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Abstract

Background: Ontology matching should contribute to the interoperability aspect of FAIR data (Findable, Accessible,
Interoperable, and Reusable). Multiple data sources can use different ontologies for annotating their data and, thus,
creating the need for dynamic ontology matching services. In this experimental study, we assessed the performance
of ontology matching systems in the context of a real-life application from the rare disease domain. Additionally, we
present a method for analyzing top-level classes to improve precision.
Results: We included three ontologies (NCIt, SNOMED CT, ORDO) and three matching systems
(AgreementMakerLight 2.0, FCA-Map, LogMap 2.0). We evaluated the performance of the matching systems against
reference alignments from BioPortal and the Unified Medical Language System Metathesaurus (UMLS). Then, we
analyzed the top-level ancestors of matched classes, to detect incorrect mappings without consulting a reference
alignment. To detect such incorrect mappings, we manually matched semantically equivalent top-level classes of
ontology pairs. AgreementMakerLight 2.0, FCA-Map, and LogMap 2.0 had F1-scores of 0.55, 0.46, 0.55 for BioPortal and
0.66, 0.53, 0.58 for the UMLS respectively. Using vote-based consensus alignments increased performance across the
board. Evaluation with manually created top-level hierarchy mappings revealed that on average 90% of the
mappings’ classes belonged to top-level classes that matched.
Conclusions: Our findings show that the included ontology matching systems automatically produced mappings
that were modestly accurate according to our evaluation. The hierarchical analysis of mappings seems promising
when no reference alignments are available. All in all, the systems show potential to be implemented as part of an
ontology matching service for querying FAIR data. Future research should focus on developing methods for the
evaluation of mappings used in such mapping services, leading to their implementation in a FAIR data ecosystem.

Keywords: Ontology matching, FAIR data, Semantic interoperability, Rare diseases

Background
The generation, collection, and usage of data are cru-
cial for scientific research. Consequently, the sharing and
reuse of research data have become more and more
important, leading to guidelines such as those for the
European Union’s Horizon 2020 program that mandate
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open access to scientific publications and research data
[1]. In 2016, a group of researchers and other stakehold-
ers, with an interest in the findability and reuse of research
data, published a set of principles to propagate the reuse
of research data for machines and humans [2]. These prin-
ciples were presented as the FAIR Guiding Principles for
scientific data management and stewardship (Findable,
Accessible, Interoperable, and Reusable). The process of
making data FAIR is often referred to as FAIRification,
which has been described in seven steps by the GO FAIR
initiative (Fig. 1) [3].
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Fig. 1 The FAIRification process. Adapted from GO FAIR [3]. This study focuses on step 3 (define the semantic model) and step 4 (make data linkable)

When making data FAIR, a semantic model of the data
needs to be defined (step 3), and the data need to be made
linkable (step 4), for both of which ontologies are use-
ful as they provide some form of consensus about some
domain. Using ontologies is important for improving the
semantic interoperability of data [4]. Different ontolo-
gies can contain classes describing the same domain or
concepts which makes them overlap [5]. Making data
interoperable becomes more challenging if researchers
use different ontologies for describing the same class(es).
For example, the class ‘cystic fibrosis’ is described in mul-
tiple biomedical ontologies. A systematic analysis of term
overlap and term reuse across biomedical ontologies in
BioPortal found an approximate overlap of over 25% and
less than 9% of reuse of classes between ontologies [5].
Another paper studied the reuse of logical axioms in
biomedical ontologies and discovered that 49 out of 123
ontologies did not apply any type of reuse [6]. Hence,
annotated data does not mean interoperable data per
se, as different ontologies would need to be matched.
Ontology matching aims to make ontologies interopera-
ble bymatching semantically related classes from different
ontologies, resulting in alignments between ontologies.
Ontology matching can make data interoperable when
data(sets) are annotated using different ontologies [7].
A specific community may or may not define standards
to which the entire community should adhere, includ-
ing specific ontologies. Ontology matching would then
be of use to achieve interoperability within and between
communities, as different communities might use differ-
ent standards. The context and motivation for this study
originates from the European Joint Programme on Rare
Diseases (EJP RD), a large pan-European project that
focuses on creating an ecosystem for rare disease research
and care [8]. One of the objectives of the EJP RD is
to build a FAIR-compliant data discovery platform that
describes rare disease resources and enables researchers
to query data from multiple resources at different loca-
tions. These sources may use different ontologies which

requires ontology matching to enable querying between
sources.

Problem statement
Many matching techniques and systems have been devel-
oped but research on real-life applications has been scarce
[9]. Ontology matching should contribute to FAIR data by
providing interoperability between data sources that are
annotated with classes from different ontologies. Match-
ing ontologies is not a one-time task as both datasets
and ontologies change over time. Hence, there is a need
for dynamic ontology matching services [7]. Despite the
active research community behind ontology matching, it
remains unclear how matching systems and techniques
would perform in the context of FAIR data. Therefore, the
usefulness and performance of existing ontology match-
ing systems should be evaluated in the light of real-life
applications that follow the FAIR Guiding Principles.

Objective and research questions
This experimental study aims tomeasure the performance
of ontology matching systems in the context of a FAIR-
compliant data discovery platform, for ontologies that
are relevant for the rare disease domain. By doing so,
this study intends to contribute to the use of ontology
matching systems for FAIR data. Figure 2 depicts how
such a data discovery platform could benefit from ontol-
ogy matching. For this use case, a system should also be
able to determine that two matched classes belong to the
same category, for example, by saying that the classes ‘cys-
tic fibrosis’ and ‘multiple sclerosis’ are both a ‘disease’.
Therefore, we analyze the top-level hierarchies ofmatched
classes, to detect classes whose top-level ancestors are
semantically equivalent. The following research questions
will be discussed:

1 What is the performance of automated ontology
matching systems to expose mappings between
ontologies used in the rare disease research domain?



Damme et al. Journal of Biomedical Semantics           (2022) 13:19 Page 3 of 17

Fig. 2 Use case for this study. How ontology matching can enable
data querying of distributed data sources. The mentioned ontologies
are ORDO (Orphanet Rare Disease Ontology) [44] and SNOMED
Clinical Terms (SNOMED CT) [16]

2 To what extent are currently available ontology
matching systems useful for implementation in
FAIR-related projects that focus on querying
distributed data?

Preliminaries
Basic definitions
We adopt basic definitions from [10], which were mod-
ified when desired for the scope of this work. Ontology
matching is the process of finding relationships between
classes of different ontologies. Examples of relations are
equivalence (≡), subsumption (�), more generic (≥), or
more specific (≤) [10]. The matching process outputs an
alignment A which contains mappings between classes of

ontologies O and O′. A mapping m is the relationship,
according to an alignment, between different classes of
two ontologies. Some papers refer to mapping as corre-
spondence. Formally a mapping can be defined as a triple
by a pair of ontologies O and O′ and a set of mapping
relations � = {≡,�,≤,≥}:

m = 〈e, e′, r〉

where e ∈ O, e′ ∈ O′ and r ∈ �. Additionally, a mapping
can include metadata such as a confidence value and iden-
tifiers. Equivalence mappings are of interest for this study,
for instance, a matching system should be able to detect
that two classes represent the same type of disease.

Classification of ontology matching techniques
Ontology matching techniques can be classified using a
model that organizes techniques based on their input
interpretation and granularity [10]. Figure 3 shows an
adapted version of this classification model. The granu-
larity of a matching system can be defined by two levels:
elemental and structural. Element-level matching tech-
niques focus on a class without considering its relation-
ship to other classes, structure-level matching techniques
focus on a class within the structure of the ontology.
At each level, the model makes a distinction between
semantic and syntactic matching techniques. Syntactic
matching techniques use only the information of a class
without interpretation, such as the textual labels or syn-
onyms. Semantic matching techniques add meaning to
the structural information by using a reasoner or external
resources. The input of a matching system can be inter-
preted using nine techniques, which are mentioned in
Fig. 3 including examples of implementations. The ontol-

Fig. 3 Classification of matching techniques. Adapted from [10]. For each category, an example of a possible implementation is given
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ogymatching systems used in this study apply one ormore
of these techniques.

Methods
We performed an experimental study for measuring the
performance of ontology matching systems in the context
of a FAIR-compliant data discovery platform, for ontolo-
gies that are relevant for the rare disease domain. First,
we evaluated the alignments generated by the matching
systems using two reference alignments. Additionally, we
analyzed the top-level hierarchies of classes in the map-
pings. The following steps were carried out: (1) selecting
relevant biomedical ontologies and extracting a module;
(2) generating alignments between ontology pairs; and
(3) a two-part evaluation of the alignments that were
obtained. Figure 4 shows an overview of the performed
experiments. Development was done using Java version 8
and data analysis using R version 4.0.1 [11].

Selection of ontologies
To select ontologies relevant for the rare disease domain,
we used a set of rare disease-related keywords as input for
the BioPortal Recommender [12]. For annotating its input
the Recommender uses the BioPortal Annotator [13]. The
input keywords were extracted from the set of common
data elements for rare disease registries (items in the

element and coding names columns) [14], and the clas-
sifications of rare diseases from Orphanet (all categories
and one random disease per category) [15]. Items, i.e., one
or multiple words, could have multiple annotations. The
full list of data items can be found in the Appendix. The
Recommender was run using the default configuration
and the first two ontologies were selected from the list,
namely SNOMEDClinical Terms (SNOMEDCT, interna-
tional Edition release 31-01-2020) [16], and the National
Cancer Institute Thesaurus (NCIt, version 20.02d) [17].
SNOMED CT is a major biomedical ontology that con-
tains more than 350,000 classes and includes rare disease
content. NCIt also covers the biomedical domain and
has more than 150,000 classes. Finally, we added the
Orphanet Rare Disease Ontology (ORDO, version 2.9.1)
as a third ontology as it specifically targets the rare disease
domain, containing almost 15,000 classes. All ontologies
were available in theWeb Ontology Language (OWL) for-
mat, which is a standard maintained by the World Wide
Web Consortium (W3C) [18].

Module extraction
We extracted a module from each ontology, which is a
subset of the original ontology. Modules allow to only
work with relevant information from the ontology based
on classes that are of interest [19]. These smaller subsets

Fig. 4 Overview of the performed experiments. Selection of ontologies, ontology module extraction, matching the ontologies using the selected
matching systems, evaluating the alignments using reference alignments and an hierarchical analysis of mappings. The matching systems were
selected beforehand
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allowed us to run experiments using less computational
resources and made it easier to understand and browse
the structure of the ontologies. The OWL API includes
a syntactic locality module extractor [20]. This module
extractor uses a so-called seed signature as input to extract
a subset from an ontology. This seed signature is a list of
classes from the parent ontology on which the module is
based. The module extractor can extract three types of
modules: star, bottom, and top. A top module includes all
subclasses and (sub)properties of the classes in the seed
signature, a bottom module does the opposite by includ-
ing the superclasses and (super)properties. A star module
combines both strategies by including the intersection of
the top and bottom modules. We extracted a star module
from NCIt, ORDO, and SNOMED CT. The seed signa-
tures contained the annotations of the rare disease data
items as returned by the BioPortal Annotator. To ensure
that modules included the entire top-level hierarchy of the
original ontology, the seed signature included all ances-
tors of those annotated classes. In the rest of this paper the
star-type module will be referred to as ‘module’.

Matching systems and alignments
The ontology matching systems were selected from those
that participated in the Ontology Alignment Evaluation
Initiative (OAEI) 2019 edition [21]. The OAEI has been
an annual recurring event for the performance evalua-
tion of ontology matching systems since 2004. The event
is composed of multiple tracks, each addressing vari-
ous ontologies and matching tasks. Systems participating
in the ‘Large Biomedical Ontologies’ and ‘Disease and
Phenotype’ tracks were of particular interest, although
systems from all tracks were eligible for inclusion. The
Disease and Phenotype track includes a matching task
with ORDO [22]. To ensure diversity among the systems
in our experiment, we selected systems that implemented
different matching techniques, according to the classifi-
cation of Euzenat et al. (Fig. 4) [10]. Furthermore, we
only selected systems whose source code was available in
a public repository (to ensure we could use them). This
led to the inclusion of three systems: AgreementMak-
erLight 2.0 (AML) [23, 24], FCA-Map [25], and LogMap
2.0 (LogMap) [26, 27]. Table 1 shows that those systems
implement most matching techniques shown in Fig. 4.
The selected matching systems were run with their

default configuration and no changes were made to the
systems’ parameters. The output of the matching systems,
the alignments, were saved in the general format provided
by the Alignment API [28]. Each runwas assigned 64GB of
RAM. The matching systems did not need any user-input
during thematching process, i.e. they provided automated
ontology matching. Ontology pairs were used as input:
ORDO-SNOMED CT, NCIt-ORDO, NCIt-SNOMED CT
(note that matching A to B is equivalent to matching B to

Table 1 Classification of the matching systems based on the
classification model of [10]. The systems that were used in this
study are AgreementMakerLight 2.0 [24], FCA-Map [25], and
LogMap 2.0 [27]

Agreement
MakerLight 2.0

FCA-Map LogMap 2.0

Element level

Semantic: Formal
resource-based

X - -

Syntactic:
Informal
resource-based

- - -

Syntactic:
String-based

X X X

Syntactic:
Language-based

X X X

Syntactic:
Constraint-based

- X -

Structure level

Semantic:
Model-based

- X X

Syntactic:
Instance-based

- X -

Syntactic:
Graph-based

- - X

Syntactic:
Taxonomy-based

- - X

A). All alignments contained pairwise equivalence map-
pings and included the URI of each class. Figure 5 shows
an example of a mapping between NCIt and ORDO.

Hierarchical analysis of mappings
Biomedical ontologies have a high amount of informa-
tion in their lexical labels, hence, ontology matching
systems often primarily use lexical matching techniques
[29]. However, a mapping containing classes that originate
from different top-level classes can be incorrect even if
the classes have lexically similar labels. For example, two
classes each labeled as bone fracture where the first is a
descendant of the class clinical finding and the second
of body structure. Each top-level hierarchy of an ontol-
ogy contains classes that are of similar types, and every
descendant of a top-level class shares the IS-A relation
with its ancestor(s). The use case for this study consid-
ers that a query system should be able to tell that two
classes from different ontologies belong to the same cat-
egory. For instance, a system should be able to tell that
two classes are both diseases. Therefore, we analyzed the
mappings of the matching systems by comparing the top-
level hierarchies of matched classes. Mappings between
the top-level classes of NCIt-ORDO, NCIt-SNOMED CT,
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Fig. 5Mapping example. The class Polyploidy is mapped between NCIt (National Cancer Institute thesaurus [17]) and ORDO (Orphanet Rare Disease
Ontology [44]). Shown are a chunk of the RDF output from the alignment and a visual representation of the mapping

andORDO-SNOMEDCTwere createdmanually.We cre-
ated these manual mappings by inspecting the top-level
hierarchies of true positive mappings (Fig. 7), based on
the reference alignments. More details about the refer-
ence alignments will be given in the next section. The
class descriptions were also used to determine whether
or not two top-level classes should be matched. Manually
matched top-level classes were considered to be semanti-
cally equivalent. Figure 6 shows an example of how such a
manual mapping was created.

Evaluation of performance
We used two reference alignments to evaluate the align-
ments generated by the matching systems. Alignments
were evaluated against each reference alignment sepa-
rately. The first reference alignment contained mappings
from BioPortal and the second contained mappings based
on the Unified Medical Language System Metathesaurus
(UMLS) [30]. Both were chosen because they are used
as reference alignments in the OAEI disease and phe-
notype track and large BioMed track respectively. Refer-
ence alignments for the ontology modules were derived
from their full-size counterparts by removing mappings
between classes which were not present in the module.

BioPortal
The BioPortal reference alignment was considered a base-
line; an alignment that is highly incomplete in most
cases [22]. The BioPortal mappings for ORDO, NCIt, and
SNOMED CT are skos:closeMatch mappings based
on the Lexical OWL Ontology Matcher (LOOM) [31].
LOOM is a simple string matching algorithm that com-
pares the preferred names and synonyms of classes in both
ontologies. BioPortal mappings were retrieved using the
BioPortal API.

UMLSmetathesaurus
The UMLS-based reference alignment was considered
a silver standard; an alignment that is not necessarily
complete or correct [22, 32]. The UMLS Metathesaurus
groups all semantically equivalent classes using a code:
the concept unique identifier (CUI). A single class can
have multiple CUI codes. The reference alignment was
extracted locally from a subset of the UMLS Metathe-
saurus (version 2020AA), this method was also used by
Jimenéz-Ruiz et al. [33]. This subset was obtained using
the MetamorphoSys tool of the UMLS by retrieving the
MRCONSO.RRF file, and installed locally using MySQL
Community Server version 5.6.48. Pairwise mappings

Fig. 6 Example of a manually created top-level hierarchy mapping. The four classes from NCIt and SNOMED CT were matched by the matching
system, and all four mappings were present in the reference alignments (true positive). Analyzing the top-level hierarchies reveals that NCIt classes
are descendants of Anatomic Structure, System, or Substance and SNOMED CT classes of Body structure. A manual mapping between those top-level
classes can then be created for NCIt-SNOMED CT
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were retrieved by first getting all available CUIs for every
class in each ontology. Then, all classes of ontology A and
B that had at least one correspondent CUI were included
as a mapping in the reference alignment. ORDO is not
present in the UMLS but does include CUI codemappings
as annotations in the ontology. Hence, ORDO CUIs were
not retrieved from the UMLS but instead directly from the
ontology itself.

Performancemetrics
We evaluated the alignments by classifying each map-
ping as true positive (TP, present in both the alignment as
the reference alignment), false positive (FP, only present
in the alignment), or false negative (FN, only present in
the reference alignment) (see Fig. 7). True negatives were
not included as there was no gold standard available that
contained all possible correct mappings.
Subsequently, we measured performance of the match-

ing systems by calculating precision (Eq. 1), recall (Eq. 2),
and F-measure (F1-score) (Eq. 3). Precision shows the
proportion of mappings in the alignment that are classi-
fied as true positive. Recall shows the proportion of map-
pings in the reference alignment that are also present in
the alignment. F-measure combines precision and recall
by calculating their harmonic mean. For precision, recall,
and F-measure a score of 1 means a perfect result and
0 is the worst result. The mappings were first evaluated
without and then with taking the hierarchical analysis
into account. For the latter, false-positive mappings (not
in the UMLS nor BioPortal) were marked as incorrect
if their top-level hierarchy classes were not present in
the set of manually created mappings. We recalculated
precision and F-measure after discarding those incorrect
mappings from the alignments. Finally, we generated con-
sensus alignments based on majority votes and evaluated
these alignments. Consensus alignments between all sys-

tems were generated by selecting mappings that were
selected by two or more systems (vote≥ 2), and three
systems (vote=3). Additionally, we added consensus align-
ments of three combinations of matching system pairs
(vote=2).

Precision = TP
TP + FP

(1)

Recall = TP
TP + FN

(2)

F-measure = 2 × precision × recall
precision + recall

(3)

Results
Rare disease data elements andmodules
A total of 117 data items were extracted from the set
of common data elements for rare disease registries and
the Orphanet rare disease classifications. The BioPortal
Recommender annotated 42% of the input with ORDO
classes, 52% with SNOMED CT classes, and 65% with
classes from NCIt. The seed signatures contained 471
classes for SNOMEDCT, 74 for ORDO, and 547 for NCIt.
Table 2 shows the details of the extracted modules. The
modules contained between 0.4-2% of the total amount of
classes and axioms of the whole ontologies.

Alignments
Alignments were created between the ontology pairs
ORDO-SNOMED CT, NCIt-ORDO, and NCIt-SNOMED
CT. A total of six OWL files were used as input for each
matching system, two files per ontology (the module and
whole ontology). This resulted in a total of 18 alignments,

Fig. 7 Categories for evaluation with BioPortal and UMLS Metathesaurus reference alignments. Adapted from [10]
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Table 2 Details of the ontologies and extracted modules

ORDO SNOMED CT NCIt

Classes in module (% of
total)

299 (2%) 1,408 (0.4%) 1.014 (0.7%)

Axioms in module (% of
total)

2.227 (0.9%) 7,105 (0.4%) 19,017 (0.7%)

Object properties in
module (% of total)

7 (39%) 16 (13%) 40 (41%)

Total classes 14,502 352,449 156,172

Total axioms 234,982 1,629,354 2,543,710

Total object properties 18 120 97

six per matching system. All alignments contained map-
pings with an equivalence relation. In terms of run time,
AML and LogMap were the fastest, the whole ontology
alignment of NCIt-SNOMEDCTwas created within a few
hours. FCA-Map was slower and took 6-8 hours for NCIt-
SNOMED CT. Table 3 shows the number of mappings per
alignment for both the whole ontologies and the modules.

Evaluation: UMLSmetathesaurus and BioPortal
Table 4 shows the number of mappings in the refer-
ence alignments that were extracted from BioPortal and
the UMLS Metathesaurus. All reference alignments from
the UMLSMetathesaurus contained more mappings than
the ones from BioPortal. The overlap between the NCIt-
ORDO and NCIt-SNOMED CT reference alignments was
the largest with a weighted overlap, accounting for the
difference in number of mappings per reference align-
ment, of 45% and 57% respectively (whole ontologies).
The ORDO-SNOMED CT reference alignments had the
smallest overlap, namely 14% (modules) and 25% (whole
ontologies).
Table 5 shows the mean evaluation results for the whole

ontologies. For all ontology pairs, the recall of alignments
evaluated against BioPortal was higher than the recall
of alignments evaluated against the UMLS. The preci-
sion of the ORDO-SNOMED CT alignment was higher
when using the UMLS-based reference alignment (0.45
precision) than the BioPortal reference alignment (0.28
precision). The opposite was the case for NCIt-ORDO
and NCIt-SNOMED CT, where the precision scores were
higher for BioPortal than the UMLS. AML had the high-
est F1-score for BioPortal (0.66), all matching systems had

an overall higher F1-score for BioPortal than the UMLS.
LogMap had a higher precision for the UMLS (0.47) than
for BioPortal (0.45). AML had a higher precision for Bio-
Portal (0.54) than for the UMLS (0.47). NCIt-SNOMED
CT had the highest recall and precision among all ontol-
ogy pairs and systems.
Table 6 shows the mean results for the modules. The

recall for all ontology pairs was higher for BioPortal than
for the UMLS, which corresponds to the results of the
whole ontologies. The UMLS precision was higher than
the BioPortal precision for all ontology pairs. Overall, all
matching systems had a higher F1-score for the UMLS
than for BioPortal.
Results per matching system (i.e., all ontology pairs)

and ontology pair (i.e., all matching systems) are averaged
for easier interpretation and because individual differ-
ences were, in general, small. See Additional File 1 for all
individual results.

Evaluation using the hierarchical analysis of mappings
Table 7 shows the manually created top-level hierarchy
mappings. We created three mappings between the top-
level classes of ORDO-SNOMED CT, six mappings for
NCIt-ORDO, and 13 mappings for NCIt-SNOMED CT.
Table 8 shows the results of the analysis. On average
10% (whole ontologies) of the mappings in an alignment
contained classes of which the top-level hierarchies were
not present in the manual top-level mappings set. Map-
pings that were true positive for either BioPortal and/or
the UMLS were kept in the alignments. On average, 4.6%
of the mappings in the alignments contained classes of
which the top-level hierarchy was not present in the man-
ual mappings set and were false positive. The module
alignments had an average of 19% of incorrect hierarchy
mappings, and 8.7% of the mappings in the alignments
were false positives with an incorrect top-level hierarchy.
The results of the whole ontologies for recalculating

the precision and F1-score, after discarding false posi-
tive mappings with an incorrect top-level hierarchy, are
shown in Table 9. Precision and F1-score values increased
between 0.01 and 0.05, for all ontology pairs and match-
ing systems. The exception was FCA-Map, for which the
BioPortal precision increased from 0.39 to 0.45 (+0.06).
Table 10 shows the new precision and F1-scores for the
modules. The scores increased between 0 and 0.06 points

Table 3 Details of the alignments. Shown are the number of mappings in the alignments for the whole ontologies and modules

AgreementMakerLight 2.0 FCA-Map LogMap 2.0

# mappings
(whole ontology)

# mappings
(module)

# mappings
(whole ontology)

# mappings
(module)

# mappings
(whole ontology)

# mappings
(module)

ORDO - SNOMED CT 6,463 42 4,973 46 5,742 53

NCIt - ORDO 2,543 36 4,663 47 2,679 31

NCIt - SNOMED CT 18,887 193 26,630 220 23,885 214
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Table 4 Details of the reference alignments. Shown are the number of mappings in the BioPortal and UMLS Metathesaurus reference
alignments. Also shown are the overlap and harmonic mean of the overlap between the alignments. The harmonic mean was
calculated by weighting the reference alignment means by the number of mappings in each reference alignment

Ontology pair Ontology type Mappings UMLS Mappings BioPortal Overlap Harmonic mean overlap

ORDO-SNOMED CT Module 35 7 3 14%

NCIt-ORDO Module 27 18 12 53%

NCIt-SNOMED CT Module 127 90 56 52%

ORDO-SNOMED CT Whole ontology 3,861 1,750 776 28%

NCIt-ORDO Whole ontology 1,484 1,450 656 45%

NCIt-SNOMED CT Whole ontology 19,309 16,290 10,195 57%

Table 5 Evaluation results of the whole ontologies. Shown is the mean precision/recall/F1-score for both the UMLS and BioPortal. The
scores for the ontology pairs indicate the mean of all matching systems, the scores for the matching systems indicate the mean of all
ontology pairs

Pair or matching system Precision UMLS Precision BioPortal Recall UMLS Recall BioPortal F1-score UMLS F1-score BioPortal

ORDO - SNOMED CT 0.45 0.28 0.66 0.89 0.53 0.42

NCIt - ORDO 0.33 0.44 0.67 0.91 0.43 0.58

NCIt - SNOMED CT 0.55 0.67 0.66 0.94 0.60 0.78

AgreementMakerLight 2.0 0.47 0.54 0.66 0.96 0.55 0.66

FCA-Map 0.39 0.39 0.64 0.90 0.46 0.53

LogMap 2.0 0.47 0.45 0.69 0.88 0.55 0.58

Table 6 Evaluation results of the modules. Shown is the mean precision/recall/F1-score for both the UMLS and BioPortal. The scores
for the ontology pairs indicate the mean of all matching systems, the scores for the matching systems indicate the mean of all
ontology pairs

Pair or matching system Precision UMLS Precision BioPortal Recall UMLS Recall BioPortal F1-score UMLS F1-score BioPortal

ORDO - SNOMED CT 0.45 0.14 0.60 0.95 0.51 0.25

NCIt - ORDO 0.49 0.47 0.67 0.96 0.56 0.62

NCIt - SNOMED CT 0.51 0.42 0.84 0.98 0.64 0.59

AgreementMakerLight 2.0 0.49 0.37 0.67 0.97 0.57 0.51

FCA-Map 0.42 0.31 0.68 1.00 0.52 0.46

LogMap 2.0 0.53 0.35 0.77 0.92 0.62 0.49
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Table 7 Manually created mappings of top-level classes

ORDO SNOMED CT

clinical entity (Orphanet_C001) Clinical finding (404684003)

genetic material (Orphanet_C010) Substance (105590001)

geography (Orphanet_C009) Environment or geographical
location (308916002)

NCIt ORDO

Disease, Disorder or Finding
(C7057)

clinical entity (Orphanet_C001)

Gene Product (C26548) genetic material (Orphanet_C010)

Conceptual Entity (C20181) geography (Orphanet_C009)

Conceptual Entity (C20181) inheritance (Orphanet_C005)

Property or Attribute (C20189) age of onset (Orphanet_C023)

NCIt SNOMED CT

Anatomic Structure, System, or
Substance (C12219)

Body structure (123037004)

Disease, Disorder or Finding
(C7057)

Clinical finding (404684003)

Property or Attribute (C20189) Qualifier value (362981000)

Anatomic Structure, System, or
Substance (C12219)

Substance (105590001)

Activity (C43431) Procedure (71388002)

Organism (C14250) Organism (410607006)

Drug, Food, Chemical or
Biomedical Material (C1908)

Substance (105590001)

Drug, Food, Chemical or
Biomedical Material (C1908)

Pharmaceutical / biologic product
(373873005)

Manufactured Object (C97325) Physical object (260787004)

Property or Attribute (C20189) Observable entity (363787002)

Conceptual Entity (C20181) Environment or geographical
location (308916002)

Conceptual Entity (C20181) Social context (48176007)

Conceptual Entity (C20181) Observable entity (363787002)

overall, except for the NCIt-SNOMED CT precision and
F1-score for BioPortal (+0.29 and +0.22 respectively).

Consensus alignments
Table 11 shows F1-scores of the consensus alignments
based on majority votes. Precision and recall scores
are included in Additional File 1. Consensus alignments
among all systems containing mappings having two or
more votes led to an increase in overall performance.
Alignments containing mappings with vote=3 increased
all F1-scores further, except UMLS scores of NCIt-
SNOMED CT and ORDO-SNOMED CT, compared to
the mean scores in Table 5. When voting among matching
system pairs (only those mappings selected by both sys-
tems, vote=2), pairing AML 2.0 and FCA-Map increased
performance up to 0.03 points compared to the con-
sensus alignments with three votes among all systems.
F1-scores based on the UMLS for NCIt-SNOMEDCT and
ORDO-SNOMED CT increased for the consensus align-
ment between FCA-Map and LogMap 2.0, compared to
Table 5. Removing false-positive mappings with an incor-
rect top-level hierarchy from the consensus alignments
did not increase F1-scores by more than 0.01 point.

Discussion
We evaluated the performance of three existing ontology
matching systems using reference alignments based on
the UMLS and BioPortal. Additionally, we analyzed the
top-level hierarchies of mappings using manually created
mappings between the top-level classes of ontology pairs.
These experiments should contribute to the use case of
querying distributed data sources, in the context of FAIR
data.

Table 8 Hierarchy analysis results. The number of mappings whose classes’ top-level ancestors were not matched manually (Table 7)
are shown for each system and ontology pair. The amount and percentage of false positives (FP) refer to the mappings that were
discarded from the alignment for recalculation of both the precision and F1-score

Whole ontology Module

Matching
system

Ontology pair Incorrect hierarchy
mappings (of which FP)

Proportion of total
alignment (FP)

Incorrect hierarchy
mappings (of which FP)

Proportion of total
alignment (FP)

AgreementMaker
Light 2.0

ORDO-SNOMED CT 494 (318) 8% (5%) 9 (6) 21% (14%)

FCA-Map ORDO-SNOMED CT 489 (310) 10% (6%) 11 (8) 24% (17%)

LogMap 2.0 ORDO-SNOMED CT 193 (106) 3% (2%) 5 (3) 9% (6%)

AgreementMaker
Light 2.0

NCIt-SNOMED CT 3,055 (252) 16% (1%) 46 (13) 24% (7%)

FCA-Map NCIt-SNOMED CT 6,868 (3,299) 26% (12%) 60 (23) 27% (10%)

LogMap 2.0 NCIt-SNOMED CT 3,790 (1,180) 16% (5%) 42 (9) 20% (4%)

AgreementMaker
Light 2.0

NCIt-ORDO 127 (102) 5% (4%) 4 (1) 11% (3%)

FCA-Map NCIt-ORDO 1,229 (1,170) 3% (3%) 12 (8) 26% (17%)

LogMap 2.0 NCIt-ORDO 130 (92) 5% (3%) 3 (0) 10% (0%)
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Table 9 Evaluation results of the whole ontologies after removing false positive mappings with an incorrect top-level hierarchy.
Shown is the mean precision/F1-score for both the UMLS and BioPortal. Ontology pairs indicate the mean of all matching systems,
matching systems indicate the mean of all ontology pairs. Recall has not changed and is therefore not included

Pair or matching system Precision UMLS Precision BioPortal F1-score UMLS F1-score BioPortal

ORDO - SNOMED CT 0.47 (+0.02) 0.29 (+0.01) 0.55 (+0.02) 0.44 (+0.02)

NCIt - ORDO 0.36 (+0.03) 0.48 (+0.04) 0.46 (+0.03) 0.62 (+0.04)

NCIt - SNOMED CT 0.59 (+0.04) 0.71 (+0.04) 0.62 (+0.02) 0.81 (+0.03)

AgreementMakerLight 2.0 0.49 (+0.02) 0.56 (+0.02) 0.56 (+0.01) 0.68 (+0.02)

FCA-Map 0.44 (+0.05) 0.45 (+0.06) 0.51 (+0.05) 0.59 (+0.06)

LogMap 2.0 0.48 (+0.01) 0.47 (+0.02) 0.56 (+0.01) 0.60 (+0.02)

Table 10 Evaluation results of the modules after removing false-positive mappings with an incorrect top-level hierarchy. Shown is the
mean precision/F1-score for both the UMLS and BioPortal. Ontology pairs indicate the mean of all matching systems, matching
systems indicate the mean of all ontology pairs. Recall has not changed and is therefore not included

Pair or matching system Precision UMLS Precision BioPortal F1-score UMLS F1-score BioPortal

ORDO - SNOMED CT 0.51 (+0.06) 0.16 (+0.02) 0.55 (+0.04) 0.28 (+0.03)

NCIt - ORDO 0.52 (+0.03) 0.50 (+0.03) 0.58 (+0.02) 0.65 (+0.02)

NCIt - SNOMED CT 0.59 (+0.08) 0.71 (+0.29) 0.62 (+0.02) 0.81 (+0.22)

AgreementMakerLight 2.0 0.54 (+0.05) 0.39 (+0.02) 0.59 (+0.02) 0.52 (+0.01)

FCA-Map 0.49 (+0.07) 0.37 (+0.06) 0.57 (+0.05) 0.52 (+0.06)

LogMap 2.0 0.55 (+0.02) 0.36 (+0.01) 0.64 (+0.02) 0.49 (+0.00)

Table 11 Consensus alignment results. Shown are the F1-scores for vote-based consensus alignments. The number of votes
represents how many systems selected the same mapping. F1-scores when corrected for positive mappings with an incorrect
top-level hierarchy are shown in parenthesis. AgreementMakerLight 2.0 is abbreviated as AML 2.0

All systems
(vote≥ 2)

All systems
(vote = 3)

AML 2.0 +
FCA-Map

AML 2.0 +
LogMap 2.0

FCA-Map +
LogMap 2.0

NCIt - SNOMED CT

F1-score BioPortal
(top-level hierarchy)

0.80 (0.81) 0.87 (0.87) 0.90 (0.90) 0.87 (0.87) 0.77 (0.78)

F1-score UMLS (top-level
hierarchy)

0.63 (0.65) 0.59 (0.59) 0.59 (0.59) 0.59 (0.59) 0.63 (0.64)

NCIt - ORDO

F1-score BioPortal
(top-level hierarchy)

0.71 (0.71) 0.79 (0.79) 0.80 (0.80) 0.73 (0.73) 0.76 (0.76)

F1-score UMLS (top-level
hierarchy)

0.53 (0.54) 0.53 (0.53) 0.53 (0.53) 0.55 (0.55) 0.51 (0.52)

ORDO - SNOMED CT

F1-score BioPortal
(top-level hierarchy)

0.44 (0.44) 0.49 (0.49) 0.50 (0.50) 0.44 (0.44) 0.47 (0.47)

F1-score UMLS (top-level
hierarchy)

0.56 (0.57) 0.51 (0.51) 0.52 (0.52) 0.55 (0.56) 0.52 (0.52)
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Principal findings
What is the performance of automated ontology
matching systems to expose mappings between ontolo-
gies used in the rare disease research domain?
The systems exposed, on average, 5.726 mappings
between ORDO-SNOMED CT, 3.295 mappings between
NCIt-ORDO, and 23.134 mappings between NCIt-
SNOMED CT. Obtained F1-scores were 0.55/0.66 (AML,
UMLS/BioPortal), 0.46/0.53 (FCA-Map), and 0.55/0.58
(LogMap). The results obtained for the modules were
comparable to those of the whole ontologies. As there was
no gold standard available, the systems’ overall low pre-
cision (between 0.39-0.54) and high recall (between 0.64-
0.96) suggests that (automatically) evaluating the cor-
rectness of mappings is indeed challenging. The systems
retrieved most mappings in the reference alignments, but
also exposed many additional mappings, hence the lower
precision. Both reference alignments were known to be
incomplete (silver standard and baseline), further research
will be needed to assess whether additional mappings
returned by the systems are correct. The results of the
OAEI 2019 Large BioMed track (SNOMEDCT-NCIt large
fragment task [34]) are the closest to use as reference for
interpreting performance, as the other tracks and tasks of
the OAEI use other ontologies or reference alignments.
Using a UMLS-based reference alignment (inconsistent
mappings were flagged to be ignored), AML obtained
an F1-score of 0.76, FCA-Map 0.65, and LogMap 0.71.
Those OAEI results are better, although it is not a one-
to-one comparison due to different reference alignment
and ontology versions. Moreover, the OAEI reports using
a large fragment of SNOMED CT, resulting in fewer map-
pings than when using the whole ontology (18,887 vs.
14,200 by AML).
Using consensus alignments (i.e., mappings selected by

multiple systems) improved performance across the board
(Table 11 and Additional File 1). As one would expect,
selecting a higher number of votes (vote=3, mappings
selected by all systems) resulted in higher precision and
lower recall. In practice, one could prioritize precision
over recall or vice versa for a specific application, and the
ability to select a consensus alignment that fits those needs
can be useful.

To what extent are currently available ontology match-
ing systems useful for implementation in FAIR-related
projects that focus on querying distributed data? All
systems were able to generate alignments without user
intervention, which is important for data querying. Run
times varied from minutes up to a few hours, depend-
ing on the size of the input ontologies. Matching systems
exposed equivalence relations between classes of ontolo-
gies pairs. The use case depicted in Fig. 2 requires equiva-
lencemappings and automatedmatching. This means that

the application of AML, FCA-Map, and/or LogMap, in the
context of the use case would be a sensible decision. How-
ever, in the case of a matching service for querying data,
high precision is more important than high recall, hence
the need for additional work on validating the correct-
ness of mappings. All systems support OWL ontologies as
input and export alignments as a machine-readable RDF-
file. This allows joining alignments from several match-
ing systems. Besides, analyzing top-level hierarchies of
matched classes was shown to be effective in revealing
mappings with classes from the same hierarchy. Table 8
shows that on average 10% of mappings had an incorrect
top-level hierarchy; 90% were mappings whose top-level
hierarchies matched using the manually created map-
pings. For example, consider a query: ‘count all patients
with a rare disease’, then the hierarchical analysis can
reveal that ‘cystic fibrosis’ is a rare disease and its records
should be counted. The hierarchical analysis can be used
in situations where no reference alignments are available.
Finally, the use of modules helps for faster development
and testing of matching techniques, in comparison to
working with the whole ontologies. Usingmodules instead
of the whole ontologies could be considered if speed or
resources are important factors. Additionally, modular-
ization can be used as a type of structure-level matching
by removing content from the ontology that is not rele-
vant for the application [10]. As modularization removes
content from the ontologies it should be noted that this
could improve or worsen the results of matching systems
that use structural matching techniques, although we did
not test this hypothesis.

Strengths and limitations
Several strengths and limitations can be identified. A
strength of this study is its practical approach to ontol-
ogy matching using a FAIR data use case, using ontologies
relevant for the rare disease domain. A limitation is that
AML, FCA-Map, and LogMap are not the only matching
systems available, although they cover most of the match-
ing techniques as specified by the classification model
defined by Euzenat et al. [10]. Particularly, systems that
leverage machine-learning techniques were not included.
Likewise, other ontologies exist that would be of use in the
rare disease domain, especially considering the large num-
ber of ontologies present in, among other repositories,
BioPortal. The BioPortal Annotator and Recommender
were used to select the ontologies and create the seed
signatures, but other similar tooling could also be used.
Another strength is the use of modules based on seed

signatures derived from rare disease data elements. The
smaller modules made it easier to assess the mappings
manually while performing the experiments. Also, it
shows potential for implementation in matching services
where it is desirable to work with smaller chunks of large
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ontologies, e.g. for faster run times. However, since the
list of rare disease data elements was not validated, it was
not possible to draw any additional conclusions from the
modules versus whole ontology results. For instance, we
did not know if the classes contained in the modules were
the most relevant ones for use in the rare disease domain.

Evaluation with BioPortal and UMLS reference alignments
Precision, recall, and F1-score were used as performance
measures because they are widely known and used by
the OAEI. However, both precision and recall introduce a
problem when used in the context of ontology matching
that should be mentioned. As stated by [35], both pre-
cision and recall are set-theoretic measures that do not
discriminate between mappings that may be semantically
equivalent but not identical. Thus, when a mapping is not
present in the reference alignment it is per definition con-
sidered to be incorrect (false positive). Semantic precision
and recall could solve this problem by considering map-
pings that are, semantically speaking, close to a mapping
in the reference alignment. For example, when a map-
pings’ class is a super- or subclass of a correspondent class
in the reference alignment.
To our knowledge, the UMLS and BioPortal based refer-

ence alignments were the only ones available that offered
mappings between a wide variety of ontologies, includ-
ing SNOMED CT, ORDO, and NCIt. We consider using
two reference alignments for the evaluation a strength, as
both contain different mappings despite their overlap of
28 to 57% (Table 4). The BioPortal mappings were consid-
ered to be a baseline alignment, as previously mentioned
by the OAEI [22]. The precision and recall for BioPortal
were both the highest for AML (0.54 and 0.96 respec-
tively, whole ontology). This corresponds to the fact that
both AML and BioPortal (LOOM) base their mappings on
lexical techniques only. On the other hand, the mappings
derived from the UMLS were considered to be a silver
standard since the Metathesaurus is being maintained by
domain experts. A limitation of the UMLS reference align-
ment used for this study is the CUI codes from ORDO,
as ORDO is not included in the UMLS those CUIs were
extracted from ORDO itself. The BioPortal F1-scores for
the modules were 15% lower on average than the whole
ontologies, which could be due to the low number of map-

pings in the reference alignments. Finally, earlier research
mentioned that the UMLS reference alignment contains
incoherent mappings [33], namely mappings that con-
tain logical errors following from the union of the input
ontologies and the mappings set [36]. Moreover, logi-
cal incoherences were also found in BioPortal mappings
[37]. Such mappings were not removed and/or examined
during the evaluation performed in this study.

Hierarchical analysis of mappings
Discarding false positive mappings, whose top-level hier-
archy classes were not manually matched, did not result in
much higher precision scores (up to 0.06 points higher).
Nonetheless, analyzing top-level hierarchies of matched
classes can be of value when applying ontology matching
for FAIR data. First of all, hierarchies can exploit informa-
tion about the origin of a class. For instance, if ‘pneumo-
nia’ and ‘asthma’ are both part of the ‘disease’ hierarchy,
they can be classified as such, even if it remains unknown
if the classes themselves can be used interchangeably due
to the lack of a reference alignment. This can be use-
ful when querying data over multiple sources (example
Fig. 2). Additionally, some classes were present in multi-
ple mappings (a class mapped to multiple other classes),
and in such cases the hierarchy analysis was able to detect
incorrect mappings.
Our list of manual mappings between top-level classes

may not be complete, which is a limitation of the hierar-
chical analysis. In addition, our method needs top-level
classes to be manually matched and thus cannot be done
automatically. However, even large ontologies tend to have
few top-level classes which (e.g., SNOMED CT and NCIt
both have 19 top-level classes). Table 12 shows four poten-
tially incorrect mappings (as returned by the matching
systems) and their top-level hierarchies. The first mapping
in Table 12 is Soft tissue andDisorder of soft tissue, the first
refers to the anatomic structure of soft tissue, the second
refers to a disorder of this soft tissue. The second exam-
ple is Aneurysmal Bone Cyst and Aneurysmal bone cyst, in
which the labels are lexically identical. However, the first
refers to the disease and the second to the body structure.
The last example isCell ProliferationmatchedwithHyper-
plasia, the top-level hierarchies reveal that the first class is
a Biological Process and the second a Body structure. Now,

Table 12 Four examples of mappings (NCIt-SNOMED CT) that are potentially incorrect based on their top-level hierarchies

# Label class A Label class B Top level hierarchy class A Top level hierarchy class B

1 Soft tissue Disorder of soft tissue (disorder) Anatomic Structure, System, or
Substance

Clinical finding (finding)

2 Aneurysmal Bone Cyst Aneurysmal bone cyst
(morphologic abnormality)

Disease, Disorder or Finding Body structure (body structure)

3 Abnormality Abnormal (qualifier value) Disease, Disorder or Finding Qualifier value (qualifier value)

4 Cell Proliferation Hyperplasia (morphologic
abnormality)

Biological Process Body structure (body structure)
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this example amplifies the importance of the evaluation of
the mappings by domain experts. Hyperplasia is the result
of cell proliferation [38], thus the mapping could be con-
sidered correct depending on the application. Moreover,
after manual inspection of the alignments, we found true
positive mappings whose top-level hierarchy was incor-
rect according to our manual mappings. Those mappings
were not flagged as incorrect because they were included
in either one of the reference alignments. Yet, those map-
pings could suggest incorrect mappings in the reference
alignment, which is out of the scope of this work.

Consensus alignments
Wehave yielded better results using consensus alignments
compared to individual alignments. Consensus align-
ments have also been used by certain tracks of the OAEI
[22, 39]. Harrow et al. mention that consensus alignments
only compare howmatching systems perform against each
other. False positives are still likely to occur as more than
one system can find the same, incorrect, mapping. Fur-
thermore, correct mappings may only be found by one
system and, thus, would not be included in a consensus
alignment.

Relation to other work
The evaluation of the ontology matching systems relates
to earlier research on matching disease and pheno-
type ontologies, and large biomedical ontologies (Large
BioMed), both of which are tracks of the OAEI [22, 40]. In
addition to the BioPortal baseline reference alignments, a
consensus alignment based on a voting mechanism (mul-
tiple systems returning the same mapping), and manually
curated mappings, were used to evaluate the matching
systems. The large biomedical ontologies track of the
OAEI uses the UMLS as reference alignment, which is
based on an earlier work that extracted pairwise map-
pings from the UMLS Metathesaurus [33]. Moreover, our
work relates to a paper published in 2020 which presented
a generic workflow for making data FAIR [41]. Ontology
matching systems should be included in the FAIRification
workflowwhen dealing withmultiple ontologies and some
form of automated matching of classes is desired.

Future research
We explored the use of ontology matching systems for
a use case in the context of FAIR data and showed that
existing ontology matching systems have the potential to
be implemented in such environments. A problem that
has not yet been solved is how mappings can be eval-
uated as useful or correct for their specific application.
Obtaining complete reference alignments is a challenging
task and such alignments are not readily available. The
(automatic) evaluation of mappings for usage in an on-
the-fly matching service within a FAIR data environment

will become important. Therefore, future research should
focus on developing methods for evaluating mappings
that can be used by such matching services. Moreover,
situations where no reference alignments are available
should be considered. Those developments should be
driven by specific use cases. Adding to this, it would be
beneficial to include top-level hierarchy analysis as an
additional method to ontology matching systems. Future
research could focus on how to integrate this method
in existing (modular) systems and workflows. For exam-
ple, AgreementMaker offers an extensible architecture
which may enable the inclusion of our method.We should
acknowledge that additional matching methods, utilizing
the structure or logic of ontologies, are not limited to top-
level hierarchies. Future research could focus on discov-
ering and analyzing other methods that have not yet been
implemented by existing matching systems. Lastly, our
experiment did not include matching systems based on a
machine learning approach. Earlier research has demon-
strated that an approach based on representation learning
is effective at ontology matching [42]. Hence, investigat-
ing machine learning-based systems could be of added
value. The recently added machine learning extension to
the Matching and EvaLuation Toolkit (MELT) framework
could aid such efforts [43]. MELT also offers so-called fil-
ters, one of which is a classifier that can be trained to
classify a mapping as correct or incorrect. Such a filter
could be used to improve the precision of an alignment,
given it can be trained with positive and negative map-
pings. For the latter, a gold standard is required or negative
mappings need to be created manually.

Conclusions
We explored the performance of ontology matching sys-
tems for ontologies used in the rare disease domain, and
analyzed top-level hierarchies of mappings in the con-
text of a FAIR data use case. Our results showed that
all three systems (AgreementMakerLight 2.0, FCA-Map,
LogMap 2.0) were able to automatically produce mod-
estly accurate mappings, according to our evaluation. We
found that evaluating the performance of the systems
is challenging, as correct and complete reference align-
ments are not always available. Incomplete or incorrect
reference alignments impedes the evaluation of mappings,
which could consequently limit the reliability of a system
that queries distributed data. We presented a hierarchical
analysis of mappings that seems to be promising in such
situations, as it does not require a reference alignment.
All in all, this work should spark interest in implementing
the demonstrated ontology matching systems and top-
level hierarchy analysis in a dynamic service for querying
FAIR data.

Appendix
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Table 13 Rare disease data items. 117 in total. Item are extracted from the common data elements for rare diseases [14], and the
Orphanet rare disease classifications [15]

Data items 1-31 Data items 32-62 Data items 63-93 Data items 94-117

Pseudonym Consent to the reuse of data Thoracic malformation Rare Infectious Diseases

Personal information Biological sample Rare Urogenital Diseases Cholera

Date of birth Link to a biobank Urogenital tract malformation Rare Intoxications

Date Biobank Rare Surgical Thoracic Diseases Radiation myelitis

Female Disability Thoracic outlet syndrome Rare Gynaecological And
Obstetric Diseases

Male Classification of functioning Rare Skin Diseases Vaginal carcinoma

Foetus Classification of disability Ichthyosis Rare Surgical Maxillo-facial
Diseases

Sex Disability profile Rare Renal Diseases Cleft palate

Patient status Disability score Multicystic dysplastic kidney Rare Allergic Disease

Alive Rare diseases Rare Eye Diseases Acquired angioedema

Dead Rare Cardiac Diseases Retinoblastoma Rare Teratologic Disorders

Lost in follow-up Rare cardiomyopathy Rare Endocrine Diseases Infectious embryofetopathy

Opted-out Rare Developmental
Anomalies During
Embryogenesis

Neuroendocrine neoplasm Chromosomal Anomalies
Sorted By Chromosomes

Opt-out Hydrops fetalis Rare Haematological Diseases Polyploidy

Date of death Rare Cardiac Malformations Mastocytosis Rare Rheumatologic Diseases
Of Childhood

Care pathway Congenital pericardium
anomaly

Rare Immunological Diseases Kawasaki disease

First contact with specialised
centre

Rare Sucking Swallowing
Disorders

Graft versus host disease Rare Disorders Potentially
Indicated For Transplant

Disease history Stickler syndrome Rare Systemic And
Rhumatological Diseases

Systemic primary carnitine
deficiency

Age at onset Rare Inborn Errors Of
Metabolism

Hereditary angioedema Prevalence

Antenatal MPI-CDG Rare Odontological Diseases Cases/families

At birth Rare Gastroenterological
Diseases

Bruck syndrome Case

Age at diagnosis Eosinophilic gastroenteritis Rare Circulatory System
Diseases

Worldwide

Diagnosis Rare Genetic Diseases Congenital renal artery stenosis Validated

Diagnosis of the rare disease Noonan syndrome Rare Bone Diseases Geographic

Genetic diagnosis Rare Neurological Diseases Aneurysmal bone cyst

Undiagnosed case Spinal cord injury Rare Otorhinolaryngological
Diseases

Phenotype Rare Abdominal Surgical
Diseases

Familial nasal acilia

Genotype Adenoma of pancreas Rare Infertility

Research Rare Hepatic Diseases Tuberculosis

Patient permission Rare vascular liver disease Rare Neoplastic Diseases

Agreement to be contacted
for research purposes

Rare Respiratory Diseases Germ cell tumor
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