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Abstract 

Background Medical lexicons enable the natural language processing (NLP) of health texts. Lexicons gather terms 
and concepts from thesauri and ontologies, and linguistic data for part‑of‑speech (PoS) tagging, lemmatization 
or natural language generation. To date, there is no such type of resource for Spanish.

Construction and content This article describes an unified medical lexicon for Medical Natural Language Processing 
in Spanish. MedLexSp includes terms and inflected word forms with PoS information and Unified Medical Language 
System� (UMLS) semantic types, groups and Concept Unique Identifiers (CUIs). To create it, we used NLP techniques 
and domain corpora (e.g. MedlinePlus). We also collected terms from the Dictionary of Medical Terms from the Spanish 
Royal Academy of Medicine, the Medical Subject Headings (MeSH), the Systematized Nomenclature of Medicine ‑ 
Clinical Terms (SNOMED‑CT), the Medical Dictionary for Regulatory Activities Terminology (MedDRA), the International 
Classification of Diseases vs. 10, the Anatomical Therapeutic Chemical Classification, the National Cancer Institute (NCI) 
Dictionary, the Online Mendelian Inheritance in Man (OMIM) and OrphaData. Terms related to COVID‑19 were assem‑
bled by applying a similarity‑based approach with word embeddings trained on a large corpus. MedLexSp includes 
100 887 lemmas, 302 543 inflected forms (conjugated verbs, and number/gender variants), and 42 958 UMLS CUIs. We 
report two use cases of MedLexSp. First, applying the lexicon to pre‑annotate a corpus of 1200 texts related to clinical 
trials. Second, PoS tagging and lemmatizing texts about clinical cases. MedLexSp improved the scores for PoS tagging 
and lemmatization compared to the default Spacy and Stanza python libraries.

Conclusions The lexicon is distributed in a delimiter‑separated value file; an XML file with the Lexical Markup 
Framework; a lemmatizer module for the Spacy and Stanza libraries; and complementary Lexical Record (LR) files. 
The embeddings and code to extract COVID‑19 terms, and the Spacy and Stanza lemmatizers enriched with medical 
terms are provided in a public repository.

Keywords Medical Lexicon, Natural Language Processing, Word embeddings, Spanish

Introduction
The demand for processing large volumes of health texts 
has triggered the need for domain resources combined 
with hybrid natural language processing (NLP) meth-
ods. Choosing the type of data or approach depends on 

aspects such as the task, the end-user (e.g. medical prac-
titioners versus laymen) or the focus on precision ver-
sus recall. Transfer learning currently makes it possible 
to learn embedding representations or language models 
from massive data  [1–4]. Nevertheless, two obstacles 
appear for transfer learning on health texts: 1) patient 
data are not available, since they require agreements 
with health institutions and anonymization; 2) texts 
need quality annotation with expert knowledge, which 
is time-consuming and labor intensive. These difficulties 
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are more critical in languages for which less resources are 
available [5].

To alleviate this issue, research teams have resorted to 
unsupervised methods (i.e. without using labeled data by 
experts) [6] or to semi-supervised approaches (i.e. using 
a small amount of annotated data). A typical approach is 
pre-processing data with lexical/ontological resources, 
then train a machine-learning-based or deep-learning-
based classifier. Former works have reported optimal 
results by means of pre-annotating medical texts  [7, 8] 
or data augmentation using synonyms from a lexicon [9]. 
Recent teams have applied hybrid methods  [10], inte-
grating pre-annotation in the pipeline or using the pre-
diction of a terminology-based system as features for a 
neural network model [11–13]. Thus, creating resources 
adapted to the medical terminology and health literature 
is beneficial to obtain optimal results [14].

In this context, we introduce MedLexSp, a compu-
tational medical lexicon for Spanish. Terms include 
linguistic information—lemmas, inflected forms and 
part-of-speech (PoS) tags—, Concept Unique Identifi-
ers (CUIs) from the Unified Medical Language System� 
(UMLS)  [15], and UMLS semantic types and groups. 
MedLexSp is a dedicated lexicon that can be combined 
with complementary NLP methods. A use case is pre-
annotating data for named entity recognition (NER). 
Although the tendency is to use domain gazetteers, 
a dedicated lexicon (with lemmas and PoS informa-
tion) allows for developing enhanced annotation rules. 
MedLexSp can also feed general-purpose part-of-speech 
taggers of medical texts.

With regard to previous work  [16], the latest ver-
sion of MedLexSp (presented herein) has the following 
contributions:

• A broader coverage of medical terminology recorded 
in domain lexicons, the main contribution being 
aggregating terms from the Dictionary of Medi-
cal Terms (DTM) by the Spanish Royal Academy of 
Medicine [17].

• An updated list of term variants documented in 
real domain texts, namely the Spanish versions of 
MedlinePlus  [18], and state-of-the-art annotated 
medical corpora: datasets used in recent shared 
tasks (CODIESP  [19], CANTEMIST  [20], Phar-
maCoNER  [21]), the Chilean Waiting List Corpus 
(CLWC)  [22] and the CT-EBM-SP corpus of texts 
about clinical trials [23].

• A richer representation of linguistic information: for 
each word form, the part-of-speech (PoS) tag and 
the following morphological data: gender, number, 
abbreviation/acronym (if applicable); and tense, per-
son and mood for verbs.

• An experimental, unsupervised approach to gath-
ering new terms by applying a semantic similarity 
measure and word embeddings trained on a text cor-
pus about the COVID-19 pandemic.

• A standardized distribution format for lexical 
resources, the Lexical Markup Framework  [24], 
which is an ISO standard.

• A lemmatizer module with MedLexSp forms and 
lemmas, to be used in downstream NLP tasks using 
the Spacy [25] and Stanza [26] python libraries.

• Complementary Lexical Record (LR) files with equiv-
alences between acronyms and full forms, deverbal 
nouns and adjectives derived from nouns, and affixes.

• A demonstration of two use cases: firstly, applying 
the lexicon to pre-annotate a corpus of 1200 texts 
related to clinical trials. Secondly, part-of-speech 
tagging and lemmatizing 100 texts related to clinical 
cases. MedLexSp improved the scores for part-of-
speech tagging and lemmatization compared to the 
default Spacy and Stanza python libraries.

The next sections provide an overview of similar 
resources, summarize the methodology to develop 
MedLexSp, describe the current stable version, and 
report the use cases (including the evaluation of part-of-
speech tagging and lemmatization).

Background
Health thesauri cluster terms and information about 
the type of term, semantic descriptors, concept identi-
fiers and ontological relationships between them. Some 
resources aim at encoding clinical text—e.g. the Sys-
tematized Nomenclature of Medicine Clinical Terms 
(SNOMED-CT)  [27]—and drug reactions—e.g. the 
World Health Organization Adverse Reactions Termi-
nology (WHO ART) [28] and the Medical Dictionary for 
Regulatory Activities (MedDRA)  [29]. Other controlled 
vocabularies such as the Medical Subject Headings 
(MeSH)  [30] are used for indexing the scientific litera-
ture. Medical taxonomies have domain-specific knowl-
edge—e.g. the Anatomical Therapeutic Chemical (ATC) 
drug classification system  [31], the Diagnostic and Sta-
tistical Manual of Mental Disorders vs. 5 (DSM-5�) [32] 
or the Online Mendelian Inheritance in Man (OMIM) 
catalog of genes and genetic disorders  [33]. Some clas-
sifications are used for standardized codification: e.g. 
the International Classification of Diseases vs. 10 (ICD-
10)  [34] and the International Classification of Primary 
Care (ICPC)  [35]. Lastly, medical lexicons  [36–39] lack 
ontological relations, but organize terms and their lin-
guistic information that can range from lemmas, word 
variants, and/or argument structure.
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The Unified Medical Language System� [15], sup-
ported by the National Library of Medicine, gathers 
together thesauri, ontologies and terminologies from 25 
languages and 222 data sources. The previous-to-latest 
version (2022AA) contains over 4.5M concepts and more 
than 16.9M different concept names. Terms are encoded 
with a Concept Unique Identifier (CUI) and concepts 
are classed according to semantic types and groups [40]. 
For example, chest and thorax share the CUI (C0817096) 
and the semantic type Body Location or Region 
(ANAT group).

Medical lexicons enable the computational processing 
and actionable text mining of natural language texts. By 
incorporating the part-of-speech category, and gender, 
number and tense information of terms, lexicons are 
more powerful than standard gazetteers for basic tasks 
such as part-of-speech (PoS) tagging, lemmatization 
and natural language generation. If lexicons also include 
ontology data or codes from standard thesauri, synonym 
terms are clustered by means of concept identifiers.

When this is achieved, the interoperability across the-
sauri is easier and enhances concept normalization tasks.

Figure  1 illustrates how an UMLS-augmented medi-
cal lexicon can manage terminological variation. The 
term radio is ambiguous in Spanish: it can refer to the 
arm bone (‘radius’), the chemical element (‘radium’) and 
it can also be an abbreviation, standing for ‘radiother-
apy’ or ‘radiograph’. Each concept has one or more CUIs 
and a different UMLS semantic type and group; respec-
tively: C0034627 and C1279083, ANAT (Body Part, 
Organ, or Organ Component); C0034625, CHEM 
(Element, Ion, or Isotope); and C1522449 
(‘radiotherapy’) (Therapeutic and Preventive 
Procedure, PROC), C1306645 or C1306645 (‘radio-
graph’) (Diagnostic Procedure, PROC). Each ter-
minology and ontology source in the UMLS provides 
variant forms, and a CUI clusters the corresponding syn-
onyms. For example, the same CUI (C0034625, for the 
chemical element) is used for the term radio (‘radium‘), 
as registered in the MeSH thesaurus (code: D011883) and 
SNOMED-CT (code: 73469000). In MedLexSp, UMLS 
CUIs were also added to terms from other sources such 
as the Dictionary of Medical Terms (e.g. the abbreviation 
Ra). In the sentence Paciente con fractura del radio distal 
(‘Patient with distal radius fracture’), radio refers to the 

Fig. 1 Example of UMLS‑augmented lexicon to manage terminological variation (CUIs in ovals). Translation: ‘Patient with distal radius fracture. 
Treated with plaster cast. Previous dislocation of the radial bone in 2010. No complications.’
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body part, and it is a masculine singular noun. Note that 
when radio is the abbreviation of ‘radiotherapy’ or ‘radio-
graph’, it is a feminine singular noun; and if radio refers 
to the chemical element, it only appears in the singular 
form. This linguistic information can be used for disam-
biguation, in combination with cues from the linguistic 
context. In the case that a co-reference item occurs in the 
same text (e.g. hueso radial, ‘radial bone’), variant terms 
can be mapped to the same concept code (C0034627 and 
C1279083 in the UMLS).

In contrast to other languages such as French or Eng-
lish, a unifying comprehensive lexicon does not exist for 
the Spanish language to date. There is not a resource sim-
ilar to the Specialist Lexicon [36], the Biolexicon [38] or 
the Unified Medical Language for French [37]. Although 
different teams have made dispersed efforts to build a 
Spanish MetaMap [41, 42], these initiatives, as far as we 
know, did not achieve a Spanish medical lexicon for NLP. 
This situation is unfortunate, given that Spanish is one of 
the most spoken languages worldwide (with 548 million 
speakers in 2022, according to the Ethnologue [43]).

Construction and content
This section summarizes the methodology reported 
in [16], and explains the word-embedding-based method 
to collect new terms about the COVID-19 pandemic. Fig-
ure 2 depicts the approaches to create MedLexSp. Note 
that methods might be generalized across languages pro-
vided that similar resources are available.

Base list
First, we used a list of medical terms developed by [44]—
hereafter, the base list. This resource was collected from a 

corpus of Spanish medical texts (around 4 million tokens) 
by applying rules, part-of-speech tagging and medical 
affixes, comparing general and domain corpora, and sta-
tistical methods. The base list amounted to 38 354 tokens 
(base and variant forms). Not all the terms in the list 
were used to prepare MedLexSp. This lexicon was aimed 
at concept normalization, mainly using standard termi-
nologies. To do so, we used the UMLS, thus MedLexSp 
only includes terms mapped to Concept Unique Identifi-
ers (CUIs). Approximately, 47.61% entries of the original 
base list were mapped to CUIs, applying an exact match 
criterion. For example, the CUI for neoplasia (‘neo-
plasm’, C0027651) was not assigned to neoplasia benigna 
(‘benign neoplasm’, C0086692), because these terms refer 
to different concepts. Once a stable list of terms was 
achieved, MedLexSp was enriched with several sources, 
as explained in the following sections.

Acronyms and abbreviations
We reused a dictionary collected by medical doctors [45], 
acronyms from Wikipedia, and the resources provided 
in the Biomedical Abbreviation Recognition and Resolu-
tion Challenge  [46]. Acronyms and abbreviations were 
matched to UMLS CUIs semi-automatically and revised 
manually. This revision was essential because many are 
ambiguous: e.g. IM stands for insuficiencia mitral (‘mitral 
insufficiency’), infarto de miocardio (‘myocardial infarc-
tion’) or intramuscular (‘intramuscular’). Other items 
are invariant in English and Spanish (e.g. kg, ‘kilogram’) 
and the mapping was automatic. With these meth-
ods, the CUI of each acronym (e.g. EV, C0014383) was 
assigned to each full form (enterovirus), and vice versa. 
A complimentary list of equivalences between acronyms/

Fig. 2 Methods applied to collect the MedLexSp lexicon
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abbreviations and full forms (LR_abr.dsv) is also 
distributed.

Affixes and roots
We translated items from the Specialist Lexicon  [36] 
(e.g. reno-, ‘kidney’), and reused a list from a previous 
work [47]. This lists gathers suffixes recommended by the 
World Health Organization [48] to coin new drug terms: 
e.g. -cilina (‘-cilin’) is used for a penicillin drugs. Morpho-
logical variants of affixes were created, including gender/
number alternations (e.g. -scópico, -scópica and -scópi-
cos, ‘-scopic’) or variants with tilde (-scopia and -scopía, 
‘-scopy’). Then, a subset of items were mapped to UMLS 
CUIs, and variants were clustered for each base form and 
CUI. For example, the suffix -cilina was mapped to CUI 
C0030842 for ‘penicillins’, and all form variants (-cilina, 
-cilinas) were clustered. A complimentary Lexical Record 
file (LR_affix.dsv) provides the equivalence between 
affixes/roots and their meanings.

Conjugated verbs
Medical events are commonly expressed with nouns 
(sangrado, ‘bleed’), but verbs may be used as well (san-
grar, ‘to bleed’, C0019080). For this reason, state-of-
the-art lexicons  [14, 36, 49] gather verb terms, and we 
proceed similarly in MedLexSp. From a list of medi-
cal verbs, we generated conjugated variants by using a 
python script and the lexicon of a Spanish part-of-speech 
tagger  [50]: e.g. sangrar (‘to bleed’) →sangra (‘he/she/it 
bleeds’), sangrando (‘bleeding’), sangrado (‘bled’)... Then, 
the CUI of each noun term was assigned to the corre-
sponding verb term.

Derivational variants
By using lists of morphological and semantic variants, 
we mapped noun terms to adjective variant forms: e.g. 
hígado, ‘liver’ ↔hepático, ‘hepatic’ (C0023884). We also 
matched deverbal nouns and verbs (diálisis, ‘dialysis’ ↔
dializar, ‘to dialyze’, C4551529). Note that larger lists 
were collected, but only a subset (801 items) was mapped 
to UMLS CUIs. The full lists of deverbal nouns are also 
released as complementary lexical record (LR) files. The 
list of deverbal nouns (LR_n_v.dsv) amounts up to 
535 entries. The list of adjectives derived from nouns 
(LR_adj_n.dsv) gathers 2366 entries, including mor-
phological variants (e.g. abdomen↔abdominal) and 
non-morphologically related pairs (e.g. oncológico, ‘onco-
logical’ ↔cáncer, ‘cancer’).

String distance metrics
We computed string distance metrics [51] of ≤ 2 between 
the terms with a CUI available, and unattested variants in 
thesauri. The selected candidates were revised manually, 

to match CUIs to new variant forms. This procedure 
was useful for character-level variants (e.g. viriasis↔
viriosis, ‘viral infection’, C0042769), hyphenated variants 
and tokenization variants (betabloqueante↔beta-blo-
queante↔beta bloqueante, ‘beta-blocker’, C0001645).

Syntactic variants of terms
We created variants of multi-word terms in available the-
sauri. Word order was swapped, and the UMLS Concept 
Unique Identifier of the original form was assigned to the 
new variants. The form variants were obtained automati-
cally with a python script, and then they were revised 
manually. With this method, for example, the CUI of 
virus respiratorio sincitial (‘respiratory syncytial virus’, 
C0035236) was matched to the variant form virus sinci-
tial respiratorio (‘respiratory syncytial virus’).

Terms from thesauri, dictionaries and knowledge bases
Health thesauri, knowledge bases, classifications and tax-
onomies were used to widen the coverage of terms. We 
collected variants of terms in the base list by means of 
UMLS CUIs mapped to alternative forms from the fol-
lowing resources: 

1 The Anatomical Therapeutic Chemical (ATC) Classi-
fication [31]: this is a WHO standard to classify med-
ical drugs according to their therapeutic and phar-
macological properties. It comprises five levels, from 
the system or organ class (e.g. nervous system drugs) 
to the active ingredient (e.g. diazepam). By including 
data from the ATC, MedLexSp ensures to provide a 
exhaustive range of medical drug terms.

2 The Dictionary of Medical Terms (DTM) by the 
Spanish Royal Academy of Medicine  [17]: this is 
the key contribution of this version of MedLexSp. 
This resource covers both technical words and con-
sumer health terms. Note that the DTM also records 
frequent misspelled terms (e.g. *kinasa instead of 
cinasa, ‘kinase’), and MedLexSp also includes some 
of these misspelled forms. From 40  076 concept 
entries, we included 30 733 entries (76.7%) that were 
mapped to UMLS CUIs automatically or manually.

3 The International Classification of Diseases vs. 10 
(ICD-10)  [34]: the WHO maintains this stand-
ard terminology and classification system, which is 
available in 40 languages for clinical diagnose and 
epidemiology. Terms are grouped in subdomains 
according to the system/organ class (e.g. respiratory 
system disorders), and the 10th version is currently 
the most implemented. A subset of terms from the 
International Classification of Diseases for Oncology 
(ICD-O-3) was also collected. Terms from both clas-
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sifications enable an extensive coverage of standard 
disease-related terms.

4 The International Classification of Primary Care 
(ICPC) [35]: this is a taxonomy of terms, ranged in 17 
chapters related to disorders according to body sys-
tems (e.g. digestive, circulatory or neurological con-
ditions, among others). This resource ensures a wide 
coverage of terms related to primary care.

5 The Spanish version of the Diagnostic and Statisti-
cal Manual of Mental Disorders, 5th ed (DSM-5�
)  [32]: terms were mapped from the English codes 
in the UMLS using CUIs. This subset of terms in the 
lexicon covers an adequate range of mental disorders 
and psychiatric conditions.

6 The Medical Dictionary for Regulatory Activities 
(MedDRA) [29]: this classification and coding system 
is aimed at pharmacovigilance. The domain of Med-
DRA includes signs and symptoms, disorders and 
diagnostics, tests, labs and procedures, and social or 
medical history. It is available in 14 languages, and 
the Spanish translation was used. Thus, MedLexSp 
includes terms for most adverse events of pharma-
ceutical drugs. The subset of terms from MedDRA 
cannot be not distributed publicly owing to use 
restrictions.

7 The Medical Subject Headings (MeSH)  [30]: the 
National Library of Medicine (NLM) maintains and 
updates this thesaurus with the purpose of index-
ing and classifying the biomedical literature. Avail-
able in several languages, the BIREME is responsible 
for the Spanish translation. Term classes range from 
anatomy and diseases to chemicals and drugs or ana-
lytical, diagnostic and therapeutic techniques, among 
others. This guarantees a wide coverage of medical 
subdomains using a terminological standard. MeSH 
terms were incorporated by means of a license agree-
ment with BIREME.

8 The National Cancer Institute (NCI) Dictionary [52]: 
this is a comprehensive glossary of cancer-related 
terms (cancer types, therapeutic and diagnostic 
procedures, or chemotherapeutic drugs). There is a 
consumer-oriented version available online, so both 
technical and laymen terms were included.

9 OrphaData [53]: the Orphanet Rare Diseases Ontol-
ogy (ORDO) is a controlled vocabulary and ontology 
for rare diseases, and a list of rare disorders mapped 
to reference terminologies. An XML file is available 
in several languages, including Spanish, and these 
data were processed to extract lists of terms and 
codes. We provide a companion script to extract the 
data (it could also be used for other languages: e.g. 
English, French, Italian or Portuguese). This resource 
provides an extensive coverage of rare diseases.

10 The Spanish Drug Effect database (SDEdb)  [54]: this 
resource gathers terms related to adverse effects 
obtained from drug packages and medical web sites and 
social media. This database provides both new drug-
related terms and laymen variants of technical words 
(e.g. deprimido, ‘depressed’, is more frequently used in 
consumer social media than depresión, ‘depression’).

11 The Nomenclator [55]: this is a rich database of drug 
brand names, generic compounds and international 
non-proprietary medication names prescribed in 
Spain. Data are available in several file formats, even 
an XML file.

12 The Systematized Nomenclature of Medicine Clini-
cal Terms (SNOMED-CT)  [27]: a comprehensive 
nomenclature and ontology covering medical find-
ings, procedures, body structures, pharmaceutical 
products and qualifiers. The College of American 
Pathologists developed it initially, and is currently 
supported by the International Health Terminology 
Standards Development Organisation (IHTSDO). It 
is one of the largest resources and the main clinical 
terminology for clinical coding worldwide. Because 
this is a resource with use restrictions, the subset of 
terms from SNOMED-CT is not shared.

13 The Online Mendelian Inheritance on Man 
(OMIM)  [56]: the John Hopkins University main-
tains this large catalog of genes and genetic diseases 
resource. We mapped OMIM data from English 
terms in the UMLS (using CUIs) and codes from 
OrphaData. Since OMIM combines genetic data and 
descriptions of genetic disorders, the fact of includ-
ing OMIM terms enriches MedLexSp with these 
types of information.

14 The WHO Adverse Drug Reactions (WHO-ART) ter-
minology [28]: this dictionary was compiled for phar-
macovigilance and is available in several languages. We 
used the Spanish translation in MedLexSp to include 
more than 2800 terms related to adverse events.

Terms from domain corpora
First, we extracted terms from 306 Summaries of Prod-
uct Characteristics (SPCs) in the EasyDLP corpus  [57], 
and from the Spanish versions of MedlinePlus  [18] (for 
consumer health terms of disorders and lab tests). Using 
these corpora, most drug names and pharmacological 
substances are represented in MedLexSp.

Second, we used a domain corpus (+4M tokens) [58] 
to compute frequencies of the terms from MeSH and 
SNOMED-CT. Because these thesauri are too large, this 
strategy was applied to add a subset of terms that could 
be revised in a reasonable time and manner. Namely, a 
total of 48  188 term entries from SNOMED-CT were 
revised, and 20 649 term entries from MeSH.
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Third, we added missing entities that were annotated 
in recent medical corpora; some of these resources 
have being used in competitions or shared tasks: 

1 The Pharmacological Substances, Compounds and 
proteins Named Entity Recognition (PharmaCoNER) 
corpus  [21]: this dataset gathers 1000 texts annotated 
with drug entities and proteins, which were normalized 
to SNOMED-CT [27] codes. Adding these entities to 
MedLexSp ensures a large coverage of terms related to 
pharmacological and biochemical substances.

2 The Clinical Case Coding in Spanish (CODIESP) cor-
pus [19]: 1000 clinical cases published in scientific lit-
erature that were employed in a shared task for coding 
disorders using the International Classification of Dis-
eases vs. 10 (ICD-10). By incorporating terms from this 
dataset, most disorders and conditions considered in 
the ICD-10 classification were added to MedLexSp.

3 The CANcer TExt Mining Shared Task (CANTEMIST) 
corpus [20]: 3000 annotated clinical cases about cancer 
used in a shared task for named entity recognition, nor-
malization and coding of tumor morphology and codes 
of the International Classification of Oncology Diseases 
(ICD-O). With this dataset, MedLexSp provides a large 
typology and coverage of oncological diseases.

4 The Chilean Waiting List Corpus [22]: a collection of 
medical referrals annotated with semantic entities 
ranging from disorders, findings, drugs or procedures. 
The first version of the corpus was used (900 referrals).

5 The Clinical Trials for Evidence-based Medicine in 
Spanish (CT-EBM-SP) corpus [23]: this is a collection 
of 1200 texts related to clinical trial studies published 
in journals from the SciELO repository [59] and clin-
ical trial announcements from EudraCT  [60]. This 
dataset was employed as use case, where MedLexSp 
was applied to pre-annotate the data with UMLS 
semantic groups from the health domain, before 
manual revision (see Use cases section). The CT-
EBM-SP resource is normalized to UMLS CUIs, so 
the inclusion of variant terms into the lexicon was 
easier. With this corpus, terms related to experimen-
tal drugs, interventions and clinical trial methods are 
represented in MedLexSp.

For the selected terms, we added UMLS CUIs, seman-
tic types and groups, and PoS and morphological data 
(see Acquiring morphological data of terms section).

Combining a similarity measure and word embeddings
To incorporate new terms related to the COVID-19 pan-
demic, we tested a complementary approach to state-
of-the-art rule-based techniques  [61]. We employed a 

similar method to that applied for terminology expansion 
using patient blogs and electronic health records [62–64]. 
The experiment was based on: 1) A set of 20 seed words 
related to the COVID-19 pandemic; 2) An unsupervised 
approach combining a word embedding model and a 
similarity metric (the cosine value) to obtain semanti-
cally similar new words; 3) A collection of texts (+6M 
tokens) about the COVID-19 pandemics; and 4) A word 
embedding model trained on a collection of texts related 
to the pandemic topic. With this method, the coverage of 
MedLexSp was expanded with terms not available in the 
lexicon, but evidenced in a corpus.

As seed words, we used the following terms related 
to COVID-19: arbidol, camrelizumab, COVID-19, 
coronavirus, confinamiento (‘lockdown’), cuarentena 
(‘quarantine’), colchicina (‘colchicine’), danoprevir, EPI 
(‘Individual Protection Equipment’), EPP (‘Personal Pro-
tective Equipment’), hidroxicloroquina (‘hydroxychlo-
roquine’), favipiravir, FFP2, leronlimab, N95, opaganib, 
remdesivir, SARS-CoV-2, umifenovir, and Wuhan. These 
terms were selected from COVID-19 glossaries available 
online [65], or appeared frequently in news media or sci-
entific publications.

The unsupervised approach used the nearest neighbors 
algorithm by computing semantic similarity values. This 
similarity was measured by obtaining the word vectors 
of each seed term and token in several word embedding 
models, and calculating the cosine similarity (CS) value 
between vectors:

where �s is the vector of the seed term and �w is the vector 
of a word in an embedding model. A cosine similarity of 
1 indicates that token and term are identical, whereas a 
value of 0 means that the vectors are completely dissimi-
lar—and, consequently, their meanings. The 50 candidate 
words with the highest CS values were retrieved for each 
term. The following is an example for the seed term rem-
desivir (only showing the first 10 nearest neighbors):

remdesevir     0.8997 
veklury     0.7677 
veklury®     0.7516 
antiviral     0.72 
acalabrutinib     0.7145 
oseltamivir     0.7143 
baricitinib     0.6989 
darunavir     0.6949 
tofacitinib     0.693
fármaco     0.6855 (‘medical drug’)

similarity = cos(�s, �w) =
�s · �w

��s� · ��w�
=

n
i=1 �si · �wi

n
i=1 (�si)

2 · n
i=1 (�wi)

2
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The example shows that the nearest neighbors are 
spelling variants (remdesevir), the brand name of the 
drug (veklury®), the name of the drug class (antiviral) or 
other antiviral agents (oseltamivir, darunavir). Note that 
a depth of 10 nearest neighbors was also tested, but the 
coverage of new terms was not satisfactory, since most 
of the 10 nearest neighbors obtained were misspellings 
or tokenization errors. The procedure involved looking 
up each out-of-vocabulary nearest neighbor—i. e. tokens 
not recorded in MedLexSp—by means of a python script, 
and checking manually whether the candidate new words 
were registered in the UMLS.

The word embedding models used to compute the word 
vectors were tested according to the different hyperpa-
rameters and configurations that yielded better results 
in terms of recall. First, we tested already-available word 
embedding models, namely the Spanish Biomedical and 
Clinical Word Embeddings in fastText  [66]. These were 
trained on a large corpus exceeding 900M tokens, cover-
ing resources such as Wikipedia, the SciELO text corpus, 
texts from EMEA and the Spanish Register of Clinical 
Trials (REEC), and also a small proportion of COVID-19 
clinical cases. We applied different pretrained model var-
iants of 10, 100 and 300 dimensions (cased and uncased), 
and both architectures featured in fastText [2] (SkipGram 
and CBOW).

Despite the large volume of data used to train those 
embeddings, the quality of the nearest neighbors gath-
ered was not satisfactory. Different studies have previ-
ously shown that a larger volume of data does not always 
yield the best results  [67–69]. For example, the authors 
of [67] compared systematically general and domain-spe-
cific word embeddings for clinical and biomedical infor-
mation extraction tasks. They did not found a correlation 
in performance between general and medical or clinical 
embeddings. Nevertheless, they did observe that word 
embeddings trained on text sources from local, smaller 
corpora yielded better results for local or ad hoc tasks. 
Likewise, the authors of  [68] compared fastText and 
ELMo embeddings  [3] trained on general domain texts 
and on specialized data for text classification and natu-
ral language understanding tasks. Their results were less 
conclusive: embeddings trained on a larger general cor-
pora only yielded higher scores in the text classification 
task; but in the NLU task, the best results were obtained 
with embeddings trained with smaller data (but domain-
specific, i.e. electronic health records). Another research 
team [69] compared public available pretrained language 
models and word vectors for a named entity recognition 
task (they used several biomedical and general datasets). 
Their outcomes tend to support that word vectors and 
language models trained on smaller sources (but with 
similar content and vocabulary to the target task) achieve 

comparable or higher scores than models trained on 
larger sources. The impact of corpus size or general ver-
sus domain-specific training texts is an aspect that needs 
further research.

Our approach for this task followed the assump-
tion that models trained on smaller corpora, with texts 
more related to our task, would perform better. This 
is the reason why Spanish texts related to the COVID-
19 pandemic were crawled from the Web to train word 
embeddings. Crawled web sites correspond to reposito-
ries of scientific or medical articles (Cochrane, PubMed) 
or health and research institutions (public informa-
tion available in the Spanish National Research Council, 
the Spanish Ministry of Health, several regional health 
administrations, and in different National Institutes of 
Health (NIH), such as the National Cancer Institute). 
Other crawled sites were government drug agencies 
such as the Spanish Agency of Medicines and Medical 
Devices, the European Medicines Agency or the Food 
and Drug Administration. Information from independ-
ent agencies or journals was also crawled (e.g. Agencia 
SINC, The Conversation) in addition to data from Wiki-
pedia. A list of text sources is provided in the compan-
ion GitHub repository. To select the sites, we searched 
on the Internet for COVID-related words and crawled 
sites ensuring quality content and created or supported 
by scientists or health experts. For PubMed, we used 
the following query: ((Spanish[Language]) AND 
(COVID-19[Title/Abstract])) AND (SARS-
CoV-2[Title/Abstract]). The text collection 
exceeds 6M tokens, but we cannot redistribute it because 
some content is copyrighted. However, we release the 
trained embeddings and the source code to replicate our 
experiments.

Before training the models, texts were normal-
ized (e.g. urls or non-utf-8 characters were removed) 
and white spaces were inserted between each token 
and punctuation sign (e.g. commas or dots). We used 
fastText  [2] to train vectors of dimension 100 with 
SkipGram, and experimented with minimum term fre-
quencies of 3 and 5.

Results of the semantic similarity approach using word 
embeddings
With this method, we gathered a total of 222 term 
entries (491 form variants corresponding to 158 unique 
CUIs). The best results were obtained with the word 
embeddings trained on COVID-19-related texts using 
the SkipGram configuration, 100 dimensions, a mini-
mum token frequency of 3 and a window size of 5. Note 
that the recall of out-of-vocabulary items was rather 
large. Table 1 shows that the number of out-of-vocabu-
lary (OOV) items was around 70% of the total nearest 
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neighbors obtained (1000 items: 50 nearest neighbors 
for each of the 20 seed words). With the word embed-
dings trained on COVID-19 texts, OOVs ranged from 
67.7% (model trained with minimum token frequency of 
5) to 69.0% (model trained with minimum frequency of 
3). However, most of the OOVs were spelling errors (e.g. 
covd-19), tokenization mistakes or words with hashtags 
(e.g. #virus). Many OOVs were ATC codes for drugs, 
pharmaceutical brand names, acronyms of health organ-
izations and emojis (given that many texts come from 
the web). Only a small subset of OOVs were found in the 
UMLS and were assigned a CUI. With the best model 
configuration, a 11.3% of the OOVs could be matched to 
UMLS CUIs.

As a qualitative analysis of the word embeddings 
used in the experiments, Fig.  3 shows the t-Distrib-
uted Stochastic Neighbor Embedding (t-SNE hereaf-
ter)  [70] projection of the 100 most frequent words in 
the corpus. For this figure, we used a SkipGram word 
embedding model of 100 dimensions (minimum cor-
pus frequency of 5). Stopwords (e.g. prepositions and 
articles) are not shown. In this figure, specific words 
related to findings, pathological conditions or body 
locations tend to appear in the middle to lower left 
region (marked in the blue area; e.g. infección, ‘infec-
tion’; COVID; neumonía, ‘pneumonia’; pulmonar, 

‘pulmonary’; opacidades, ‘opacities’). Words related 
to drugs or procedures (e.g. vacunación, ‘vaccination’; 
vacuna, ‘vaccine’; dosis, ‘dosage’; medicamentos, ‘drugs’) 
are shown in the upper left region (marked in the red 
area). Lastly, words related to medical institutions, pro-
fessionals or general care tend to occur in the upper 
region (marked in the green area; e.g. hospital, ‘hospi-
tal’; sanidad, ‘healthcare’; profesionales, ‘professionals’). 
Even though this is a shallow analysis (and only con-
siders mono-word items), it shows that this unsuper-
vised method can cluster words in semantically similar 
classes according to their position in the vector space.

These data can be more clearly displayed in Figs.  4 
and 5, which show the t-SNE visualization of the 10 most 
similar terms for the seed terms remdesivir and favip-
iravir, two antiviral agents that were tested to treat the 
COVID-19 infection. For this figures, the word embed-
ding model used also features 100 dimensions and a min-
imum term frequency of 5 (SkipGram configuration).

Acquiring morphological data of terms
After collecting the terms and variants with the methods 
explained, the last stage involved enriching the lexicon 
with linguistic information. This morphological infor-
mation can be used in NLP tasks such as part-of-speech 
tagging, lemmatization or natural language generation of 
medical texts. In addition to adding these types of data to 
mono-word terms, multi-word terms were also consid-
ered. In a similar manner to the Specialist Lexicon, multi-
word terms were labeled with the category of the head 
word: e.g. enfermedad de Lyme (‘Lyme disease’) has label 
N (noun). Different approaches were applied to enrich 
the lexicon with the part-of-speech category of terms and 
morphological data of each variant form: 

1 Terms registered in the Dictionary of medical 
terms  [17] record the category and morphological 
data such as gender and number of noun or adjec-
tives. Therefore, this type of information was lever-
aged in MedLexSp.

2 The subset of terms included in DELAS electronic 
dictionaries for Spanish [71] was collected along with 
the linguistic information there encoded.

3 The subset of medical terms encoded in the lexicon 
of the SPACCC PoS tagger  [72] was processed and 
their linguistic information was added to MedLexSp.

4 The GRAMPAL tagger  [50] was applied to predict 
the part-of-speech of mono-word terms for which no 
morphological data were obtained using the previous 
methods.

5 Lastly, with regard to multi-words, the procedure was 
to leverage the information of the head word, given 

Table 1 Results of the nearest neighbors (NN) experiments with 
different word embedding models

Abbreviations: CUI UMLS concept unique identifier; d: embedding dimensions;

NN Nearest neighbors, OOVs Out‑of‑vocabulary items;

SBCWE Spanish Biomedical and Clinical Word Embeddings

Word embedding 
model

OOVs % of NN OOVs 
mapped to 
CUI

% of OOVs 
mapped to 
CUI

SBCWE, uncased, 740 74.0% 48 6.49%

SkipGram, d=100

SBCWE, uncased, 742 74.2% 51 6.88%

CBOW, d=100

SBCWE, uncased, 762 76.2% 45 5.91%

SkipGram, d=50

SBCWE, uncased, 732 73.2% 47 6.42%

CBOW, d=50

SBCWE, uncased, 752 75.2% 46 6.12%

SkipGram, d=300

SBCWE, uncased, 741 74.1% 50 6.75%

CBOW, d=300

COVID‑19 corpus, 
uncased,

677 67.7% 56 8.27%

SkipGram, d=100, min=5

COVID‑19 corpus, 
uncased,

690 69.0% 78 11.30%

SkipGram, d=100, min=3
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that the head determines the analysis of the constitu-
ent. For example, síndrome de Asperger (‘Asperger 
syndrome’) is labeled as noun masculine singular 
(the same as síndrome). Thus, a script pre-processed 
the head word of each multi-word, and assigned the 
part-of-speech and gender/number of the head to the 
full entity. The list obtained with this approach was 
corrected manually.

All the PoS information and morphological data of 
terms and form variants were revised.

Descriptive Statistics
We report in Table 2 the count of entries in MedLexSp 
according to each method to assign UMLS CUIs, and 
the number of concept codes from each data source. 
Note that the full count exceeds the number of term 
entries because some were extracted using different 
approaches in parallel. Table  3 shows the counts of 
lemmas, word forms, and CUIs, along with the number 
of PoS categories. Most entries are nouns, adjectives 
or proper names (e.g. drug brand names: apocard�).

Figures  6 and  7 depict, respectively, the distribu-
tion of UMLS semantic groups and the most frequent 
semantic types in MedLexSp. The current version gath-
ers more than 25 000 terms of semantic type Dis-
ease_or_Syndrome, and over 8000 terms of type 
Pharmacologic_Substance. The types of corpora 
and thesauri used to extract terms may explain the fact 
that some groups are less frequent. For example, the 
GENE group is underrepresented; consequently, the 
current version of MedLexSp is not adequate for tasks 
in the field of Genomics. In contrast, the proportion of 
semantic types related to Neoplastic Process is larger 
than in the previous version of the lexicon. This is due 
to the fact that more terms from the CANTEMIST cor-
pus have been included. Therefore, the cancer domain 
is represented better.

Tables 4 and 5 list, respectively, the part-of-speech cat-
egories considered and the morphological data catego-
ries, with examples.

The MedLexSp lexicon is distributed freely for research 
and educational purposes in several formats: 

Fig. 3 t‑SNE visualization of the 100 most frequent words in the corpus
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1 A delimiter-separated value file, which is similar to 
MRCONSO.RRF or MRSTY.RRF files in the UMLS 
Metathesaurus (but with less data fields) (Fig. 8).

2 An XML-encoded version using the Lexical Markup 
Framework (LMF), which includes the morphologi-
cal data (number, gender, verb tense and person, and 
information about affix/abbreviation data). Figure  9 
shows a sample of lexical entries for different term 
variants of the concept diabetes: as an adjective (dia-
bético, ‘diabetic’), a noun (diabetes mellitus) and an 
acronym (dm). Figure 10 shows a sample of prefixes 
and suffixes.

3 A lemmatizer module for the Spacy and Stanza 
python libraries. The Spacy lemmatizer includes 
106  396 new variant forms with regard to the 
default Spacy distribution for Spanish; in total, the 
updated lemmatizer gathers 564  725 variant forms. 
The Stanza lemmatizer gathers new 104 551 variant 
forms.

4 Lexical Record (LR) files with equivalences between 
affixes/roots and their meanings, between acronyms/
abbreviations and full forms, between nouns and 
deverbal nouns, and between nouns and adjectives 
derived from nouns (Fig. 11).

These resources are distributed with a license agree-
ment to be signed. The Spacy and Stanza lemmatizers 
are available for immediate download at the companion 
repository (see Availability of data and materials).

Utility and discussion
Use cases
As a first use case, MedLexSp was used to pre-annotate 
the Clinical Trials for Evidence-based Medicine in Span-
ish (CT-EBM-SP) corpus. This is a collection of 1200 
texts (292 173 tokens): 500 abstracts of clinical trial stud-
ies published in journals from the SciELO repository [59] 
and 700 clinical trial announcements from EudraCT [60]. 
Three annotators with different backgrounds (a compu-
tational linguist, a medical lexicographer and a medical 
doctor) conducted the annotation. This corpus was used 
in a supervised context to train named entity recogni-
tion models with state-of-the-art deep neural models 
(SequenceLabeler  [73], FLAIR  [74] and BERT  [4]). This 
resource is distributed in the community and full details 
are described in another article [23].

A second use case was part-of-speech (PoS) tagging and 
lemmatizing a collection of 100 texts from a public cor-
pus that is PoS annotated and lemmatized. This corpus 

Fig. 4 t‑SNE visualization of the 10 most similar terms of the seed term fapiravir 
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gathers clinical cases published in journal articles  [75]. 
Particularly, we compare the results of using state-of-
the-art python libraries (Spacy  [25] and Stanza  [26]) 
with and without MedLexSp. First, we selected the sub-
set of 100 texts that was revised by two annotators—i.e. 
the sample with the expected highest annotation quality. 
These texts were the gold standard for the comparison; 
however, some PoS and lemmatization errors were found 
and fixed. The labels in this corpus were converted to the 
Universal Dependencies standard  [76], which is used in 
Spacy and Stanza. Then, we part-of-speech tagged and 
lemmatized the 100 texts using Spacy and Stanza with-
out MedLexSp, using the default lexicon and models. 
With Spacy, the medium size model (es_core_news_
md) was used. We applied both libraries again using the 
MedLexSp lexicon. All experiments were conducted on a 
CPU of a laptop (not a GPU). Because MedLexSp gath-
ers open (lexical) PoS categories, only these were com-
pared: namely, adjectives, adverbs, nouns, proper nouns 
and verbs. For comparing the lemmatization, minor vari-
ations in lemmas were not considered errors (e.g. use of 
accent or not: cardíaco vs. cardiaco, ‘cardiac’). The eval-
uation metrics were standard precision, recall and F1 
measures, computed with the ScikitLearn library [77].

Results of the use cases
In the first use case, the pre-annotation of 1200 health 
texts helped the annotators label entities of four UMLS 
groups (ANAT, CHEM, DISO and PROC). A total of 
56 343 entities were pre-annotated, and after the manual 
human revision, the number of annotations decreased 
to 46  699 entities (17.12% of the pre-annotated entities 
were removed). Per sub-corpus, the number of pre-anno-
tated entities was 25  265 (journal abstracts) and 31  078 
(clinical trial announcements). After manual revision, 
the number of entities decreased to 20  031 in journal 
abstracts (20.71% of the pre-annotations were removed) 
and to 26 668 in trial announcements (14.19% of the pre-
annotations were removed). These pre-annotated enti-
ties were eliminated due to several reasons. First, wrong 
sense of polysemous entities: e.g. vacuna may be a verb 
expressing a therapeutic procedure (‘he/she vaccinates’) 
or a medical drug (‘vaccine’). Second, overlapping of 
general and specific entities (the less specific entity was 
removed): e.g. dolor (‘pain’) and dolor de cabeza (‘head-
ache’). Lastly, crossing entities (with a span that overlaps 
in some words) were corrected to independent entities: 
e.g. in administración de vacunas vivas (‘administration 
of live vaccines’) there is an overlap in vacunas of two 

Fig. 5 t‑SNE visualization of the 10 most similar terms of the seed term remdesivir 
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entities (administración de vacunas and vacunas vivas), 
which was corrected. The full annotation process lasted 
over seven months. The inter-annotator agreement (IAA) 
scores were high: an average F1 of 85.65% (±4.79) in a 
strict match setting (i.e. when annotators agreed both in 
the scope and class of the annotated entity), and an aver-
age F1 of 93.94% (±3.31) (relaxed match). Training and 
testing with this corpus, the named entity recognition 
models achieved results with an average F-measure that 
ranged from 80.28% (±00.99) to 86.74% (±00.19) in the 
test set.

In the second use case, comparing the PoS-tagging 
and lemmatization with and without MedLexSp showed 
the benefits of using a domain specific lexicon. Table  6 
reports the average precision (P), recall (R) and F1-meas-
ure when using Spacy and Stanza alone, or combined 
with MedLexSp (standard deviation values are shown in 
brackets). For both tasks, using MedLexSp yielded higher 
scores. Stanza with MedLexSp achieved the highest 

scores (marked in bold): average F1 = 94% for PoS tag-
ging, and average F1=96% for lemmatization; it especially 
improved precision values. Remember that these results 
correspond only to lexical categories (adjectives, adverbs, 
nouns, proper nouns and verbs). The processing times 
were slightly faster using Spacy in a CPU: 100 texts in 10 
minutes with MedLexSp, and in 9’ 41” without it. Stanza’s 
processing times were 12’ 22” and 12’ 1”, respectively with 
and without MedLexSp.

We conducted a shallow analysis of PoS errors. Regard-
ing the performance per category, Table  7 reports the 
average F1 score and standard deviation in brack-
ets. In adverbs, the highest scores were achieved with 
MedLexSp (F1 = 94.05% with Spacy and F1 = 95.55% 
with Stanza), but the difference without MedLexSp was 
not large. Nouns had the highest scores when using 
MedLexSp (average F1 = 95.59% with Spacy and F1 = 
96.75% with Stanza). Adjectives achieved an average 
F1 measure of 90.69% using Stanza without MedLexSp, 
which improved to 91.06% (Spacy) and to 92.28% 
(Stanza) when using MedLexSp. The performance of 
verbs also improved when using MedLexSp (particularly 
by rising the recall): the average F1 measure raised from 
87.11% to 88.64 % with Spacy, and from an average F1 of 
88.71% to 89.29% with Stanza. The main source of verb 
errors were related to past participle forms that can be 
considered adjectives: e.g. ulcerada, ‘ulcerated’, adjec-
tive (lemma: ulcerado) or verb (lemma: ulcerar). Proper 
nouns had the lowest scores; using MedLexSp helped, 

Table 2 Count of entries according to each method, and count 
of concept codes from each source

Method # entries

1. Abbreviations / acronyms 6679

2. Affixes / roots 914

3. Conjugated verbs 867

4. Derivational variants 801

5. String distance method 1463

6. Syntactic variants 134

7. Terms collected using word embeddings 222

8. Terms from corpora:

   CANTEMIST 2619

   CODIESP 3384

   CWLC 1511

   MedlinePlus 1682

   PharmaCoNER 173

   SPCs (EasyDLP corpus) 837

9. Thesauri, dictionaries and knowledge bases: # codes
   DTM 30 816

   ATC + Nomenclátor + SDEdb 2931

   DSM‑5 188

   ICD‑10 19 888

   ICPC 179

   MedDRA 20 209

   MeSH 20 911

   NCI 7621

   OMIM 15 143

   OrphaData 10 741

   SNOMED‑CT 53 893

   WHO 2811

   Other 4939

Table 3 Descriptive statistics of the lexicon and count of part‑of‑
speech categories

*Abbreviations: M Mean; SD Standard deviation; CUI Concept unique identifier; N 
Noun; ADJ Adjective; NPR Proper name: V Verb; AFF Affix; ADV Adverb; ADJ/N 
’Adjective’ or ‘noun’ (depending on the context; idem for ADJ/ADV etc.)

Lemmas Forms CUIs
Single-words 33 988 130 915 ‑

Multi-words 66 899 171 628 ‑

Total 100 887 302 543 42 958

M per CUI 2.35 7.04 ‑

SD 2.16 15.43 ‑

Max / Min 30 / 1 475 / 1 ‑

PoS Example Count (%)
N hígado (‘liver’) 90 188 (89.40)

ADJ hepático (‘hepatic’) 4933 (4.89)

NPR Streptococcus 2786 (2.76)

ADJ/N neonato (‘newborn’) 1033 (1.02)

AFF reno- (‘kidney’) 913 (0.90)

V sangrar (‘to bleed’) 867 (0.86)

N/NPR aspirina (‘aspirin’) 107 (0.11)

ADV levemente (‘mildly’) 40 (0.04)

ADJ/ADV in situ 20 (0.02)
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but the performance was not high. Many of these errors 
appeared in uppercase words: Spacy or Stanza always 
tagged them as proper nouns, although they can bear a 
different category (they may appear in uppercase at the 
beginning of the sentence). Other errors in proper nouns 
are related to eponyms (e.g. Doppler) and medical drugs 
(e.g. ertapenem). MedLexSp improved the performance 
in these cases, except in terms without a CUI (e.g. brand 
names such as Trigon Depot). Acronyms were another 
source of errors: e.g. Stanza and Spacy tagged UCI 
(‘intensive care unit’) or VIH (‘human immunodeficiency 
virus’) as proper noun, but MedLexSp tagged them cor-
rectly as nouns. Other errors affected medical adjectives 

that were tagged as nouns: e.g. Stanza mislabeled úrico 
(‘uric’) and Spacy miscategorized digestiva (‘digestive’), 
but both are adjectives (MedLexSp assigned the correct 
category). Finally, some errors could not be solved even 
with the lexicon. As said, most occurred in past partici-
ple forms, which were often tagged as adjectives. Also, 
many PoS errors affected words that may be either adjec-
tive or noun; frequently, these refer to the pharmacologi-
cal action or the drug class: e.g. antiemético, adjective 
(‘antiemetic’) or noun (‘antiemetic agent’).

Regarding lemmatization, we found errors using 
Stanza or Spacy that were lemmatized correctly using 
MedLexSp (Table  8). These generally occur when the 

Fig. 6 Distribution of semantic groups (%)

Fig. 7 Most frequent semantic types (%)
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lemma ends with -s (which normally corresponds to 
the plural form in Spanish) or with -a (which normally 
expresses the feminine gender). Other errors were due to 
incorrect PoS tagging; they occurred either when using 
or not MedLexSp, and varied across texts (depending 

on how each linguistic context affected the PoS predic-
tion). For example, alta, as a feminine noun, refers to 
‘discharge’, but was often tagged as an adjective (the femi-
nine of alto, ‘tall’). Another example is evidencia, which 
can be a noun (‘evidence’, lemma: evidencia) or a verb 
(third person singular of the present tense, lemma: evi-
denciar, ‘to evidence’). The last type of errors were those 
that were not solved even when using MedLexSp. There 
were differences in lemmas of numeral adjectives: e.g. 
décimo (‘tenth’) was lemmatized as 10 in the gold stand-
ard. Neither Stanza nor Spacy lemmatized them cor-
rectly. However, these were not medical terms, and the 
impact on lemmatization performance was not critical. 
Other errors were due to segmentation or spelling mis-
takes in the corpus: e.g. *realizron, ‘made’ (which was 
correctly lemmatized as realizar in the gold standard) or 
*ne-froureterectomía, ‘nephroureterectomy’ (lemmatized 
as nefroureterectomía in the gold standard). Compound 
words, which are very productive in the medical domain, 

Table 4 List of part‑of‑speech categories and linguistic data 
with examples

Part-of-speech (abbreviation) Example

adjective (ADJ) severo (‘severe’)

adjective_or_noun (ADJ/N) diabético (‘diabetic’)

adjective_or_adverb (ADJ/ADV) in situ (‘on site’)

adverb (ADV) levemente (‘mildly’)

affix (AFF) reno- (‘kidney’)

noun (N) hígado (‘liver’)

noun_or_properNoun (N/NPR) aspirina (‘aspirin’)

properNoun (NPR) apocard�

verb (V) sangrar (‘to bleed’)

Table 5 List of morphological data categories with examples

Attribute Value Example

grammaticalGender

commonGender leve (‘mild’)

masculine hombre (‘man’)

feminine embarazada (‘pregnant’)

grammaticalNumber

singular pulmón (‘lung’)

plural pulmones (‘lungs’)

singular_and_plural diabetes

person

firstPerson sudo (‘I sweat’)

secondPerson sudas (‘you sweat’)

thirdPerson suda (‘he/she sweats’)

grammaticalTense

present tose (‘he/she coughs’)

imperfect tosían (‘they coughed’)

past tosió (‘he/she coughed’)

future toserá (‘he/she will cough’)

conditional tosería (‘he/she would cough’)

presentPerfect te has atragantado (‘you have choked’)

verbFormMood

indicative tose (‘he/she coughs’)

subjunctive tosa (‘he/she coughs’)

imperative tose (tú) (‘cough’)

infinitive toser (‘to cough’)

gerund tosiendo (‘coughing’)

participle tosido (‘coughed’)

VariantType

abbreviation Dr. (‘doctor’)

acronym SIDA (‘AIDS’)



Page 16 of 23Campillos‑Llanos  Journal of Biomedical Semantics            (2023) 14:2 

were another source of errors. Stanza lemmatized vesico-
prostática (‘vesical-prostatic’) as *vesico-pro, which does 
not exist in Spanish. Spacy did not produce these types 
of errors. For example, Spacy lemmatized correctly ure-
tra-neovejiga (‘urethra-neobladder’), the form being the 
same as the lemma. The lemmatization methods of Spacy 
and Stanza explain these differences. Spacy uses a lem-
matization module to map forms to lemmas; in the case 
of out-of-vocabulary (OOVs) words, the heuristic is using 
the unknown form for the lemma. Stanza uses the Lem-
maProcessor, which combines a dictionary-based and 
a neural seq2seq lemmatizer (applied by default). In the 
case of out-of-vocabulary (OOVs) words, Stanza caused 
lemmatization errors by creating non-existing words in 

Spanish. For the previous example of OOV word items, 
Stanza lemmatized it as *uretra-neovejigigo. Note that we 
also tested Stanza with the method of using the form as 
the lemma for OOV items (lemma_use_identity 
= True). However, the results were worse (average 
F1=84.8±3.0), mostly due to lemmatization errors of con-
jugated verb forms.

Discussion
Medical lexicons enable actionable processing of texts 
in natural language, and are more powerful than gaz-
etteers, especially for part-of-speech (PoS) tagging 
and lemmatization. The main issue when curating 
a domain-specific lexicon lies in achieving enough 

Fig. 8 Sample of MedLexSp in delimiter separated values (dsv) format. Field 1 is the UMLS CUI of the entity; field 2, the lemma; field 3, the variant 
forms; field 4, the part‑of‑speech; field 5, the semantic types(s); and field 6, the semantic group

Fig. 9 Sample of lexical entries in the Lexical Markup Framework
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coverage [37]: What types of words should be included 
as medical terms? And more importantly: To what 
extent the most important terms and semantic classes 
are represented? We think the methods used to create 
this lexicon have addressed these challenges. By col-
lecting terms from corpora used in shared tasks (e.g. 
PharmaCoNER or CANTEMIST) and from patient-ori-
ented resources (e.g.  NCI  or MedlinePlus), MedLexSp 
gathers real-usage terms. In addition, by curating terms 
from terminologies, taxonomies and ontologies (e.g. 
ICD-10, MeSH or SNOMED-CT), MedLexSp guaran-
tees a high coverage of standard medical thesauri and 
makes it possible the interoperability across thesauri 
in concept normalization tasks. The aspect of exhaus-
tiveness was tackled by generating word order variants, 
taking into account morphological term variants (verbs 
and deverbal nouns, adjectives derived from nouns, 
and affixes and their meanings), and collecting the full 
forms of acronyms and abbreviations. Lastly, the prob-
lem of neologisms—i.e. new medical concepts giving 
rise to new terms—was faced when the COVID-19 
pandemic rose up. We experimented with word embed-
dings and seed words to gather new variants of terms 
that are semantically close in the vector space. Interest-
ingly, smaller word embeddings, but trained with texts 
related to the topic, yielded better results than embed-
dings trained in larger collections. In an attempt to 
demonstrate the maturity of MedLexSp, we reported 
two use cases. In particular, the evaluation conducted 
on PoS tagging and lemmatization (using MedLexSp or 
not with state-of-the-art python libraries) showed that 
this lexicon raised the F1 scores for both tasks.

With regard to the first use case, using MedLexSp for 
pre-annotation allowed the annotators to easily detect or 
confirm the entities to be annotated. The pre-annotation 
could also explain the high inter-annotator agreement 
(IAA) scores obtained. However, no comparison was 
made in an annotation setting without pre-annotation. 
Therefore, the effect on the IAA values remains to be 
confirmed. Moreover, a disadvantage of pre-annotation 
was causing some false positives or mismatches that 
annotators had to fix or delete during the manual revi-
sion. There is a trade-off between speeding up the anno-
tation task and causing redundant or noisy annotations. 
However, the count of deleted pre-annotations dur-
ing revision was not large (17.10%): overall, our experi-
ence with the lexicon-based pre-annotation method was 
positive.

The evaluation of the second use case—POS-tagging 
and lemmatization—showed the advantages of feed-
ing general purpose tools (in our example, Spacy and 
Stanza) with a dedicated lexicon to improve the scores. 
Both tools increased the F1 scores in combination with 
MedLexSp. Stanza achieved the highest F1 measures in 
both PoS tagging and lemmatization. However, we found 
critical errors: e.g. síndrome (‘syndrome’) was lemma-
tized as *sendrar (a non-existing verb in Spanish) plus me 
(first person singular pronoun). Besides, for OOV words, 
Stanza created non-existing lemmas, whereas Spacy 
took the same form (which might be the lemma in some 
cases). Altogether, the error analysis showed that many 
PoS errors depend on how the linguistic context affected 
the model’s prediction for ambiguous words (e.g. fuma-
dor, ‘smoker’, adjective or noun; or irradiado, ‘irradiated’, 

Fig. 10 Sample of prefixes and suffixes in the Lexical Markup Framework
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past participle and verb). Solving these errors would 
require training a specific part-of-speech model with 
a tagged corpus, which is out of the scope of this work. 
Anyhow, these are errors that are not expected to have a 
severe impact on any task. Lastly, several errors affected 
terms (especially, proper names) of brand names, epo-
nyms or acronyms that were not included in the lexicon 
(because they lack a CUI). Also, spelling and tokeniza-
tion mistakes in the source text affected the performance. 
Nonetheless, all those types of errors occurred with low 
frequency.

As exposed above, a limitation of this version of 
MedLexSp is the fact that it does not contain terms 
without UMLS CUIs. For example, some brand names 

(e.g. Progevera� ), spatial adjectives or qualifiers (e.g. 
abdominogenital). A solution to overcome this limi-
tation would be assigning new non-UMLS identi-
fiers to missing medical terms in a future version. 
However, to avoid including noisy terms or variants 
that are not widely generalized, new terms should be 
included only if registered in several quality resources 
or databases created by health professionals or lexi-
cographers (e.g. PubChem [78] or Diccionario de Tér-
minos Médicos  [17]). Moreover, we did not consider 
other terminology sources, or only included very few 
terms from them. For example, MedLexSp only has 
106 term entries from the National Center for Biotech-
nology Information (NCBI) taxonomy [79], which is a 

Fig. 11 Sample of Lexical Record (LR) files: 1) abbreviations/acronyms and full forms; 2) affixes and their meanings; 3) deverbal nouns and verbs; 
and 4) nouns and adjectives derived from (or related to) nouns

Table 6 Part‑of‑speech tagging and lemmatization with/without MedLexSp (MLS)

Part-of-speech tagging Lemmatization

P R F1 P R F1

Spacy 91.3 87.0 88.7 93.6 92.9 93.1

(±3.7) (±5.1) (±4.4) (±2.3) (±2.4) (±2.4)

Spacy 93.3 91.9 92.3 95.4 95.1 95.1

+ MLS (±3.0) (±2.9) (±2.9) (±2.1) (±2.1) (±2.1)

Stanza 94.7 95.5 92.2 95.4 95.0 95.1

(±2.3) (±4.2) (±3.6) (±2.0) (±2.0) (±2.0)

Stanza 94.9 93.7 94.0 96.3 96.0 96.0
+ MLS (±2.2) (±2.7) (±2.6) (±1.8) (±1.8) (±1.8)
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curated nomenclature of all the organisms in genetic 
databases. Besides, the uninterrupted creation of 
neologisms and medical concepts makes it necessary 
a continuous update. All these facts cause a lack of 
complete exhaustiveness and explain the limitations of 
lexicons for NLP. Nonetheless, even if a more compre-
hensive lexicon is created, each task will demand spe-
cific criteria to adapt the lexicon by filtering the most 

adequate term types. For example, in a cancer-related 
task, terms related to UMLS semantic types such as 
Neoplastic Process need to be used, but other seman-
tic groups may cause noise. Previous works in concept 
normalization have brought up this issue [80].

Another limitation is the lack of syntactic infor-
mation about subcategorization frames or syntac-
tic behavior. This type of information is included in 

Table 7 Performance of PoS tagging per category with/without MedLexSp

*Abbreviations: ADJ: adjective; ADV: adverb; PROPN: proper noun

P R F1 P R F1

Spacy Spacy + MedLexSp
ADJ 83.64 91.10 87.04 88.03 94.58 91.06

(±7.21) (±5.62) (±5.33) (±6.08) (±4.96) (±4.64)

ADV 96.13 92.76 93.36 98.34 91.84 94.05

(±8.95) (±15.22) (±11.20) (±5.01) (±15.49) (±10.50)

NOUN 95.29 88.34 91.62 95.84 95.47 95.59

(±3.03) (±6.95) (±4.49) (±2.75) (±3.15) (±2.19)

PROPN 10.48 24.16 13.11 18.75 25.30 19.49

(±18.50) (±34.04) (±20.58) (±26.68) (±34.37) (±25.62)

VERB 95.74 80.52 87.11 97.57 81.76 88.64

(±5.61) (±8.56) (±5.82) (±3.96) (±8.96) (±5.72)

Stanza Stanza + MedLexSp
ADJ 87.06 94.99 90.69 89.05 95.83 92.28

(±5.97) (±3.86) (±3.74) (±5.66) (±3.97) (±3.85)
ADV 99.38 93.31 95.40 99.88 92.97 95.55

(±5.13) (±14.85) (±10.40) (±1.20) (±14.81) (±9.97)
NOUN 97.94 91.67 94.52 96.77 96.83 96.75

(±1.93) (±6.75) (±4.11) (±2.30) (±2.92) (±2.11)
PROPN 36.08 78.45 45.49 49.72 52.47 47.92

(±30.70) (±40.39) (±32.79) (±39.28) (±39.26) (±35.66)
VERB 98.87 80.88 88.71 98.77 82.05 89.29

(±2.77) (±8.96) (±5.74) (±2.75) (±8.69) (±5.29)

Table 8 Examples of lemmatization errors (asterisks mark non‑existing words)

Word form Spacy Stanza +MedLexSp

corticoides *corticoid *corticoid corticoide

(‘corticosteroids’)

evidencia (‘evidence’) evidenciar evidenciar evidencia

hematíes *hematí *hematí hematíe

(‘red blood cells’)

hemodiálisis *hemodialisi hemodiálisis hemodiálisis

(‘hemodialysis’)

inmunohistoquímica inmunohistoquímica *inmunohistomico inmunohistoquímico

(‘immunohistochemical’)

páncreas (‘pancreas’) páncreas *páncrea páncreas

piuria (‘pyuria’) *piurio piuria piuria
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resources such as the Biolexicon  [38]. MedLexSp nei-
ther encodes semantic relations between term entries: 
it is not a medical ontology at the current stage. The 
UMLS Semantic Network includes is_a relations 
between concepts (e.g. hypertensionis_ahyperten-
sion) and also gathers relationships available in sources 
such as SNOMED-CT. Enriching MedLexSp with 
semantic relations would provide an ontology resource 
for text mining or information extraction at a higher 
level. Future directions are enriching the lexicon with 
more resources, and widening the coverage of terms 
from American Spanish. The next version should con-
tain the Pan-Hispanic Dictionary of Medical Terms, 
which is currently under development  by the Spanish 
National Academy of Medicine; and also include  the 
equivalents of the Spanish Nomenclator for drug 
names in Spanish America. The next planned step is 
collecting consumer health terms and laymen variants 
(e.g. amigdalectomía, ‘tonsillectomy’ ↔operación de 
anginas, ‘tonsils surgery’), also mapped to CUIs.

Despite these limitations, MedLexSp can contribute 
to concept normalization through a established stand-
ard (UMLS) and paves the way towards generating 
concept embeddings to be used in medical informatics 
tasks  [81, 82]. In addition, the linguistic information 
included in this resource would allow natural language 
generation systems to improve the grammar correct-
ness of the generated utterances in the health domain.

Conclusion
This work has described the stable version of the Medi-
cal Lexicon for Spanish (MedLexSp), an unified medi-
cal vocabulary for natural language processing. Namely, 
we have reported the latest contributions: 1) Gathering 
new term lemmas and variant forms from the Diction-
ary of Medical Terms from the Spanish Royal Academy 
of Medicine [17]; 2) Collecting corpus-based terms docu-
mented in MedlinePlus and domain annotated corpora, 
in particular from recent shared tasks (PharmaCoNER, 
CODIESP and CANTEMIST) and domain text resources 
(CWLC and CT-EBM-SP corpora); 3) Enriching the lin-
guistic information of each term with its part-of-speech 
class and morphological data (e.g. gender, number, and 
tense, person and mood in the case of verbs); 4) Testing 
an approach to collect new terms related to the COVID-
19 pandemic by applying a similarity measure and word 
embeddings trained on a corpus about this topic; and 5) 
Presenting two use cases: using the lexicon to pre-anno-
tate a corpus of 1200 health texts, and part-of-speech 
(PoS) tagging and lemmatizing 100 texts related to clini-
cal cases. Comparing the performance with and without 
the lexicon showed an increase of PoS and lemmatization 
scores using MedLexSp.

The strengths of this lexicon have been discussed. 
Namely, the broad coverage of medical vocabulary, 
ensured by the terms extracted from domain corpus and 
resources used in recent BioNLP challenges, together with 
standard thesauri, classifications and ontologies (ATC, 
ICD-10, MedDRA, MeSH, NCI, OMIM or SNOMED-
CT). MedLexSp is distributed in several formats: a 
delimiter-separated value file; an XML file modeled with 
the Lexical Markup Framework; a lemmatizer for Spacy 
and Stanza python libraries; and complementary Lexical 
Record (LR) with equivalences between affixes/roots and 
their meanings, full forms and acronyms/abbreviations, 
nouns and deverbal nouns or adjectives derived from 
nouns. These different formats allow a flexible and action-
able use of this resource for natural language processing 
tasks such as part-of-speech tagging, lemmatization, con-
cept normalization or natural language generation.

The limitations of MedLexSp have been pinpointed. 
One is the lack of a comprehensive exhaustiveness 
of terms, because words not registered in the UMLS 
were not included. Another weakness is the fact that 
some semantic types are under-represented—namely, 
genomic terms and gene names, which limits the use 
of MedLexSp for such type of content. Future work will 
involve enlarging this resource with more sources, vari-
eties of Spanish and with consumer health terms, and 
enriching the linguistic and domain information avail-
able. The Spacy and Stanza lemmatizer modules, and 
the code and data for the word-embedding experiments 
are available at the companion repository.
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