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Abstract

Background: Transfer learning is a common practice in image classification with deep learning where the available
data is often limited for training a complex model with millions of parameters. However, transferring language models
requires special attention since cross-domain vocabularies (e.g. between two different modalities MR and US) do not
always overlap as the pixel intensity range overlaps mostly for images.

Method: We present a concept of similar domain adaptation where we transfer inter-institutional language models
(context-dependent and context-independent) between two different modalities (ultrasound and MRI) to capture
liver abnormalities.

Results: We use MR and US screening exam reports for hepatocellular carcinoma as the use-case and apply the
transfer language space strategy to automatically label imaging exams with and without structured template with
> 0.9 average f1-score.

Conclusion: We conclude that transfer learning along with fine-tuning the discriminative model is often more
effective for performing shared targeted tasks than the training for a language space from scratch.
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Introduction
Hepatocellular carcinoma (HCC) is the most common
primary liver malignancy, and is the fastest-rising cause
of cancer-related deaths in the United States [1]. Imag-
ing surveillance for HCC is recommended in high-risk
patients, which includes those with cirrhosis and/or
chronic hepatitis B viral infection [2]. The goal of imag-
ing surveillance is the early detection of HCC in these
patients, while they are still within a curative window [3].
Multiple imaging modalities are used for HCC screening
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and diagnosis; these include ultrasound (US), contrast-
enhanced ultrasound, CT and Magnetic Resonance (MR)
[2, 3]. There is significant variation in HCC screening pro-
tocols across various institutions; and as a result, patients
may receive a mix of imaging studies (US, CT,MRI) across
their longitudinal screening record.
The Liver Imaging Reporting and Data System (LI-

RADS) was developed by the American College of Radiol-
ogy (ACR) as a standardized coding system forHCC imag-
ing surveillance [4]. The LI-RADS system utilizes imaging
features to categorize liver lesions based on risk of malig-
nancy, while standardizing report terminology. Different
versions of LI-RADS are available for each of the HCC
screening imaging modalities (including US and MRI).
Although the LI-RADS categories within each system are
similar, the different versions account for differences in
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modality-specific lexicon. LI-RADS standardized report-
ing systems, and the use of structured HCC-screening
imaging report templates, help facilitate information
extraction from imaging reports, enabling the creation
of large-scale annotated databases that can be used for
clinical outcomes and machine learning research. Despite
these efforts, adoption of structured reports remains low
[5], and simple tasks like differentiating between benign
and malignant exams from a large number of screening
cases, requires hundreds of hours of manual review by the
radiologist. In our institution, which is a large multi-site
academic center, structured reports coded with LI-RADS
were adopted recently in 2018, representing only a small
fraction of available HCC screening data.
Natural language processing (NLP) has been utilized

to extract information from, and classify imaging reports
following standard guidelines [6, 7]. Traditional NLP
methodology includes rule-based, dictionary-based and
supervised learning [7–10] techniques. A major limita-
tion of these techniques is the requirement for large-
scale human-labeled data; or explicit linguistic rules
that would limit the scalability and generalizability of
the system. Additionally, the use of experts to per-
form the required medical data annotation is expen-
sive and time-consuming; thereby limiting data cohort
size. In this paper, we explore recent language model-
ing methodologies that overcome these limitations: (1)
context-independent word embeddingmodels (Word2vec
[11], Glove [12]), where the language model (LM) learns

numerical representation of words regardless of where
the word occurs in a sentence, and (2) context-dependent
word embedding models (BERT [13], ELMo [14]), which
capture the context of words – that is, it’s position in a
sentence.
In our previous work, we developed a context-

independent word embedding-based NLP pipeline [15],
that can infer binary LI-RADS categories from the liver
section of HCC screening US reports. Only a minimal
amount of human-labeled data was required to train
this model. Our healthcare institutions recently adopted
the structured LI-RADS reporting templates for HCC-
screening using MR and have limited data available
with structured reporting; therefore, fine-tuning language
models may allowed to overcome the challenge of labeled
data scarcity and helps to annotate imaging exams coded
without LI-RADS template.
In this paper, we developed both context-dependent and

context-independent language models (LM) trained on
US reports from one institution, Stanford Health Care
(SHC), to infer the labels from MR studies from another
institution, Emory University Healthcare (EUH); and vice-
versa. Figure 1 summarizes our modeling scheme for
cross-domain fine-tuning. We worked with two language
domains, i.e., MR and US domain, which share com-
mon HCC screening terminology, but differ in modality-
specific lexicon. The language model trained over the MR
domain was fine-tuned over the US domain and then
used to train a classifier for the US domain. Similarly, the

Fig. 1 Cross domain finetuning language modeling schemes for MR and US domains
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language model trained over US domain was fine-tuned
over the MR domain, and then used to train a classi-
fier for MR domain. To generate a large dataset for HCC
screening, the aim of the study was to label the all free-
text reports obtained between 2010 – 2017 in Stanford
and Emory without the LI-RADS formatted template. To
demonstrate the benefit of similar domain adaptation, we
compare the performance of the fine-tuned LM with the
directly trained language models. In addition, we com-
pare the performance of context dependent and context-
independent language models by integrating with differ-
ent discriminative model combinations (RandomForest,
LSTM, 1DCNN).

Method
Datasets
Stanford US dataset
With the approval of Stanford Institutional Review Board
(IRB), we collected all the free-text radiology reports of
abdominal ultrasound examinations performed at Stan-
ford Hospital between August 2007 to December 2017. In
total, there were 92,848 US reports collected over 10 years,
with an average 9,000 US exams performed every year.
Among them, 13,860 exams were performed for HCC
screening. A total 1,744 abdominal US studies were coded
with the US LI-RADS reporting format where a unique
LIRADS score was reported in the impression section.

EUHMRI dataset
With the approval of Emory University IRB, we retrieved
10,018 MRI exams performed between 2010 - 2019 at
EUH for HCC screening. Among these, only 548 stud-
ies were reported using the LI-RADS structured tem-
plate where a unique LI-RADS score was reported in the
impression section (Fig. 2a). From the LI-RADS coded
reports, 99% were malignant cases (LR score > 2) since
benign cases are often not coded with LI-RADS. 9,470
MRI abdomen exams were documented as free-text nar-
ratives where the final diagnosis was recorded without
following any structured scoring schema (Fig. 2b). To
obtain a representative sample of benign cases from the
MR studies (which represented 1% of the LI-RADS coded
reports), two radiologists manually annotated 537 benign
cases from the EUH MRI dataset. We selected benign
cases from reports performed after 2018 in order tomatch
the report structure of annotated malignant cases.

Synopsis of the datasets
In Table 1, we present the synopsis of the Stanford US
dataset and EUH MRI dataset according to report-level
and word-level statistics which reflects a slight diversity
between the style of reporting. For instance, the number
of words in the reports ranged from 24 to 331 in the US
dataset while for MR dataset in varies from 11 to 2116.
Same observation holds for the number of sentences in the

Fig. 2 Sample MR reports: (a) Sample with LI-RADS structured template, (b) Sample free-text report
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Table 1 Statistics of the cohorts before processing - Stanford US
dataset and EUH MRI dataset

Stanford US dataset EUHMRI dataset

Cohort level

Number of unique words 17194 19828

Common words in two
domains

1790

Report level

Average number of words
(+/- std)

167 (+/- 39) 197 (+/-47)

Average number of
sentences (+/- std)

27 (+/-7) 32 ( (+/-8)

Number of unique words
in templated reports

2774

Number of unique words
in reports without
template

7930

Average number of words
(+/- std) describing

liver related finding in
templated reports

36 (+/- 25) 109 (+/- 63)

Average number of words
(+/- std) describing

liver related finding in
reports without template

47 (+/- 27) 104 (+/- 52)

reports. It is also interesting to note that there were 1790
common words between MR and US.

Annotated datasets
We evaluated the efficiency of our transfer learning
scheme on the task of HCC malignancy scoring. We have
malignancy information available for the following sets of
reports.
i) Templated US reports from Stanford dataset: These

reports are associated with LI-RADS scores. LI-RADS>2
is not definitely benign. We experimented with a collec-
tion of 1462 reports which are split in training and test
sets. Test sets contains 29 reports with ‘malignant’ label
and 264 reports with ‘benign’ label.
ii) Templated MR reports from EUH MRI dataset: We

have a total of 944 MR reports with associated LI-RADS
scores such that LI-RADS > 2 indicates that the lesion is
not definitely benign. This set is split into training and test
sets. Test sets contains 81 reports with ‘malignant’ label
and 108 reports with ‘benign’ label.
iii) US reports without template from Stanford dataset:

We randomly sampled 142 US reports and two expert
radiologists associated each selected report with a LI-
RADS score (Cohen kappa 0.85). 11 reports were labelled
‘malignant’ while the remaining 131 reports were labelled
as ‘benign’. Malignancy prediction model trained on struc-
tured US reports is tested over these unstructured reports.

iv)MR reports without template from EURMRI dataset:
We randomly sampled 112 unstructured MR reports with
no LI-RADS scores. Two expert radiologist assigned LI-
RADS scores for these reports with malignancy indicated
by LI-RADS > 2 (Cohen kappa 0.92). 21 reports were
labelled ‘malignant’ while the remaining 91 reports were
labelled as ‘benign’. We test our malignancy prediction
model trained over structured MR reports on these sam-
pled unstructured reports.

Report pre-processing
Segmentation
We design a python-based liver section segmentation
module that works with both MRI/CT and US reports.
The model uses a combination of regular expressions
and dictionary based sentence retrieval using anatom-
ical vocabularies derived from Foundational Model of
Anatomy (FMA) [16] to extract only findings related to
liver and its sub-regions from the whole report. The mod-
ule maintains dependencies between anatomical entities
(e.g. all the lesions found within the liver would be
extracted even if they are not described in the same
paragraph). This segmentation module has been manu-
ally validated on randomly selected 100 MRI and 100 US
reports and obtained perfect accuracy for segmenting the
liver section and liver related statements from both recent
(more structured) and historic radiology reports. In order
to perform a valid experiment from the LI-RADS for-
matted US and MRI reports, we excluded the Impression
section of the reports since the final LI-RADS assessment
category is often reported explicitly in the Impression.
The Findings section includes only the imaging character-
istics of the liver abnormalities; thus, it does not contain
any clear-cut definition of the LI-RADS final assessment
classes.

Text cleaning
We normalize the text by converting in to lowercase let-
ters, removing general stop words (e.g. ‘a’, ‘an’, ‘are’, ‘be’, ‘by’,
‘has’, ‘he’, etc.), removing words with very low frequency
(< 50). We also removed unwanted terms/phrases (e.g.
medicolegal phrases such as “I have personally reviewed
the images for this examination”); these words generally
appear in all or very few reports, and are thus of little to
no value in document classification. We used the Natural
Language Tool Kit (NLTK) library [17] for determin-
ing the stop-word list and discarded these words during
report indexing. We also discarded radiologist, clinician,
and patient-identifying details from the reports. Date and
time stamps were replaced by ‘< datetoken >’ phase.

Languagemodeling
Language modeling allows for learning vector represen-
tation of text such that semantic characteristics of the
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text are preserved. We were able to use both labeled and
unlabelled US andMR reports for training language mod-
els for US and MR domains since training the language
models does not need supervised labels. We used the fol-
lowing two approaches for language modeling - context-
dependent (BERT) and context-independent (Word2Vec)
language modeling.

Word2Vector languagemodel
Word2vec language modeling schemes captures finer
semantic properties of words by learning a vector repre-
sentation corresponding to each word. Instead of one-to-
one mapping between a word and an element in the vec-
tor, representation is distributed across several hundred
dimensions, mapping to words to a new representation
space such that semantically similar words are mapped
closer to each other than semantically dissimilar words.
Our model learns such vector representation by training
a skipgram model with hierarchical softmax [11]. Since
training such models require no labels, LI-RADS scores
are not needed for language model training.
We trained two base word2vec models; i) US word2vec,

and ii) MR word2vec. US word2vec language model was
trained using all US reports from Stanford US dataset
regardless of availability of LI-RADS scores.MRword2vec
model was trained using all MR reports from EUH MRI
dataset regardless of availability of LI-RADS scores.
We also trained two cross-domain language models

using transfer learning; ii) US-finetuned word2vec, and
ii) MR-finetuned word2vec. For US-finetuned word2vec,
words of the US domain that are common with MR
domain are initialized by MR word2vec vectors. The
model is further finetuned on US reports. Similarly, com-
mon words are initialized by using US word2vec vectors
for MR-finetuned word2vec model that is further fine-
tuned on MR reports from EUH MRI dataset. These
models do not have to learn from scratch. Instead, they
can take advantage of language model training performed
in a separate but similar domain.

BERT languagemodel
BERT learns bi-directional representations for text by
jointly conditioning on both left and right context [13].
We used BERT to train a masked language model that is
optimized to be able to predict masked tokens from the
sentences. We trained two language models using BERT;
i) US BERT - by training on all US reports from Stanford
dataset, and ii)MR BERT - by training allMR reports from
EUHMRI dataset. Similar to word2vec modeling, we also
trained two cross-domain language model using transfer
learning for BERT as well; iii) US-finetuned BERT, and
iv) MR-finetuned BERT. For US-finetuned BERT, com-
mon words of US and MR domains are initialized by
MR BERT vectors and the model is finetuned on US

reports. Similarly, common words are initialized by using
US BERT vectors for MR-finetuned BERT model that is
further finetuned on MR reports from EUH MR dataset.
BERT models are usually limited in terms of length of
input text sequence they can process. We employ only
portion of the report discussing liver as input to all our
models. Thus, our models generally work with smaller
length text sequences.Wherever needed, text is clipped to
fit into BERT model.

Predictive modeling
We experimented with the following three predictive
models.
i) Language model vectors + RF classifier: In this setup,

we use our language models to generate embeddings for
input reports.We then train a discriminative model - Ran-
dom Forest (RF) binary classifier to predict ‘malignant’ or
‘benign’ labels for each input report.
ii) 1D-CNN model: Preserving context is one of the

prominent differences between BERT and Word2vec.
Thus we applied one-dimensional convolutional neural
network (1D-CNN) with random word embedding gen-
erated that uses one-dimensional convolutional filters to
process textual sequences and can learn important seman-
tic structured such as phrases using, while avoiding mem-
orization of entire text sequence. The model consists of
Embedding layer, one-dimensional Convolutional layer,
Dropout and Dense layers.
iii) Word2vec embedding + 1D-CNN: Normally,

weights of Embedding layer in 1D-CNN are initialized
randomly as weights of all other layers, and then fine-
tuned over training input-output tuples. We designed
a separate classifier by initializing Embedding layer of
1D-CNN with the weights of word2vec model. While the
overall classifier is still trained over input-output tuples of
training data, Embedding layer is able to take advantage
of unlabelled data as well as word2vec models are trained
over both labelled and unlabelled reports.

Experimental setup
We used the following four experimental setups to thor-
oughly evaluate the advantages of our transfer learning
scheme for the language space.
Setting 1) -MR languagemodel, tested onMR:Under

this setting, language model is trained over MR reports.
Trained language model is used to generate feature vec-
tors for MR reports with and without template.Vectorized
reports with template are used to train the classifier. The
trained classifier is then used to evaluate test sets con-
sisting of MR reports with template and MR reports
without template. Since we are working with multiple lan-
guage models and classifiers, the following experiment
titles fall under this setting; i) ‘MR Word2Vec+Random
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Forest Classifier’, ii) ‘MRWord2Vec Embedding+1DCNN’,
iii) ‘MR BERT+Random Forest Classifier’.
Setting 2) - MR-finetuned language model, tested on

MR: Under this setting, language model trained over US
reports is used to initialize vectors for common terms
between US and MR domains. Such initialized language
mode is further fine-tuned over MR reports to gener-
ate vectors for all MR terms. Finetuned language model
is used to generate feature vectors for MR reports with
and without template. The same classifier training and
testing process is applied as described for setting 1.
The following experiment titles fall under this setting; i)
‘MR-finetuned Word2Vec+Random Forest Classifier’, ii)
‘MR-finetuned Word2Vec Embedding+1DCNN’, iii) ‘MR-
finetuned BERT+Random Forest Classifier’.
Setting 3) - US language model, tested on US: Under

this setting, language model is trained over US reports.
Feature vectors for all structured (with template) and
unstructured (without template) US reports are gener-
ated using this trained language model. Feature vectors
of reports from the training set of US reports with tem-
plate are used to train chosen classifier to detect malig-
nancy. The trained classifier is then used to evaluate
test sets consisting of US reports with template and US
reports without template. The following experiment titles
fall under this setting; i) ‘US Word2Vec+Random Forest
Classifier’, ii) ‘USWord2Vec Embedding+1DCNN’, iii) ‘US
BERT+Random Forest Classifier’.
Setting 4) - US-finetuned language model, tested on

US: Under this setting, language model trained over MR
reports is used to initialize vectors for common terms
between US and MR domains. Such initialized language
mode is further finetuned over US reports to gener-
ate vectors for all US terms. Finetuned language model

is used to generate feature vectors for US reports with
and without template. The same classifier training and
testing process is applied as described for setting 3).
The following experiment titles fall under this setting;
i) ‘US-finetuned Word2Vec+Random Forest Classifier’, ii)
‘US-finetuned Word2Vec Embedding+1DCNN’, iii) ‘US-
finetuned BERT+Random Forest Classifier’.
Experiment titles in the Results section are consistent

with the terminology presented above for clarity. Note
that under all of these settings, classifier is trained only
using reports with template while it is tested over two
test sets; one consisting of reports with template, and one
consisting of reports without template.

Results
Performance analysis
Figure 3 presents the 2D embedding ofMR andUS reports
which shows that structured/templates and unstruc-
tured/untemplated reports retains significant differences
in the language space, given the variations in syntax. Thus
it is a challenging task to infer labels on the unstructured
reports using a model only trained on labeled reports.
In Tables 2 and 3, we present the results of our predic-
tive models as described in the Experimental Setup, on
both structured and unstructured MR and US reports
respectively. It is clear from Table 2 that fine-tuned lan-
guage models perform better when paired with any of
the selected classifiers for the more challenging task of
classifying MR reports without template with highest
overall weighted f1-score 0.90. This trend is true for
both language models (Word2Vec and BERT) as well
as both classifiers (Random Forest and 1DCNN). The
biggest performance difference with cross-domain fine-
tuning is observed between ‘MR-finetuned Word2Vec

Fig. 3 Sample reports: (a) Embedding of structured and unstructured US reports structured template, (b) Embedding of structured and
unstructured MR reports structured template
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Table 2 Performance of language model and classifiers on structured MR reports (reports with template) and unstructured MR reports
(reports without template). Models trained over MR domain as well as cross-domain models (MR-finetuned) have been tested

Report document with template Report document without template

Precision Recall f1-score Precision Recall f1-score

MR-finetunedWord2Vec+Random Forest Classifier

Malignant 0.94 0.90 0.92 0.73 0.76 0.74

Benign 0.93 0.95 0.94 0.94 0.93 0.94

MRWord2Vec+Random Forest Classifier

Malignant 0.95 0.93 0.94 0.70 0.76 0.73

Benign 0.95 0.96 0.95 0.94 0.92 0.93

MR-finetunedWord2Vec Embedding+1DCNN

Malignant 0.95 0.98 0.96 0.68 0.62 0.65

Benign 0.98 0.96 0.97 0.91 0.93 0.92

MRWord2Vec Embedding+1DCNN

Malignant 0.97 0.96 0.97 0.40 0.19 0.26

Benign 0.97 0.98 0.98 0.83 0.93 0.88

MR-finetuned BERT+Random Forest Classifier

Malignant 0.94 0.90 0.92 0.71 0.57 0.63

Benign 0.93 0.95 0.94 0.91 0.95 0.92

MR BERT+Random Forest Classifier

Malignant 0.94 0.91 0.92 0.77 0.48 0.59

Benign 0.94 0.95 0.94 0.89 0.97 0.93

Table 3 Performance of language model and classifiers on structured US reports (reports with template) and unstructured US reports
(reports without template). Models trained over US domain as well as cross-domain models (US-finetuned) have been tested

Report document with template Report document without template

Precision Recall f1-score Precision Recall f1-score

US-finetunedWord2Vec+Random Forest Classifier

Malignant 0.68 0.52 0.59 0.75 0.27 0.40

Benign 0.95 0.97 0.96 0.94 0.99 0.97

USWord2Vec+Random Forest Classifier

Malignant 0.71 0.59 0.64 0.67 0.18 0.29

Benign 0.96 0.97 0.96 0.94 0.99 0.96

US-finetunedWord2Vec Embedding+1DCNN

Malignant 0.68 0.66 0.67 0.70 0.64 0.67

Benign 0.96 0.97 0.96 0.97 0.98 0.97

USWord2Vec Embedding+1DCNN

Malignant 0.68 0.72 0.70 0.64 0.64 0.64

Benign 0.97 0.96 0.97 0.97 0.97 0.97

US-finetuned BERT+Random Forest Classifier

Malignant 0.91 0.34 0.50 0.33 0.09 0.14

Benign 0.93 1.00 0.96 0.93 0.98 0.96

US BERT+Random Forest Classifier

Malignant 0.67 0.34 0.45 0.33 0.09 0.14

Benign 0.93 0.98 0.96 0.93 0.98 0.96
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Embedding+1DCNN’ with weighted f1-score 0.87 and
‘MR Word2Vec Embedding+1DCNN’ with f1-score 0.76.
This difference can be attributed to the fact that we
allowed both language model Word2Vec and then the
1DCNN weights to be finetuned. All other experiments
allow for only fine-tuning of the language model. For
structured report, models with and without finetuning
tend to perform similarly.
Table 3 which reports the performance on the US

reports, shows a similar trend as Table 2. US-finetuned
language models (best weighted f1-score 0.95) perform
better when paired with any of the classifiers (Random
Forest or 1DCNN) for the more challenging task of clas-
sifying US reports without template. This trend highlights
the fact that cross-domain fine-tuning of the language
space helps to improve the performance.
An interesting trend is observed while comparing

Word2Vec and BERT language models, paired with Ran-
dom Forest classifier in both Tables 2 and 3. Even though
BERT language model is supposed to generate a contex-
tual representation of tokens taking into account words
sequence, it performs worse than simpleWord2Vecmodel
with 3% drop in the overall weighted f1-score. This trend
can be attributed to the fact that proper training of end-
to-end BERT model requires large training data which is
not available in either domain in our experiments. Thus,

we combined BERTmasked model with classifiers to train
on few thousand documents only.

Visualization
We adopted visualization schemes to explore the inner
workings of our language model. We visualized impor-
tance of each word in the input text to our 1D-CNN
model by generating heatmaps using sensitivity analysis
[18]. Such analysis relies on partial derivative of the loss
function with respect to each word of the text. Figure 4
shows heatmaps of one randomly selected reports with
and without fine-tunned languagemodel. Intensity of blue
color indicates the weight given to each word for this pre-
diction, higher weights indicates darker color. Figure 4-a
shows heatmap for 1D-CNN with word2vec MR language
model. This model mis-predicts the class label as ‘Benign’
while actually this text comes from a report associated
with a ‘Malignant’ study. The model is highly focused
on the sentence ‘There is no intra or extrahepatic biliary
ductal dilatation’ in addition to all sentences explaining
problemwith the liver. This is probably the reason formis-
classification as ‘Benign’. Figure 4-b shows the heatmap for
the same text from 1D-CNN model with MR-finetuned
word2vec language model. This model is able to focus on
the correct section of the report explaining reasons for
malignancy. This model focuses onmany sentences listing

Fig. 4 Heatmap of liver-related text of sample MR and US reports with ‘Malignant’ label: (a) MR Word2Vec Embedding+1DCNN - predicted label:
‘Benign’, (b) MR-finetuned Word2Vec Embedding+1DCNN - predicted label: ‘Malignant’,(c) US Word2Vec Embedding+1DCNN - predicted label:
‘Benign’, (d) US-finetuned Word2Vec Embedding+1DCNN - predicted label: ‘Malignant’
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liver problems and ignores the sentence stating normalcy
of ductal dilation. Hence, it predicts correct class label,
i.e., ‘Malignant’. Similar examples are shown in Figs. 4-c
and 4-d for a US reports with US word2vec embed-
ding and US-finetuned word2vec embedding, respec-
tively, with 1DCNN classifier. Classifier is unable to focus
on ‘hyperechoic foci’ when US word2vec embedding is
used, results in incorrect prediction of ‘benign’ label. This
mis-prediction is corrected by the same 1DCNN architec-
ture when US-finetuned word2vec embedding is used.
Figure 5 show our visualization of word2vec language

models where we individually plotted US word2vec,
MR word2vec, US-finetuned word2vec, MR-finetuned
word2vec after reducing the dimension of embedding
using t-SNE. In addition, we have plotted overlap-
ping plot for US word2vec and MR-finetuned word2vec
which initializes common words from US word2vec.
New words in MR-finetuned word2vec have been
marked. Zoomed-in image clearly shows that seman-
tically similar words (e.g., ‘isointensity’, ‘hypointensity’,
‘hyperintensity’, ‘intense’, ‘bright’, ‘hypointense’, ‘hyperin-
tense’,‘hypointensity’) in the original and finetunned lan-
guage space are mapped close together. Similar plot
has been generated for MR word2vec, US-finetuned
word2vec and newwords in US-finetuned word2vec. Sim-
ilar observation can be made about this plot. Words
semantically related to ‘echoic’ or reflective characteris-
tics (‘hypoechogenicity’, ‘hyperechogenicity’, ‘hypoatten-
uating’, ‘hypoechoic’, ‘hyperechoic’), and shape-related

words like ‘multiseptated’ and ‘bilobed’ are mapped close
together.
Given that BERT masked LM generates contextualized

representation of word piece tokens rather than words,
we plotted 2-dimensional compressed representations of
malignant and benign reports for both domains (MR
and US) for MR and US language models (Word2Vec
and BERT) as well as cross-domain language models in
Fig. 6. To generate report-wise representation, we com-
puted mean of vectors of all tokens in the report just as
we did for employing Random Forest classifier for predic-
tion. Separation between malignant and benign reports
indicates that classifier will be able to better distinguish
between these two labels if trained in the given space. It
is clear that malignant and benign reports are better sep-
arated for MR domain than they are for US domain. This
can be attributed to severe class imbalance in US domain
where minority class makes up only 10% of the data, as
compared for MR domain. In addition, class separation
is better in US Word2Vec language space than US BERT
language space. Results in Table 3 confirm that discrim-
inative model, e.g. Random Forest, performs better with
US Word2Vec representation than US BERT representa-
tion. This trend can be attributed to larger training data
requirement of BERT language model.

Discussion
The study reports a successful transfer of language mod-
els from one domain to a similar domain in radiology and

Fig. 5Word2Vec Language Spaces; (a): US Language Model, (b): US-finetuned Language Model, c): New words in US-finetuned Language Model,
(d): MR Language Model, (e): MR-finetuned Language Model, (f): New words in MR-finetuned Language Model
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Fig. 6Mean vectors of reports in BERT and Word2Vec language spaces; left column: BERT space, right column: Word2Vec space; row 1: MR reports
with MR language models, row 2: MR reports with MR-finetuned language models, row 3: US reports with US language models, row 4: US reports
with US-finetuned language models
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compares it to not performing adaptation. The core nov-
elty of this whole pipeline is that only a limited domain-
specific corpus is required to train the language mod-
els while performing the LM transfer. We showed that
fine-tuning of the word-embedding models with similar
domain adaptation (US → MR and MR → US), even for
multi-institutional reports, provides more opportunity for
semantic knowledge preservation for down-steam classi-
fication tasks compared to training the language model
from scratch.
Our study shows a way to train language space model

with limited number of reports by using cross-domain
transfer. Our proposed pipeline automatically extracted
binary labels (benign/malignant) for imaging dataset for
HCC screening with high accuracy. Our proposed frame-
work only needs a small subset of labeled exams to
generate a large dataset of labeled exams. The labeled
studies may be used for AI development and training,
and such automated NLP methods will rapidly reduce the
manual workload for creating labeled imaging datasets
from hospital databases. The experimentation also shows
that for the limited training dataset (in the order of
thousands reports), context-independent distributional
semantics models (Word2vec) performs better than the
context-dependent transformer models (BERT). This sur-
prising results could be due to small training corpus size
for learning US andMR LM using BERT which has 110 M
trainable parameters [13].
However, given the fact that collection of millions of

task-specific radiology text reports, such as HCC screen-
ing, would be challenging from a single institution, train-
ing the transformer based models from scratch is often
not a feasible option. Pre-trained transformermodels with
clinical dataset, such as BioBert [19], ClinicalBert [20],
could be more adaptable but most important radiology-
specific words may be missing from the LM space as they
were trained on generic clinical datasets, and such words
will be treated as word piece during fine-tuning in which
they may loss the actual semantics.
This study lacks experimentation with the larger

datasets since it is only bounded by the HCC screening
reports. We believe that initial training of the transformer
model with significantly large training data may help to
outcome theWord2vec performance. In future, we plan to
collect a larger multi-institutional radiology reports cor-
pus and perform more experimentation with Bert and
ELMo sequential embedding model.

Conclusion
In this work, we explored the advantages of transfer
learning for training language models between two dis-
tinct but similar domains. We chose US and MR reports
for HCC screening as experimental domains. Our work
involves multi-institutional data including data collected

from Stanford Health Care (SHC) and Emory Univer-
sity Healthcare (EUH). We selected reports annotation
with labels set of {‘malignant’, ‘benign’} as our down-
stream classification task for performance comparison.
Our experiments clearly indicate that fine-tuning lan-
guage models with similar domain adaptation (US → MR
and MR → US) enables better preservation of seman-
tic knowledge to improve classification performance as
compared to training language model from scratch for
each domain. This result is particularly interesting as sim-
ilar domain transfer learning improves performance even
with availability of relatively smaller corpus for language
model training. We experimented with skipgram model
training for word2vec language model as well as trans-
former model training for BERT language model. Given
small training corpus, word2vec model performed much
better than BERT model for downstream classification
task. This trend indicates an important limitation of trans-
former based language modeling in clinical domain, i.e.,
requirement of extra large training corpus.
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