physical and mental
health of addicts, but also impairs their social functions.

Fig. 10 OFC activation differences among the three types of drug abusers
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Meanwhile, it also causes serious damages to the cogni-
tive processes of addicts, such as focus and concentra-
tion, verbal memory, and executive capacity [58, 59]. At
present, a large amount of evidence shows that the brain
areas related to the cognitive and emotional processing
of drug addicts are damaged to varying degrees by the
abuse of addictive drugs [60].
Changes in OFC activation cause changes in cognition,

control, and emotions. Differences in OFC activation
among addicts who take different types of drugs lead to
the conclusions that: Methamphetamine has the most
serious impact on the human body; There are differ-
ences in the harm of different drugs; Customized drug
rehabilitation schemes should be developed; Cognitive
and control training is conducive to drug rehabilitation.
The limitation of this research lies in the limited

amounts of subjects, which could make the findings less
convincing. In future experiments, more subjects should
be included and comparison between the outcomes of
customized rehabilitation and those of traditional re-
habilitation should be made.
The experiment proves that different drugs have varied

impacts on the addicts, which requires customized drug
rehabilitation schemes.

Conclusion
This paper points out that different drugs affect the
brain differently. The brain activation pattern of heroin,
methamphetamine and mixed drugs is arrived at, filling
up the blank on the study about different types of drugs.
The findings are valuable for future clinical diagnosis
and customized rehabilitation.
This research finds differences in OFC activation

among addicts who take different types of drugs, and ar-
rives at the conclusion that the right OFC activation of
methamphetamine abusers is the highest, followed by
that of mixed drug abusers and heroin abusers. The con-
clusion with left OFC activation is the same.

Existing research mostly focuses on moods, cognition
and attention when studying drug rehabilitation. This
paper introduces the fNIRS device to obtain the physio-
logical data, and performed intelligent algorithm analysis
and statistical analysis. The findings are consistent with
existing conclusions that drugs have impact on brain
functions. This research is innovative in that it makes
classified study on the addicts who use different types of
drugs. In theory, this paper enriches the empirical dis-
cussion on the impact of different types of drugs on hu-
man brains; and in practice, it provides guidance on
customized drug rehabilitation.
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