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Abstract

Background: Most previous relation extraction (RE) studies have focused on intra sentence relations and have
ignored relations that span sentences, i.e. inter sentence relations. Such relations connect entities at the document
level rather than as relational facts in a single sentence. Extracting facts that are expressed across sentences leads to
some challenges and requires different approaches than those usually applied in recent intra sentence relation
extraction. Despite recent results, there are still limitations to be overcome.

Results: We present a novel representation for a sequence of consecutive sentences, namely document subgraph, to
extract inter sentence relations. Experiments on the BioCreative V Chemical-Disease Relation corpus demonstrate the
advantages and robustness of our novel system to extract both intra- and inter sentence relations in biomedical
literature abstracts. The experimental results are comparable to state-of-the-art approaches and show the potential by
demonstrating the effectiveness of graphs, deep learning-basedmodel, and other processing techniques. Experiments
were also carried out to verify the rationality and impact of various additional information and model components.

Conclusions: Our proposed graph-based representation helps to extract ∼ 50% of inter sentence relations and
boosts the model performance on both precision and recall compared to the baseline model.
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Background
Relation extraction (RE) is the task of discovering seman-
tic connections between entities [1]. RE plays a vital
intermediate step in a variety of natural language process-
ing (NLP) and information extraction applications in the
biomedical domain. Its applications range from precision
medicine [2], adverse drug reactions identification [3, 4],
drug abuse events extraction [5], major life events extrac-
tion [6, 7] to building question answering systems [8, 9]
and clinical decision support system [10].
Most previous RE studies followed the assumption that

if two entities were related, they would belong to a sin-
gle sentence and therefore ignored relationships expressed
across sentence boundaries [11–15]. I.e., the task of RE
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aims to classify the semantic relationship between an
entity pair e1 and e2 in a given sentence S into a pre-
defined relation class including ‘not-relate’. However, rela-
tionships between entities are often expressed across sen-
tence boundaries or otherwise require a broader context
to disambiguate [16–18]. For example, 30% of relations in
the Biocreative V Chemical-Disease Relation (BC5 CDR)
dataset [19] are only expressed across sentence bound-
aries, such as in the following excerpt expressing compli-
cated inter sentence relations.

“<Title> Case report: acute unintentional carbachol intoxication.
. . .
<S1> Carbachol concentrations in serum and urine on day 1 and 2 of hos-
pital admission were analysed by HPLC-mass spectrometry.
<S2> RESULTS: Minutes after oral administration, the patient developed
nausea, sweating and hypotension, and finally collapsed.
<S3> Bradycardia, cholinergic symptoms and asystole occurred.

. . . ”
(PMID: 16740173)

© The Author(s). 2022 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13326-022-00267-3&domain=pdf
http://orcid.org/0000-0002-1778-0600
mailto: lhquynh@vnu.edu.vn
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Le et al. Journal of Biomedical Semantics           (2022) 13:15 Page 2 of 15

In which, chemical ‘carbachol’ is annotated to the
Chemical-induced Disease (CID) relations with four dis-
eases ‘nausea’, ‘hypotension’, ‘bradycardia’ and ‘asystole’.
All of them are inter sentence relations: ‘carbachol’ only
appears in the title and Sentence 1 while ‘nausea’ and
‘hypotension’ appear in Sentence 2 and ‘bradycardia’ and
‘asystole’ only appear in Sentence 3. These problems are
exacerbated by the document- (rather than sentence-)
level annotation, which is very common in the biological
text [17].
Thus, the research community has gained an interest in

devising methods to move beyond single sentences and
extract semantic relations that span sentences. I.e., the
task of inter sentence RE aims to identify the semantic
relationship between a pair of entity mentions e1 and e2
in a given document D that contains several sentences
S1, S2, ...Sn. The extraction of inter sentence relations is
much more difficult than intra sentence relations [20].
In some datasets, the involved entities of an inter sen-
tence relation are marked in specific locations (example
includes BB3 corpus [21]). DocRed dataset [22] annotates
the relations and entities together with their correspond-
ing supporting sentences. The inter sentence relation
extraction problem becomes much more difficult in the
datasets that a relation explores entities at the document
level rather than that at the specific mentions. I.e., since
several mentions of an entity appear in different locations
in the text, we face the difficulty in locating which sen-
tences containing the supporting evidence of a relation.
This problem becomes more severe in the biomedical
domain since biomedical documents often contain sen-
tences with a long and more complex structure compared
with that in the general domain. Moreover, many relations
are expressed implicitly.When working withmultiple sen-
tences, extracting valuable information, and then under-
standing the contexts of entity pairs becomes much more
difficult. There is a multitude of different relation types in
the biomedical domain and potentially any pair of entities
in the document could be related. For example, although
BC5 CDR corpus is only annotated with CID relations,
many pairs of entities can have therapeutic relations.
These characteristics lead to some challenges and

require different approaches than those usually applied
in intra sentence relation extraction. Despite some ini-
tial results, there are still limitations of recent approaches
for inter sentence RE. The end-to-end model proposed
in [23] resolved intra sentence relation classification partly
by using a multi-pass sieve coreference resolution mod-
ule. It has the drawback of strongly depending on the
appearances of antecedent and anaphor representations
of entities in the text since there are many inter sen-
tence relations not expressed through anaphor. Another
approach processes consecutive sentences as longer sen-
tences. Examples include a Support Vector Machine

(SVM)-based model with a very rich feature set [24], a
hybrid model of the convolutional neural network, and
maximum entropy (ME) [25] and a long short-term mem-
ory network (LSTM) and convolutional neural network
model that learns document-level semantic representa-
tions [20]. Since inter sentence RE requires information
from all local, non-local, syntactic, and semantic depen-
dencies, several previous studies tried to build a repre-
sentation for the whole document such as biaffine Rela-
tion Attention Networks (BRANs) [17] and the labeled
edge graph convolutional neural network model on a
document-level graph [18].
The novel approach we present in this paper draws

inspiration from related works that explore the consecu-
tive sentences for the inter sentence relation extraction.
The construction of document subgraphs is also used to
leverage both local and non-local information effectively.
We then construct a deep neural architecture based on
a shared-weight convolutional neural network (swCNN)
with an improved attention mechanism to explore the
information of multiple paths on the document subgraph.
The experimental results on the BC5 CDR benchmark
dataset show potential and are comparable to state-of-the-
art approaches. The investigation of the impact of differ-
ent components and information on the final performance
provides insights showing that the graph-based represen-
tation, swCNN model, instance merging/weighting tech-
nique and distant supervision learning are useful. It also
leads us to conclude that the knowledge-based informa-
tion, coreference information and attention mechanism
are still promising areas for future research.

Materials andmethods
We present this section in four main parts: the overview
of our evaluated dataset; the overall picture of the pro-
posed architecture and three main components in detail;
additional techniques to improvemodel performance; and
experimental configuration.

Dataset
Our experiments were conducted on the BioCreative V
Chemical-Disease Relation dataset [19]. This corpus con-
tained a total of 1500 PubMed articles that were separated
into three subsets, each of 500 for the training, devel-
opment and test set (the details are shown in Table 1).
This dataset is annotated with chemicals, diseases and
the chemical-induced disease relationships at abstract-
level. Relation annotations are asserted for both within
and across sentence boundaries. Following the data survey
of BioCreative [26], about 30% of total instances are inter
sentence relationships.

Model overview
Figure 1 illustrates our proposed model for extracting the
semantic relation at the abstract level, which contain four
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Table 1 Summary of the BioCreative V CDR dataset

Subset Abs
Disease Chemical

CID
Ment ID IAA Ment ID IAA

Training 500 4182 1965 0.8600 5203 1467 0.9523 1038

Development 500 4244 1865 0.8742 5347 1507 0.9577 1012

Test 500 4424 1988 0.8875 5385 1435 0.9630 1066

Abs Abstracts,Ment Mentions, CID Chemical-induced disease relations

main phases: (i) Firstly, we construct a document sub-
graph to represent the relationship between entity pairs.
(ii) In order to represent an instance by a set of paths,
we apply several advanced techniques for finding, merg-
ing and choosing the relevant paths between entity pairs.
(iii) In the next step, the advanced attention mechanism
and several types of linguistic information are applied to
explore the information from the document subgraphs
more effectively. (iv) Lastly, to exploit these enriched
representations effectively, we develop a shared weight
Convolutional Neural Network model (swCNN).

Document subgraph construction
As we noted above two entities that participate in a rela-
tion may belong to different sentences. Dependency trees
are often used to extract local dependencies of semantic
relations in intra sentence relation extraction. However,
such dependencies are not adequate for inter sentence
RE since sentences have different dependency trees that
are not connected. Because of this limitation, using the
shortest dependency path to extract the local depen-
dencies of semantic relations is not adequate for inter
sentence RE.

To overcome these limitations, we construct a graph for
consecutive sentences based on their dependency trees,
called the document subgraph. In this graph, the nodes
correspond to words and edges represent the connection
between them.Wemake two assumptions: (i) the distance
of two participating entities in a relation should not be
too far (experimentally, two entities should be within five
consecutive sentences). If two entities are too far apart,
the method’s effectiveness would be reduced, or this pair
may be ignored. (ii) The title of the abstract is a special
sentence that is related to every sentence in the abstract
in a certain manner. Because of this assumption, the title
is always used together with the abstract sentences to
generate each subgraph.
Creating a document subgraph is a three-step process:
Step 1:Generate the dependency tree for each sentence.

All directed dependency labels are kept in the subgraphs
as local dependency information.
Step 2: Merge the dependency trees of the sentences in

each sliding window into a document subgraph.
The sliding window of size w indicates the number of

consecutive sentences that we use to create the docu-
ment subgraphs. w = 1 indicates a single sentence, i.e.

Fig. 1 Proposed model for inter sentence relation classification. Red dotted and striped nodes indicate two types of disease. Blue filled nodes
indicate one type of chemical
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the model only extracts the intra sentence relations. With
w = j, each j sentences are used to create a subgraph. Since
two entity mentions can appear in different sentences, an
unrestricted selection of text spans would risk generating
many unexpected examples and lead to an explosion of
computing space (see Instance merging.) We, therefore,
limit w to 5, i.e., all relations with two entities that are
not within 5 consecutive sentences are ignored. After this
phase, each abstract will consist of several subgraphs.
Step 3: Create virtual edges for subgraphs. By using

dependency trees, we already have local dependency
information. In this step, we try to link new virtual edges
by using several additional information:

− NEXT-SENT edges connect root nodes in
dependency trees of two consecutive sentences. They
bring sequential non-local dependency information.

− TITLE edges are created between two dependency
tree roots of the Title and the first sentence in the
sliding window. They provide non-local dependency
information.

− COREFERENCE edges link an anaphoric expression
to its antecedent if identified by the multi-pass sieves
coreference resolution method [23]. These edges
show the semantic relation between terms. We divide
this connection type into three specific types:
(i) COREF-sent: anaphor and antecedent belong to
two normal sentences, (ii) COREF-to-title:
anaphor is in a normal sentence and antecedent is in
the Title, (iii) COREF-from-title: anaphor is in
the Title and antecedent is in a normal sentence.

− KB-CTD edges are created between head nodes of
two entities if they are annotated as having relation
‘M’ in the Comparative Toxicogenomics Database
(CTD)1. We call it knowledge-based information.

These virtual edges are undirected and labeled by their
names. We give a realistic example of the document sub-
graph in Additional file 1: Appendix A.
Using the subgraphs already constructed, this module

finds all possible paths between two entities in each graph.
We perform a breadth-first search on a graph to find
all possible paths between two entities. The graph we
constructed is quite complex, moreover, the complexity
increases with the sliding window size w and the num-
ber of new virtual edges. A traversal in breadth-first order
on such a large graph with cycles is resource-consuming
(even if we never go back to the passed nodes to avoid the
infinite issue).
To overcome this risk, we use two thresholds:

− Maximum depth md: The maximum number of
nodes traveling from the beginning node.

1http://www.ctdbase.org

− the Maximum number of path k : The maximum
number of paths that we collect.

Nearly all previous studies in relation extraction con-
sider co-occurring entity pairs with known relations as
positive instances for training. This assumption is rea-
sonable for intra sentence relations, but the inter sen-
tence problem presents a new challenge since this strategy
would risk generating too many wrong examples. It is
because a document has a relation between two entities
does not mean that all spans of text contain these enti-
ties show that relation. Quirk and Poon [16] tackled this
problemwhen an entity pair co-occurs in a large text span,
and also co-occur in a smaller text span that overlaps with
the larger one. In such cases, if there is a relation between
the pair, most likely it is expressed in the smaller text span
when the entities are closer to each other. To reduce the
unexpected noise from the large text span, we apply a
restriction of generating paths called ‘minimal span’ [16].
I.e., only the minimal span is chosen to generate the paths
between two entities. A co-occurring entity pair has the
minimal span if there does not exist another overlapping
co-occurrence of the same pair. Since each abstract can
have several subgraphs, in this phase, we receive several
sets of paths.

Instancemerging
Figure 2 illustrates the instancemerging technique. Firstly,
we address two unexpected problems while generating the
instance from the document subgraph. In Fig. 2-A, a pair
of entities appear several times at different positions in an
abstract. Because the BC5CDR corpus has relations anno-
tated at the abstract-level, all of these co-occurrences are
treated as positive examples for the CID relation. In fact,
only a few of them actually refer to the CID relation. This
may cause much noise during training.
The example in Fig. 2-B shows the problem of unex-

pected instance repetition, especially when we widen the
window to create subgraphs. In this example, we can
generate three identical training instances, i.e., the train-
ing patterns of this instance are produced three times,
changing the actual frequency of the representation in the
training data. This issue may then lead the model to give
this instance a higher priority (more important weight).
We give a realistic example of these problems below:

“<Title> Hemolysis of human erythrocytes induced by tamoxifen is
related to disruption of membrane structure.
. . .
<S1> TAM induces hemolysis of erythrocytes as a function of concentra-
tion.
<S2> The extension of hemolysis is variable with erythrocyte samples, but
12.5 microM TAM induces total hemolysis of all tested suspensions.
<S3> Despite inducing extensive erythrocyte lysis,TAM does not shift the
osmotic fragility curves of erythrocytes.
<S4> The hemolytic effect of TAM is prevented by low concentrations
of alpha-tocopherol (alpha-T) and alpha-tocopherol acetate (alpha-TAc)
(inactivated functional hydroxyl) indicating that TAM-induced hemolysis
is not related to oxidative membrane damage.

http://www.ctdbase.org
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Fig. 2 Examples of two unexpected problems while generating the instance from document subgraph

<S5> This was further evidenced by absence of oxygen consumption and
hemoglobin oxidation both determined in parallel with TAM-induced
hemolysis.

. . . ”
(PMID: 10704919)

Tackled with a title and 5 sentences as shown above
and a sliding window size w = 3, we have 42 valid
pairs of CID: TAM-Hemolysis. Each entity pair can
potentially be described by up to 15 paths. As a result,
if each pair CID: TAM-Hemolysis is considered as a
positive instance, we may have too many ‘similar’ posi-
tive instances. The same problem also appears for negative
instances. To solve this problem, we propose a technique
called instance merging, in which, we extract all possible
dependency paths between a pair of entity mentions and
merge them into a single set for this entity pair. To reduce
overlapping training instances, we remove the repeated
paths (i.e., if several paths are totally identical, only one is
kept).

Choosing top−k paths
After the instance merging phase, we have a set of sev-
eral paths to represent a pair of entities. Some of them are
useful, but others may be noise.
Prior works on intra sentence relation extraction often

explored the single shortest path between two entities
[27, 28]. Applying these traditional approaches for inter
sentence relation classification problem raises many prob-
lems. Firstly, we cannot take advantage of all the local and
global features since they may appear in different paths;
secondly, the shortest path may not the ‘best’ path.
In contrast to these previous approaches, we propose to

consider a set of multiple paths as a novel representation
for an entity pair. To reduce noise and model complex-
ity, we only choose the top-k best paths. This leads to
the problem of how to choose advantageous paths. In this

work, we implement two strategies to choose the top-k
paths:

− Top-k shortest dependency paths, this strategy was
also used by [16].

− Top-k paths with the highest number of repetitions.

To explore the information in this novel representation,
we cannot use our previous models. Instead, a new deep
learning architecture capable of simultaneously process-
ing multiple paths was proposed, based on the swCNN.

Path representation
Before inputting to the model, each component in the
dependency paths must be transformed into an embed-
ding vector. In order to have an informative representa-
tion, we take advantage of various linguistic information
along the dependency path, from the original dependency
tree and other resources.
The dependency relations with directions are proven

more effective than the dependency relations without
directions for the relation extraction task [27]. How-
ever, treating the dependency relations with the opposite
direction as two separate relations can induce two vec-
tors for the same relation. We represent the dependency
relations with two discrete components: dtyp ∈ R

dimtyp

represents the dependency relation type among 72 labels;
and ddir ∈ R

dimdir is the direction of the dependency
relation, i.e. from left-to-right or vice versa on the Short-
est Dependency Path (SDP). The final representation di
of dependency relation is obtained through a nonlinear
transformation as follow:

di = tanh
([

dtypi ⊕ ddiri

]
Wd + bd

)
(1)

where the dtyp and ddir vectors are generated by look-
ing up the embedding matrices We

typ ∈ R
dimtyp×72 and
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We
dir ∈ R

dimdir×2 respectively; Wd and bd are trainable
parameters of the network.
For token representation, we utilize two types of embed-

dings to represent the word information in different
aspects, including:

− Pre-trained fastText embeddings [29] learn the word
representation based on its external context and
n-gram sub-word information. Each token in the
input paths is transformed into a vector twi by looking
up the embedding matrixWe

w ∈ R
dimwe×|V |, where

dimwe is the word embedding dimension, and V is
the vocabulary of all words we consider.

− POS tag embeddings captures (dis)similarities
between grammatical properties of words and their
syntactic structural roles within a sentence. We
concatenate the part-of-speech (POS) tag
information into the token representation vector. We
randomly initialize the embeddings matrix
We

p ∈ R
dimpe×56 for 56 OntoNotes 5.0 version of the

Penn Treebank POS tags. Each POS tag label is then
represented as a corresponding vector tpi .

We concatenate two embedding vectors of each token
and transform them into the final token embedding as
follow:

ti = tanh
([
twi ⊕ tpi

]
Wt + bt

)
(2)

Each token ti is concatenated with the correspond-
ing attentive augmented information from its child
nodes on the original dependency tree proposed by
Can et al. [30]. Given a token t, the attentive augmented
information is calculated using the token itself and the
set of its M child nodes. Word embedding and POS
tag embedding are concatenated to form token embed-
ding vector t while the dependency relation from a direct
ancestor is added to form a child node representation ci.
The position embeddings di is also used to reflect the
relative distance from the i-th child to its parent on the
original sentence.
Two sequential attention layers on the children of a

token are used to produce children context vectors. A sim-
ple self-attentive network is applied to child nodes {ci}Mi=1
where the attention weights are calculated based on the
concatenation of themselves with parent information and
distance from the parent. I.e.,

C̄ = {ci ⊕ t ⊕ diwd}Mi=1 = {c̄i}Mi=1

e = {c̄iWe + be}Mi=1 = {ei}Mi=1
αs
i = sigmoid(ei)
csi = αs

i ci

(3)

where wd ∈ R
dimd is the base distance embedding; We

and be are weight and bias term.

A distance-based heuristic attentive layer is applied on
the self-attentive children context vector to keep track of
how close each child is to the target token, as follow:

αh
i = sigmoid(βd2i )

chi = αh
i csi

(4)

where f (d) = βd2 with β = −0.03 is a heuristically
chosen weighting function.
Afterward, to capture the relevant and essential infor-

mation from the output of the multi-attention layer and
preserve the integrity of the word information, K kernel
filters are applied to each child’s attentive vector to pro-
duce K features from each child. The final augmented
information a is captured by a max-pooling layer, i.e.,

F =
{
ReLU

(
chi Wf + bf

)}M
i=1

a = {
max

(
Fᵀk

)}K
k=1

(5)

where Wf is the weight of K kernel filters; and bf is bias
term.
Finally, this concatenation is transformed into an X-

dimensional vector to form the representation xi ∈ R
X of

the token, i.e.,

xi = tanh ([ti ⊕ ai]Wx + bx) (6)

whereWx and bx are trainable parameters of the network.

Shared-weight convolutional neural network
Convolutional Neural Networks (CNNs) [31] are good at
capturing the n-gram features in the flat structure and
have also been proved effective in many natural language
processing tasks including relation classification [14, 17].
The typical structure of a shared-weight CNN (swCNN)
is quite similar to the original CNN that is comprising
convolution, pooling, fully-connected layers and softmax.
The novel point is the ability to share weight between sev-
eral convolutions, leading to the ability to process multiple
data instances at once.
Figure 3 illustrates the overall architecture of our

swCNN model, which is comprised of two main compo-
nents: multi-path representation and classification. Given
a set of multiple k paths as input, each path is converted
into a separated embedding matrix. A shared-weight con-
volution with relu activation layer is followed to capture
convolved features from these embedding matrices simul-
taneously. The essential features are gathered using a
filter-wise pooling layer before being classified by a fully
connected layer with softmax classification.
In the embeddings layer, each component in the

dependency path (i.e., token or dependency relation) is
represented by a d-dimensional vector we ∈ R

d where
d is the desired number of embedding dimensions as
described in the previous section ‘Path representation’.
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Fig. 3 Diagram illustrating of a swCNN architecture

After the embeddings layer, the input multiple paths are
transformed into:

mP = [
xi,1,di,1, xi,2, ..., xi,n−1,di,n−1, xi,n

]k
i=1 (7)

In general, let us define the vector xi,j:j+m as the concate-
nation ofm tokens andm−1 dependency relation between
them. I.e.,

xi,j:j+m = xi,j ⊕ di,j ⊕ xi,j+1 ⊕ ... ⊕ di,j+m−2 ⊕ xi,j+m−1 (8)

In the convolution layer, we apply N filters with region
size r to these embedding matrices simultaneously. These
filters move by dependency unit to keep the dependency
information between tokens. Since the same filters are
used for all matrices, our model can extract information
from them at the same time, as well as suppress increases
in the number of weight parameters then reduce the com-
putational complexity. The filter-wise pooling step con-
verges all outputs of a filter to a single element by choosing
the essential feature from all CNN features. This archi-
tecture helps swCNN to use the information on multiple
paths simultaneously, and from there, selects the truly
outstanding features. I.e., the convolutional layer com-
putes an element fp of the convolved feature vector f as
follows:

fp = max
1≤i≤k

0≤j≤n−r+1

[
xi,j:j+rWc + bc

]
p (9)

where Wc ∈ R
(rX+(r−1)D)×N and bc ∈ R

k are the weight
matrix and bias vector of the convolutional layer.
At the classification phase, we have the number of fea-

tures equal to the number of filters we used. They then are
flattened into a feature vector and put through the soft-
max to decide the final prediction. I.e., the output f of the

convolutional layer is then fed to a softmax classifier to
predict a (K + 1)-class distribution over labels ŷ:

ŷ = softmax
(
fWy + by

)
(10)

whereWy and by are the parameters of the network to be
learned.
The proposed model can be stated as a parameter tuple

θ = (W,b). To compute the model parameters θ , we
define the training objective for a data sample as:

L(θ) = −
K∑
i=0

yi log ŷi + λ ‖θ‖2 (11)

where y ∈ {0, 1}(K+1) indicates the one-hot vector repre-
sented ground truth; and λ is a regularization coefficient.

Additional techniques
Ensemblemechanism
Overfitting is one of the most notable problems of deep
learning models. It happens when the neural network is
very good at learning its training set, but cannot general-
ize beyond the training set (known as the generalization
problem). The ensemble method [32] is one of the most
effective paradigms to reduce variance and helps to avoid
overfitting as well as improve the stability and accuracy
of the model. Moreover, random initialization is demon-
strated to have an impact on the model’s performance
on unseen data, i.e. training model instances may per-
form substantially better (or worse) than the averaged
results [17, 28, 33]. An ensemble mechanism was found to
reduce variability whilst yielding better performance than
the averaging mechanism [17].
In this paper, we use a strict majority vote – a simple

but effective ensemble method that has been successfully



Le et al. Journal of Biomedical Semantics           (2022) 13:15 Page 8 of 15

Table 2 Tuned hyper-parameter of the proposed model

Information Configuration Parameters

Dependency embeddings Dependency type LUTWe
typ size 72 × 150 10800

Dependency direction LUTWe
dir size 2 × 150 300

Token embeddings FastText embeds Pre-trained 300−dim vector −
Character embeddings LUTWe

c size 85 × 50 4250

biLSTM with 50 units 40400

POS tag LUTWe
t size 57 × 50 2850

WordNet embeds Fixed spare 45−dim vector −

Augmented information Base distance embeds 32−dim vector 32

Self attention score We ,be transform from 832 dim to scalar 833

Heuristic attention Linear −
Kernel filters 100 filters size 832 × 1 83300

Shared weight-CNN 128 filters each region-size (1, 2, 3) 2056320

Classifier Fully-connected MLP Do not use −
Softmax 2 classes 768

Total number of parameters 2199853

Embed: Embedding, Dim: Dimension

used in some related works [28, 33]. Our ensemble system
runs the model 20 times and uses the strict majority vote
to obtain the final results.

Distant supervision learning
Distant supervision learning is proved its good impact
on the relation classification by utilizing the knowledge
base in some research [17, 23, 24]. In this work, we con-
tinue to apply distant supervision learning to the proposed
subgraph models.
In order to take advantage of the available resources,

we do not rebuild the distant data ourselves. Instead, we
use the CTD-Pfizer dataset [34] that has been success-
fully applied in [17, 24]. Since this data does not contain
entity annotations, we used Dnorm [35] and tmChem [36]
tools to annotate the entities. This dataset contains 18,410
documents with 33,224 CID pairs (15,439 unique).

Experimental configuration andmodel’s hyper parameters
Our model was implemented using Python version 3.5
and TensorFlow v1.15.02. The dependency tree is gener-
ated using spaCy3. To generate the document subgraph,
we set the maximum depth ofmd = 15 and the maximum
number of paths k = 150 for the breadth-first search algo-
rithm of pathfinding phase. Widening wmore than 5 as it
may bring a lot of noise information and cause a compu-
tational burden. Therefore, we limit the size of the sliding
windoww lower than 5, i.e., exclude all entity pairs that are
2Information about this TensorFlow version is at https://www.tensorflow.org/
versions/r1.15/api_docs/python/tf
3spaCy: Industrial-Strength Natural Language Processing in Python: https://
spacy.io

apart more than 5 consecutive sentences. Heuristically, we
choose top-k path with k = 3 for each entity pair.
The sharedweightCNNemploys theAdam optimizer [37]

and uses Glorot random uniform [38] initialization. The
mini-batch training size is set to 128. Surveying the data
has shown an undesirable consequence of the subgraph
representation. That is an unexpected increase in negative
data. For intra sentence problem, the ratio of positive and
negative is about 1 : 2. But using the subgraph this ratio
is 1 : 2.95, 1 : 3.53, 1 : 3.85, 1 : 4.05 and 1 : 4.20 respec-
tively for window sizes 1, 2, 3, 4 and 5 (note that the title is
always connected to the first sentence in sliding window).
This leads to an imbalanced data problem, whichmay neg-
atively influence system performance caused by the bias
to the negative label. To minimize the impact of this prob-
lem, we assign the class weights to give priority to the
minor classes (positive). At this time, we cannot learn this
weight automatically. Therefore, we set them heuristically
as 3 : 1 for positive : negative.
We fine-tuned our deep learning model using training

and development subsets (as described in Table 1). The
optimized model’s hyper-parameters in detail are shown
in Table 2. For the final results, we use these configura-
tions to run the training process 100 times and report the
average results of 100 runs. The training time for each run
is about 17.5 hours. The prediction time for the BC5 test
set using the trained model is about 2 minutes.
We also apply some techniques to overcome overfitting,

includingmax-norm regularization forGradient descent [11];
adding Gaussian noise [13] with the mean of 0.001 to the
input embeddings; applying dropout [39] at 0.5 after all

https://www.tensorflow.org/versions/r1.15/api_docs/python/tf
https://www.tensorflow.org/versions/r1.15/api_docs/python/tf
https://spacy.io
https://spacy.io
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embedding layers and CNN layers; and using early stop-
ping technique [40].

Results
We present this section in four main parts: the contribu-
tion of proposed virtual edges; the effectiveness of sub-
graph windows sizes, the ablation test results of the model
components; and the comparison between our results and
other state-of-the-art models.

Effect of the injected virtual edges in the document
subgraph
We study the contribution of injecting virtual edges on
the system performance by ablating each of them in turn
from the graph and afterward evaluating the model with
the sliding window size w = 2 and top-3 shortest paths for
each entity pair (k = 3). We compare these experimen-
tal results by the changes of Precision (P), Recall (R) and
F1-measure in Table 3 and Fig. 4.
This experiment presents an exciting view of the con-

tributions for each type of virtual edge in the document
subgraph. When removing NEXT-SENT from the graph,
the results decrease in terms of all Precision, Recall and
F1. The same results appear when we remove TITLE.
In addition, although the COREF-sent,

COREF-to-title and KB-CTD help to find some more
correct relations, it brings too many false-positive results
and leads to worse Precision (removing them boosts the
Precision but gives a bit lower Recall).
Using the COREF-from-title connection also

reduce F1, but because it adversely affects heavily Recall
whist only gives a minimal contribution to Precision.
These experimental results have raised a challenge that

if we want to use the information about coreference and
knowledge-bases, we need some additional methods to
increase the quality of the information obtained. We left
this problem for further work. Therefore, in the next
experiments, we only use two connections NEXT-SENT
and TITLE.

Table 3 Ablation test results for added virtual edges in the
document subgraph

Precision Recall F1

Full connection 61.25 61.26 61.25

Without TITLE 62.24 55.58 58.72

Without NEXT-SENT 60.98 58.79 59.86

Without COREF-sent 63.80 60.01 61.85

Without COREF-to-title 62.60 60.89 61.73

Without COREF-from-title 60.88 64.27 62.53

Without KB-CTD 64.28 59.84 61.98

Results are reported in %
Decreased results are highlighted in bold

Effect of different sliding window sizew for training and
testing
We describe the change of the model’s performance with
different sizes of the sliding window in Fig. 5. The larger
w helps to increase Recall but leads to a worse Precision.
This is an easy-to-explain result because with a larger w
we will get more paths, but more noise. The equilibrium
point of Precision and Recall gives the highest F1 result at
w = 2, in detail, we have Precision = 61.25%, Recall =
61.26% and F1 = 61.25%.
More importantly, this statement also raises an idea to

take advantage of a large w but minimize the impact on
Precision at the lowest level that whether we use the dif-
ferent window sizes for training and testing. The larger
window size for training helps to collect new patterns
in the text. The smaller window size for testing helps to
reduce noise and narrow the allowed distance between
two entities. To demonstrate this idea, grid search exper-
iments with k = 3 were conducted, the results are shown
in Table 4.
The results have verified the effectiveness of the pro-

posed ideas. With the larger w for training size, we have
better Recall but worse Precision. For each training win-
dow size, the smaller w for testing always brings better
F1 than the larger w. The best F1 archived with w = 5
for training and w = 2 for testing, increase 1.34% com-
pared to the best results of using the same window size for
training and testing.

Contribution of the model components
We further investigate the contribution of each compo-
nent in Table 5, which shows changes in F1 when ablating
each component from the proposed model.
The F1 reductions illustrate the contributions of all

proposals to the final result. However, the level of con-
tribution is varied among the different components. The
document subgraph has proven its superiority by boost-
ing the F1 by 6.49%, in which the Recall increases
10.73%. Both TITLE and NEXT-SENT connections have
shown a significant influence on model performance.
The interesting observation TITLE edges seem to play
a leading role: eliminating it reduces the F1 by 5.47%.
NEXT-SENT information also plays an essential role
since removing it reduces F1 by 2.60%. Our proposed
instance merging technique also has a significant contri-
bution, without using it, F1 increases 3.22%. The shared-
weight CNN on top-k paths demonstrated its good influ-
ence on the results by boosting F1 by 1.84%. Another
experiment on using alternative methods for choosing
top-k paths (by their repetitions frequencies instead of
the shortest length) seems not suitable since it leads
to a slight reduction in F1. As discussed above, the
use of difference w for training and testing also brings
a reduction of F1. Adding class weight and attention
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Fig. 4 Ablation test results for virtual edges of the document subgraph. The vertical axis shows the performance in %. Experiments are conducted
with 3 shortest paths

technique helps to improve F1 for 0.28% and 1.02%,
respectively.

Comparison to existing models
We compare the performance of our model against nine
competitors. The first three models are capable of predict-
ing intra sentence relations only, the next six models have
the ability to extract inter sentence relations:

− Zhou et al. (2016) [41] proposed the hybridDNN
model that consists of a feature-based model, a tree
kernel-based model and a neural network model.

− Panyam et al. (2018) [42] used an enhanced
dependency parse graph of a sentence with
Approximate Subgraph Matching (ASM) kernel to
classify CID relation.

− MASS [28] (stands for ‘Man for All Seasons’ model) is
a large-scale neural relation classification architecture
that has been applied on six benchmark datasets.

− UET-CAM system [23] is a Support vector machine
(SVM) -based model. It uses multi-pass sieves for the
coreference resolution to extract inter sentence
relations.

− SVM-based model of Peng et al. (2016) [24] uses a
rich feature set and rule-based output, enhanced by
distant supervision learning.

− CNN+ME [25] is the hybrid model of the maximum
entropy model for inter sentence relation
classification and the CNN model for intra sentence
relation classification.

− An LSTM-CNN model that learns document-level
semantic representations by processing consecutive
sentences as a sequence of sentences [20].

− Biaffine Relation Attention Network (BRAN) takes
advantage of the state-of-the-art attention tool
Transformer [17].

− The labeled edge graph convolutional neural network
model on a document-level graph [18]. The graph is
constructed using various inter- and intra sentence
dependencies to capture local and non-local
dependency information.

Table 6 summarizes the performance of our model and
some comparative models. In which, the results of com-
parative models are reported both with and without using
any additional enhancements.
Our model yields very competitive results when com-

pared to other state-of-the-art models that have taken into
account the inter sentence relationships. Compare to the
original model without any additional enhancements, our
model gives the best results with 62.88%.
Applying distant supervision learning and ensemble

technique, our model still achieves the best result among

Fig. 5 The change of results with different size of sliding window. The
vertical axis shows the performance in % while the horizontal axis
shows the size of w. Only fastText word embedding is used to
represent words. Experiments are conducted with 3 shortest paths
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Table 4 Results of the document subgraph with different sizes
of the sliding window for training and testing

w for training w for testing Precision Recall F1

1 1 65.34 55.50 60.02

2 62.20 57.22 59.61

3 61.47 58.27 59.83

4 61.92 54.86 58.18

5 57.13 59.76 58.42

2 1 61.95 60.19 61.06

2 61.25 61.26 61.25

3 61.97 60.30 61.12

4 61.30 58.52 59.88

5 60.99 59.36 60.16

3 1 61.05 61.74 61.39

2 60.65 61.74 61.19

3 60.70 61.88 61.28

4 62.30 59.47 60.85

5 61.10 59.81 60.45

4 1 60.30 64.01 62.10

2 57.88 65.98 61.67

3 58.31 65.27 61.59

4 58.40 63.86 61.01

5 59.97 61.71 60.83

5 1 61.15 63.76 62.43

2 60.13 65.89 62.88

3 58.56 65.79 61.96

4 58.64 62.42 60.47

5 57.92 62.36 60.06

Results are reported in %
The highest result in each column is highlighted in bold

competingmodels. The distant data helps to improves our
F1 by 5.64% with the best hyper-parameter settings (this
data also helped to boost the F1 by 5.9% in Peng et al.
(2016) [24] and 4.1% in BRAN (Verga et al., 2018) [17])
The ensemble technique helps BRAN to boost the F1 for
2.2% whist it only helps our model for 0.6% more.
We also show the detailed results for intra- and inter

sentence relation extraction in Table 7. In which, we
exclude all inter sentence relations when evaluating intra
sentence relation extraction results and vice versa.

Error analysis
We studied model outputs to analyze system errors and
improvements as shown in Table 8. For further analysis,
we use the output of RbSP- an advanced intra sentence
relation extraction model [30]- for comparison, its results
are shown in column ‘Comparative model’. The full ver-
sions of the abstracts that used in Table 8 are given in
Additional file 2: Appendix B.

Table 5 Ablation test results for various components of the
document subgraph based model

Component
removed/changed

Precision Recall F1 Change
of F1

Full model 60.13 65.89 62.88

Without subgraph 57.68 55.16 56.39 -6.49

Without TITLE 61.12 54.12 57.41 -5.47

Without NEXT-SENT 62.36 58.33 60.28 -2.60

Without instance merging
technique

52.40 69.26 59.66 -3.22

Without swCNN and top-k
paths

59.92 62.19 61.03 -1.84

Choose top-k by highest
frequency (instead of length)

58.56 66.96 62.48 -0.40

Use w=2 for both training and
testing (instead of different w)

61.25 61.26 61.25 -1.62

Without using class weight 59.60 65.92 62.60 -0.28

Without attention mechanism 59.13 64.85 61.86 -1.02

Results are reported in %
Column ‘Change of F1’ shows the decrease of F1 when removing/changing
components from the model
Highest result in each column is highlighted in bold

The former part (Examples #1 − 6) shows the effect
of the graph-based model on intra sentence relations. It
helps find some more intra sentence (Example #1 − 2)
relations since graph-based representation enriches many
useful patterns for training. However, it also causes new
noises (Example #3 − 4), i.e., some examples are properly
correctly labeled by the comparative model, but wrongly
by the graph-based model. Example #5− 6 are errors that
are not improved.
The latter part (examples #7 − 10) focuses on the inter-

relation extraction, these relations occupy about 30% of
the instances in BC5 CDR corpus and cannot be extracted
by the intra sentence model. Example #7 provides an
improvement, as the graph model extracts the inter sen-
tence relation correctly. In the case of producing false-
positive results (Example #8), the graph-based model is
penalized since turning a true negative into a false pos-
itive. Moreover, the graph model still misses many cases
(Examples #9 − 10).
These errors can be attributed to the limitations of our

model, including (a)Many errors seem attributable to the
parser. Example #9 is the case that we cannot generate any
dependency path between two participated entities. The
comprehensive analysis shows that our document sub-
graph representation with w = 2 covers only ∼ 93% of
total instances in test data (98% intra sentence relations
and 87% inter sentence relations), in the remaining cases,
we cannot generate any path between two entities. (b) The
information in the path may still be insufficient or redun-
dant to make the correct prediction. (c) The graph-based
representation brings many noises. New virtual edge also
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Table 6 The performance of document subgraph-based model and some comparative models

Method/model Precision Recall F1

NOT having the ability to extract inter sentence relations

hybridDNN (Zhou et al., 2016 [41]) Syntactic features 62.15 47.28 53.70

+ Context 62.39 47.47 53.92

+ Position 62.86 47.47 54.09

ASM (Panyam et al., 2018 [42]) Dependency graph 49.00 67.40 56.80

MASS (Le et al., 2018 [28]) Multi channel CNN-LSTM 58.90 54.90 56.90

+ Ensemble 56.80 57.90 57.30

+ Post processing 52.80 71.10 60.60

Having the ability to extract inter sentence relations

UET-CAM (Le et al., 2016 [23]) SVM + coreference 53.41 49.41 51.60

+ Data 57.63 60.23 58.90

SVM (Peng et al., 2016 [24]) SVM + Rich feature set 64.24 52.06 57.51

+ Data 65.59 56.94 61.01

CNN+ME (Gu et al., 2017 [25]) Hybrid model 60.90 59.50 60.20

+ Post-processing 55.70 68.10 61.30

LSTM-CNN (Zheng et al., 2018 [20]) Sequence of sentences 24.00 52.00 32.80

+ Entity replacing 54.30 65.90 59.50

BRAN (Verga et al., 2018 [17]) CNN + abstract attention 55.60 70.80 62.10

+ Data 64.00 69.20 66.20

+ Ensemble 65.40 71.80 68.40

Graph CNN (Sahu et al., 2019 [18]) Document-level Graph 52.80 66.00 58.60

Our results Document subgraph 60.13 65.89 62.88

+ Data 62.95 75.16 68.52

+ Ensemble 64.79 74.05 69.11

Results are reported in %
Highest result in each column is highlighted in bold

brings confusion, and instance merging with top-k path
choosing may lead to the missing of the useful paths. (d)
The overfitting problem (leading to wrong prediction –
FP) and (e) limited generalisation power in predicting new
relations (FN).
Finally, we found some errors caused by the imperfect

gold annotation (gold missing relation or gold false rela-
tion). Example #11 shows the case that our model finds
a correct relation while gold standard annotation does
not include. Another annotation errors (Example #12)
come from the hierarchy manner. BC5 CDR corpus only
annotates relations between the most specific entities, i.e.,
excludes the relations that involve entities that are more
general than other entities already participated in the CID
relation of each abstract [26].

Discussion
In this work, we present a novel representation for a
sequence of adjacent sentences in a document (namely
document sub-graph). The graph is constructed using var-

ious types of information to capture local and non-local
features. Knowledge-based information is also used to
expropriate the manual realistic information to the model.
We also propose an instance merging mechanism and

using a set of multiple paths for representing the rela-
tionship between entities pair. Our proposed model out-
performs all comparative models in experiments on BC5
CDR corpus without using external knowledge resources
and additional enhancements. Comparing the full model
performance, our model still achieves comparable results

Table 7 The detailed results of the document subgraph-based
model

Precision Recall F1

Full result 64.79 74.05 69.11

intra sentence relation result† 72.91 85.73 78.80

inter sentence relation result‡ 46.12 47.28 46.69

Results are reported in %
Only evaluated on † Intra- or ‡ inter sentence relations
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Table 8 Examples of errors on the BC5 CDR test set

# PMID Chemical-Disease Golden label RbSP† SGM‡ Type Effect Error type

1 2131034 D003561–D020258 CID NONE CID Intra Better FN → TP

2 18801087 D000638–D009369 NONE CID NONE Intra Better FP → TN

3 44072 C024986–D001145 CID CID NONE Intra Worse TP → FN

4 15265979 D005947–D006529 NONE NONE CID Intra Worse TN → FP

5 1655018 D000305–D006528 CID NONE NONE Intra − FN

6 35781 D010423–D002375 NONE CID CID Intra − FP

7 7644931 D017239–D018771 CID − CID Inter Better FN → TP

8 10327032 D005472–D008107 NONE − CID Inter Worse TN → FP

9 2710809 D001712–D003680 CID − − Inter − FN

10 11745287 D016190–D015431 CID − NONE Inter − FN

11 10087562 D004280–D008133 NONE CID CID Intra Worse∗ FN

12 24464946 D015251–D006331 NONE − CID Inter Worse∗ TN → FP

†The re-implemented intra sentence RbSP model (Can et al. [30]) - without subgraph model in Table 5
‡subgraph model’s prediction
*Errors due to the imperfect annotation
CID Chemical-induced disease, NONE Unrelated, ‘−’: Cannot generate path, TP True Positive, TN True Negative, FP False Positive, FN False Negative
Cases where the SBM model gives correct results are highlighted in bold

when compared with the current state-of-the-art model
(Verga’s BRAN model) [17].
When compared with the related work, the highlight

of our proposed model is the use of document graphs
with different train-test window sizes. To the best of our
knowledge, most other studies approach in the direction
of seeking relationships in one or several consecutive sen-
tences [20, 24, 25, 28, 42]. Our model solves the problem
of extracting relations in the whole document. This idea is
similar to the study of Verga et al. [17], but they are in the
direction of using the attention mechanism to find impor-
tant information in the text. Instead, we build extract the
information on the graph in a linguistic-based manner.
From the perspective of model usage in real-world

applications, while graph building and model training
are time consuming, they can be done offline. New data
processing time is not fast enough to process big data
but can be used to extract relations from small and
medium datasets in reasonable time. Another problem
when applying the model is processing full text. Through
research and data survey, the abstract contains the basic
information of the article. Basically, it is necessary to
investigate more closely because the characteristics of
full text and abstract are quite different. For example,
with full text processing, window size of 5 may not
be enough, two related entities may be very far apart.
Extracting the relationship in full text will need some
extra processing steps. We leave these problems for the
future work.
We also investigated the results in detail to figure out

our limitations for future improvements.

• Firstly, coreference and discourse resolutions should
be analyzed carefully to find a suitable and more
effective approach for application.

• Secondly, the valuable information coming from
knowledge bases needs to be used more reasonably
instead of being integrated directly into graphs.

• Thirdly, our model’s results resolutely depend on the
performance of the dependency parser. This problem
leads to the limitation that we must deal with many
cascade errors from the processing step. We are
planning to use another parser, which is specially
built for the biomedical domain.

• Lastly, the ensemble mechanism should be improved
to have higher results. However, run the graph-based
models for many times is quite a time-consuming
work; this approach needs an adaptation to be more
suitable for the graph-based model.

Conclusions
In this paper, we present a novel representation for a
sequence of consecutive sentences in a document (namely
document subgraph). The graph is constructed using var-
ious types of information to capture local and non-local
features. We also propose an instance merging mecha-
nism and use a set of multiple paths for representing the
relationship between entity pairs. To explore the informa-
tion in the document subgraph, we construct a deep neu-
ral architecture based on a shared-weight convolutional
neural network.
The interesting analysis is that not all the types of new

edges in the graph are useful for inter sentence rela-
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tion extraction. Only connections of title-sentences and
between consecutive sentences are useful. In addition, all
components and techniques that we applied in the pro-
posed model show their contributions to the performance
at a different level.
In experiments on BioCreative V CDR corpus, with-

out using any external knowledge resources and additional
enhancements, our proposed model outperforms all com-
parative models. We also investigated the results in detail
to figure out our limitations for future improvement. The
experimental results and error analysis help us to priori-
tize the future work.
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