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Abstract 

Background Clinical decision support systems have been widely deployed to guide healthcare decisions on patient 
diagnosis, treatment choices, and patient management through evidence‑based recommendations. These recom‑
mendations are typically derived from clinical practice guidelines created by clinical specialties or healthcare organi‑
zations. Although there have been many different technical approaches to encoding guideline recommendations 
into decision support systems, much of the previous work has not focused on enabling system generated recommen‑
dations through the formalization of changes in a guideline, the provenance of a recommendation, and applicability 
of the evidence. Prior work indicates that healthcare providers may not find that guideline‑derived recommendations 
always meet their needs for reasons such as lack of relevance, transparency, time pressure, and applicability to their 
clinical practice.

Results We introduce several semantic techniques that model diseases based on clinical practice guidelines, prov‑
enance of the guidelines, and the study cohorts they are based on to enhance the capabilities of clinical decision sup‑
port systems. We have explored ways to enable clinical decision support systems with semantic technologies that can 
represent and link to details in related items from the scientific literature and quickly adapt to changing information 
from the guidelines, identifying gaps, and supporting personalized explanations. Previous semantics‑driven clinical 
decision systems have limited support in all these aspects, and we present the ontologies and semantic web based 
software tools in three distinct areas that are unified using a standard set of ontologies and a custom‑built knowledge 
graph framework:

(i) guideline modeling to characterize diseases,

(ii) guideline provenance to attach evidence to treatment decisions from authoritative sources, and

(iii) study cohort modeling to identify relevant research publications for complicated patients.

Conclusions We have enhanced existing, evidence‑based knowledge by developing ontologies and software 
that enables clinicians to conveniently access updates to and provenance of guidelines, as well as gather additional 
information from research studies applicable to their patients’ unique circumstances. Our software solutions leverage 
many well‑used existing biomedical ontologies and build upon decades of knowledge representation and reasoning 
work, leading to explainable results.
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This is an extended version of a previously accepted 
workshop paper  [1] at the Semantic Web solutions for 
large-scale biomedical data analytics 2019 workshop [2].

Background
Clinical Practice Guideline (CPG) documents consist of 
a set of evidence- and expert-based recommendations 
for the diagnosis, treatment, and management of spe-
cific health conditions. CPGs are usually initially pub-
lished in textual form and are later translated by domain 
experts and information technology specialists into 
rules within a Clinical Decision Support (CDS) system. 
These guidelines are widely considered by the health-
care community as a standard source of clinical knowl-
edge. For this reason, there have been ongoing research 
efforts to model the knowledge within CPGs so it can be 
executed within computer-based CDS systems to pro-
vide point-of-care recommendations. Example guideline 
models developed over the past 30 years include Pro-
forma [3], EON [4], PRODIGY [5], Asbru [6], GLEE [7], 
GLARE  [8], SAGE  [9], each of which supports differ-
ent types of reasoning capabilities. To resolve the het-
erogeneity of knowledge representations across models, 
GLIF  [10] was developed as an interchange language 
for guideline knowledge. Furthermore, OpenClinical.
org [11] has served as an online clearinghouse of models 
and tools. Recent efforts in guideline modeling include 
the ATHENA project that was generalized from hyper-
tension to pain management and other health condi-
tions [12] and DESIREE for breast cancer  [13]. Through 
the encoding and implementation process of CPGs, the 
clinical relevance, study provenance, and evidence speci-
ficity of a CPG recommendation are often not captured 
or conveyed when a rule is actuated. Healthcare provid-
ers may be less inclined to follow the recommendations 
without an understanding of their source or their appli-
cability  [14–17]. Provider acceptance and use of CPG 
recommendations depend on several other factors. A 
healthcare provider must 

 (i) view the recommendation as relevant to his or her 
patient’s clinical situation [16–18],

 (ii) accept that the research publication or publica-
tions supporting the recommendation are of high 
enough quality to use under time pressure [19], and

 (iii) understand that the study population is similar 
enough to his or her patient or patient population 
to be applicable [20–23].

Decisions made by healthcare providers often involve 
complex, inferential processes often guided by alerts. 
The alerts in CDS systems that actuate recommendations 
derived from CPGs may be based on a rigid decision tree, 
accessing only specific and limited patient information, 

which may not include the relevant information about 
the patient needed for personalized care. Some of the 
difficulties associated with implementing and following 
CPGs in medical practice are discussed in [24]. Another 
unfortunate, unintended consequence of CDS systems is 
“alert fatigue,” due to their high false-positive rate result-
ing from a generic rule-based approach that does not 
consider personalization or contextual aspects, which 
can lead to providers ignoring the recommendations 
from the CDS system [25]. Developing a CDS system that 
only alerts the healthcare provider when appropriate, 
reduces the need for overrides, and assists with complex 
decision-making processes, such as providing a differen-
tial diagnosis personalized to each patient.

CPG recommendations ideally embody both the evi-
dence and expert opinion that is the end-result of a 
thorough and systematic review and evaluation of the 
available scientific literature [26]. Then, the CDS system 
that applies knowledge from the CPGs should preserve 
the quality of evidence associated with each recommen-
dation. For example, in the American Diabetes Associa-
tion (ADA) standards of care guidelines, there is a rating 
on each recommendation that indicates the guideline 
author’s view of the scientific rigor of the supporting 
research publications [27]. The breadth of the biomedical 
literature available and the changing nature of the CPGs 
require providers to keep abreast of the newest additions 
and changes to the old guidelines more frequently than 
ever before. Furthermore, it can be prohibitively time-
consuming for the provider to identify scientific litera-
ture relevant to a complicated patient whose needs are 
not addressed in CPGs. Therefore the availability of the 
evidence ratings and the pointers to the supporting sci-
entific literature into the CDS systems can be beneficial 
for healthcare providers. With these challenges in mind, 
we have developed several ontologies and semantic web 
applications.

Specifically, we describe several solutions that can be 
used to answer key questions: 

 (i) Can we characterize a disease based on the infor-
mation available in a guideline and provide seman-
tic links to other relevant concepts to make clinical 
decision support systems more explainable? For 
example, a complicated disease such as breast can-
cer will require connections to other knowledge 
sources for a healthcare provider to deliver the 
optimal treatment option.

 (ii) Can we represent guideline provenance in a way 
that enables the tracking of revisions in guidelines 
that lead to a better understanding of the evolution 
of the guideline as new medical evidence comes to 
light? For example, guidelines that get updated fre-
quently, such as the diabetes standards of care clin-
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ical practice guidelines, may be too time-consum-
ing and challenging for busy healthcare providers 
to process. If the changes are made available in a 
computable manner, the guidelines would be easily 
processable by healthcare providers.

 (iii) Can we represent study cohorts reported in the 
medical literature in a way that enables effective 
querying to pinpoint research publications that may 
be applicable for a patient and to identify gaps in 
guidelines? For example, a healthcare provider 
might want to drill down to some studies that may 
be more applicable to a complicated patient (some-
one with multiple comorbidities) from an under-
represented ethnic group rather than following the 
procedures for diagnosis and treatment as available 
in the guidelines, which may be more suitable to a 
general patient population.

To answer the above questions, we implemented foun-
dational semantic software technologies. The imple-
mentations are described in Section  Implementation, 
and how they have been applied is outlined in Sec-
tion  Results. In each section, we demonstrate the capa-
bilities of a semantically enabled CDS system in the 
following aspects: 

1 Characterizing a disease based on the CPGs as 
well as other supporting trustworthy sources (Sec-
tions  Characterizing Disease Based on Guideline 
Modeling and Breast Cancer Characterization).

2 Connecting a study to a guideline recommendation 
(Sections  Modeling of Guideline Provenance and 
Guideline Provenance).

3 Modeling the people studied in the research publica-
tions that support a guideline (Sections Modeling of 
Study Cohorts in Research Studies Cited in Clinical 
Practice Guidelines and Representing Study Popula-
tions).

Use Case
Diabetes is a serious health problem that affects more 
than 7% of adults in developed countries and up to 16% 
of patients with breast cancer have diabetes  [28]. Indi-
viduals with diabetes are known to be at a higher risk of 
developing breast cancer [29]. Suppose a healthcare pro-
vider is treating a diabetic patient with multiple comor-
bidities, including breast cancer, or who has a propensity 
to develop breast cancer. This healthcare provider may 
be interested in understanding how to characterize 
the diseases their patient has, which treatment options 
are available amidst the voluminous amounts of litera-
ture available to them each year through changes to the 

CPGs, and the evidence for and against those treatments, 
especially if their patient is from an under-represented 
community in clinical trials. Therefore, while CPGs are 
considered the standard for patient management, health-
care providers’ acceptance of CPGs depends on their 
relevance to their patient’s unique clinical situations. 
Furthermore, the healthcare provider’s acceptance of 
the CPG may rely on the published studies backing the 
evidence for the CPG. Therefore a CDS should cover all 
decision points when treating a patient and determine 
which recommendation(s) were relevant at a decision 
point and if a physician followed them.

Our CDS software implementation uses an example 
of a comorbid patient with diabetes and a breast cancer 
patient from an under-represented community. We lev-
erage semantic technologies to characterize diseases such 
as breast cancer (Section  Characterizing Disease Based 
on Guideline Modeling) as this is a complicated disease 
that requires a lot of rich knowledge representation. 
We model guideline provenance to track any changes 
to CPGs that change every year, such as the ADA (Sec-
tion  Modeling of Guideline Provenance) as it relates to 
breast cancer. We also model the study cohort aspects of 
research publications listed in the guidelines to under-
stand how representative the guideline is to the patient 
(Section Modeling of Study Cohorts in Research Studies 
Cited in Clinical Practice Guidelines). We present state-
of-the-art existing semantics-based solutions for each 
task that augment CDS systems followed by our method-
ology in Section Implementation and outline the capabil-
ities of the software developed in Section Results.

Implementation
Characterizing Disease Based on Guideline Modeling
With new advances in medical research, guidelines con-
tinue to increase in complexity. Furthermore, as the data 
streams for diagnosing and treating diseases become 
complicated, providers may have to consult many differ-
ent sources and use knowledge from clinical trials and lit-
erature to decide on alternative treatment options, which 
can take a great deal of the providers’ and the patients’ 
time. We believe that semantic-based techniques can 
overcome the challenges of perusing information avail-
able in many sources. Consulting a good number of 
sources that might provide alternative treatments with 
high-quality evidence enables providing up-to-date 
provenance-preserving knowledge that characterizes a 
patient’s disease or identifies treatment options accu-
rately and efficiently. As an example, the American Joint 
Committee on Cancer (AJCC) publishes the official 
cancer staging system in the United States of America. 
As is common in many disease characterization tasks, 
the staging of cancer is an evolving science; When new 
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information becomes available about etiology and various 
methods of diagnosis and treatment, the classification 
and staging of cancer evolve [30]. Since the inception of 
the cancer staging manual in 1977, there have been eight 
editions. The AJCC 8th Edition  [31] makes a substantial 
effort to incorporate biological and molecular markers 
to create a more personalized approach using pathologi-
cal prognostic staging. The previous breast cancer stag-
ing guidelines (i.e., AJCC 7th edition [32] and earlier) only 
considered anatomical features: the size of the tumor, the 
number of local lymph nodes affected, and whether the 
cancer had metastasized. Additionally considered in the 
new staging guidelines are biomarkers, including human 
epidermal growth factor receptor 2, estrogen and proges-
terone receptor statuses, and tumor grade.

Related Work in Cancer Characterization
Initial work related to an ontology that captured cancer 
staging information is available in Massicano et  al. [33] 
where they developed computable guidelines for the 
Union for International Cancer Control (UICC) guide-
line on cancer staging. Boeker et al. [34] have also created 
an ontology for the same Tumor, Node, and Metastasis 
(TNM) based tumor classification guidelines put forth 
by the UICC and the AJCC 6th edition [35] in which they 
focus on other, specific tumors. Beierle et  al.  [36] have 
developed the Ontology for Cancer Therapy Application 
(OCTA) that provides general knowledge about active 
ingredients and therapy regimens with an emphasis on 
co-medication and drug interactions to be used in a CDS 
system. In our work, we have learned from these previ-
ous efforts but focus primarily on the challenges provid-
ers face if the CDS does not use the most updated criteria 
from CPGs to characterize diseases. The most signifi-
cant difference between the previous ontologies and our 
cancer staging ontology is the inclusion of additional 
biomarkers, as per the AJCC 8th edition staging criteria, 
which were not available in the previous staging editions. 
The biomarkers used in the new edition significantly 
increased the complexity of the criteria required to stage 
a tumor. Another difference is that, as part of our seman-
tic web tools, we utilize automated mechanisms (i.e., 
scripts) to extract the staging criteria from the guidelines 
automatically and construct the Web Ontology Language 
(OWL) axioms from those. Thus our method is scalable 
in the face of rapidly changing guideline information.

Methodology for Cancer Staging Characterization
Our workflow for characterizing breast cancer accord-
ing to the authoritative guidelines includes the follow-
ing steps. We first translated the staging criteria available 
in the AJCC 7th and 8th edition manuals into structured 
mappings. For this process, we extracted 19 criteria from 

the AJCC 7th edition and 407 criteria for clinical prog-
nostic stage grouping from the AJCC 8th edition, that 
include different combinations of cancer staging param-
eters. Then, based on the mappings, we generated the 
OWL axioms for the staging criteria. We then integrated 
the recommended treatment and monitoring options 
available in the National Comprehensive Cancer Net-
work (NCCN) guidelines  [37], which provide informa-
tion about the suitable treatment and monitoring options 
based on the stage. The process is outlined with all the 
details in [38].

As can be seen in Fig.  1, which depicts the AJCC 8th 
staging edition staging class hierarchy, each stage class 
includes the properties hasRecommendedTest, has-
TreatmentOption, and subClassOf assertions 
where applicable. We added the comments to bet-
ter describe the concepts in the ontology, based on the 
descriptions available in the medical literature and to 
support explanations. In addition to including classes 
for all cancer stages for the respective guideline, we also 
mapped the breast cancer terms to community-accepted 
terms from the National Cancer Institute Thesaurus 
(NCIT)  [39] and incorporated recommended tests and 
treatment plans from the openly reusable Clinical Inter-
pretations of Variants in Cancer (CIViC)  [40] data, to 
provide additional stage-specific recommendations.

Modeling of Guideline Provenance
Recording the provenance of guidelines helps address 
the challenging task of systematically updating a system 
when new guidelines or medical literature are published. 
Providing provenance of guidelines implicitly or explic-
itly being used by CDS systems can enhance the trust of 
healthcare practitioners in these systems by increasing 
the transparency of the CDS system. Provenance can also 
aid in resolving ambiguity and conflicts between various 
guideline sources.

Related Work in Capturing Provenance
Several general-purpose provenance ontologies currently 
exist, such as the Provenance Ontology (PROV-O)  [41], 
the World Wide Web Consortium (W3C) recommenda-
tion for encoding provenance that provides classes and 
properties to capture generic provenance terms in vari-
ous domains. The Dublin Core metadata Terms (DCT) 
[42] is a lightweight vocabulary that aids in the descrip-
tion of resources and provides a list of terms to describe 
metadata information for articles, figures, and tables at a 
higher level. The Bibliographic Ontology (BIBO) [43] can 
be used to provide a more detailed description of refer-
enced articles. These provenance ontologies address the 
issue of modeling provenance at a more general level and 
do not address how to represent guideline provenance in 
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particular. In our solution, we build on these foundational 
provenance ontologies to associate provenance of clinical 
decisions with their authoritative guideline evidence.

In the clinical domain, there have been several 
efforts to create ontologies that enable increased trace-
ability, transparency, and trust in clinical data. Prov-
enance for Healthcare and Research (ProvCaRe) [44] is 
an ontology designed to enhance the reproducibility of 
scientific research by capturing the metadata of pub-
lished articles. Their ontology focuses on the details of 
the scientific study, including the design description, 
the data collection methods, analysis of the data, and 
overall research methodology. Provenance Context 
Entity  [45] is a scalable provenance tracking for sci-
entific Resource Description Framework (RDF) Data 
that creates provenance-aware RDF triples using the 
provenance context notion. Provenance in a CDS sys-
tem that attempts to trace all the system’s execution 
steps to explain, on the patient level, the final results 

generated by the system is investigated in  [46]. There 
is also extensive research in provenance in distributed 
healthcare management, which aims to ensure an effi-
cient healthcare data exchange [47–49]. Several works 
have proposed an ontology-based solution to pro-
vide appropriate guidance to patients suffering from 
chronic illnesses such as diabetes, including an onto-
logical modeling and reasoning of CPG contents  [50], 
and the OntoDiabetic system that can assess the risk 
factors and provide appropriate treatment [51].

The ontology we developed is different from prior 
approaches in that we encode the information present 
in published CPGs into computable knowledge, such as 
rules, as well as the evidence sentences from the CPG 
directly. In our approach, we identified the various 
pieces of information about the source of a recommen-
dation that a healthcare provider needs to make clinical 
decisions.

Fig. 1 Breast cancer stage hierarchy classes as per the authoritative cancer staging CPGs
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Methodology for Capturing Provenance in CPGs
We developed an ontology called Guideline Provenance 
Ontology (G-Prov)  [52] with three key clinical compe-
tency questions in mind: 

 (i) Where does this treatment suggestion come from?
 (ii) Which research publications support the recom-

mendation?
 (iii) How recent is this recommendation?

We modeled the G-Prov ontology with the above 
questions in mind to capture provenance metadata at 
different levels of granularity. The G-Prov ontology 
enables accurate encoding of the source of the reason-
ing rules that CDS systems rely on to generate diagno-
sis and treatment suggestions. For instance, G-Prov can 
be used to annotate rules with citations found in evi-
dence sentences and other sources of knowledge, such 
as figures and tables.

When developing the G-Prov ontology, we reused 
several well-used existing ontologies, including the 
W3C PROV-O [41], DCT [42], BIBO [43], Semanticsci-
ence Integrated Ontology (SIO) [53], Disease Ontology 
(DOID) [54], and NCIT [39]. We also utilized our Study 
Cohort Ontology (SCO) [55], which is detailed fur-
ther in Section Modeling of Study Cohorts in Research 
Studies Cited in Clinical Practice Guidelines.

The G-Prov ontology is comprised of terms broadly 
belonging to three classes. 

 (i) Metadata descriptions using existing ontologies 
such as PROV-O, DCT, and BIBO

 (ii) Guideline specific terms that associate rules to their 
guideline evidence we defined

 (iii) Disease specific classes and properties from DO, 
and NCIT

As can be seen in Fig.  2 that depicts the higher-level 
conceptual model of G-Prov, gprov:Citation repre-
sent citations within CPGs, and are linked to their refer-
ence information using prov:hasPrimarySource. 
Further, every published document has at least one 
author, and, to capture the list of all the authors in a pub-
lication, we use the class bibo:Author, which con-
tains one or more authors. To annotate treatment rules 
with G-Prov we introduced the gprov:FormalRule 
class. Guideline recommendations (modeled as 
gprov:Recommendation) contain these rules, and we 
use the prov:wasDerivedFrom property to link the 
two classes. We also link the rules directly to the guide-
line at a more abstract level.

Since CPGs focus on a specific health condition, 
we link the guideline class to the health condition 
it addresses using gprov:DiseaseManagement 
via the prov:used property. For exam-
ple, the ADA CPG addresses diabetes, therefore 
gprov:DiseaseManagement corresponds to diabetes 
and the prov:used property corresponds to the ADA 
CPG. The gprov:DiseaseManagement class links 
to at least one specific disease type (DOID:Disease). 
Additionally, some guidelines carry a measure of the 
quality of each recommendation, and we capture this 
information using gprov:Grade. One or more evidence 
sentences, modeled as gprov:EvidenceSentence, 
provides the scientific rationale or healthcare provider 
consensus for the recommendations within the guideline.

Fig. 2 Conceptual Model of the G‑Prov Ontology
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Modeling of Study Cohorts in Research Studies Cited 
in Clinical Practice Guidelines
The results of Randomized Clinical Trial (RCT), and 
other types of clinical research publications, provide the 
basis for the recommendations within CPGs. However, 
a provider may be interested in knowing which research 
publications form the basis of a particular recommen-
dation and whether their patient or patient population 
is similar to the study cohort(s). Achieving this is not a 
simple task because the published population description 
varies significantly across research publications. Further-
more, a single patient may differ on multiple attributes 
from those in the study cohort, and comparing similar-
ity or dissimilarity across these dimensions can be chal-
lenging. Therefore, healthcare providers need a robust 
representation of research publications and cohorts to 
evaluate and visualize cohort similarity. We have devel-
oped an ontology, the Study Cohort Ontology (SCO), to 
meet this need.

Related Work in Representing Study Cohorts
In terms of prior research in this space, the Ontol-
ogy of Clinical Research (OCRe)  [56] is a widely cited 
study design ontology used to model the study lifecy-
cle and addresses similar goals to our work. They adopt 
an eligibility rule grammar and ontology annotation 
approach  [57] for modeling study eligibility criteria to 
enable matching a study’s phenotype against patient data. 
Although their ontological model captures statistical 
measures, their modeling is not as intuitive and does not 
seem to leverage the power of OWL math constructs to 
the fullest. We also found that most RCT ontologies, e.g., 
Clinical Trials Ontology - Neuro Degenerative Diseases 
(CTO-NDD)  [58], are domain-specific and not directly 
reusable for a population modeling scenario. Other 
ontologies, such as the EPOCH ontology  [59], can be 
used to track patients through their RCT visits and had 
class hierarchies that were insufficient to represent the 
types of publication cited in the ADA guidelines.

In particular, RCT matching has been attempted multi-
ple times, mainly as a natural language processing prob-
lem, including a knowledge representation approach that 
borrows from Systemized Nomenclature of Medicine 
- Clinical Terms (SNOMED-CT) to improve the quality 
of the cohort selection process for RCTs [60]. However, 
the focus of their effort was mainly on efficient knowl-
edge representation of patient data and the formulation 
of the study eligibility criteria as SPARQL Protocol And 
RDF Query Language (SPARQL)1 queries on the patient 
schema. We tackle the converse problem of identifying 

research publications that apply to a clinical popula-
tion, based on the study populations reported. Further-
more, Liu et al. detail an approach to creating precision 
cohorts  [61]. Their emphasis is on learning a distance 
metric that best suits the patient population, but they do 
not provide a quantified similarity score.

Our ontology and associated applications differ from 
these general-purpose, study component modeling 
efforts and patient matching efforts in that, through our 
ontology, we enable the declarative representation of 
study populations represented in research publications. 
Hence, we allow the performance analysis to either iden-
tify relevant research publications for patients or gaps 
that would prevent the adoption of research publications 
for specific clinical populations.

Methodology for Representing Study Cohorts
We developed SCO [55] to define classes and properties 
to describe content related to demographics, interven-
tions, cohort statistics for each variable of a study cohort, 
as well as a study’s inclusion/exclusion criteria. In our 
modeling effort, we leveraged best practice ontologies in 
four categories, and we continue to support interlinking 
and expansion to other relevant ontologies as needed: 

 (i) Upper-Level: SIO [53]
 (ii) Statistical: Statistical Methods Ontology (STATO) 

[62], and Units Ontology (UO) [63]
 (iii) Study Design: ProvCaRe [44], OCRe [56], Human-

Aware Science Ontology (HAScO) [64], and Clini-
cal Measurement Ontology (CMO) [65]

 (iv) Medical: NCIT [39], Children’s Health Exposure 
Analysis Resource (CHEAR)  [66, 67], Human 
Health Exposure Analysis Resource (HHEAR) [68], 
Phenotypic Quality Ontology (PATO)  [69], and 
DO [70]

Modeling Descriptive Statistics
Representing aggregations in OWL and RDF has been 
a long-studied research problem, and there are multi-
ple approaches to the modeling of aggregations [71–74]. 
Having analyzed patterns across several population 
description tables, we see that the descriptive statis-
tics model aggregations of the cohort descriptors. The 
descriptive statistics are often measures of central ten-
dency or dispersion like mean, median, mode, standard 
deviation, interquartile range, and rate. OWL inherently 
supports collections through the OWL class axioms. The 
OWL reference guide  [75] states that “Classes provide 
an abstraction mechanism for grouping resources with 
similar characteristics. Like RDF classes, every OWL 
class is associated with a set of individuals, called the 
class extension.” We leverage this feature and represent 1 SPARQL is a recursive acronym.
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study arms as collections of study subjects, that is < 
instance of owl:Class > rdfs:subClassOf 
sio:StudySubject. We associate subject character-
istics as attributes/properties of study arms and further 
link the descriptive statistics via reification techniques.

Generating Study Cohort Knowledge Graphs
We have expanded our work on study cohort modeling 
by automatically extracting and assembling the study 
cohort information from tables in a research publica-
tion to populate the SCO Knowledge Graph (KG). Study 
cohort tables exhibit wide variance in representation, 
style, and content, thus creating challenges for direct 
translation into a KG. We have mitigated these variance 
issues by designing a four-stage study cohort extraction 
pipeline  [76] that extracts population descriptions from 
study cohort tables of research publications and which 
thereafter utilizes a heuristics and ontology-enabled 
algorithm to assemble these tabular components in KGs.

A high-level overview of the study cohort extrac-
tion pipeline is shown in Fig. 3, visualizing how the four 
stages of the pipeline work together to extract informa-
tion, organize it, and produce a KG. In the first step of 
the pipeline, a PDF extractor tool [77] identifies the rows, 
columns, and cells present in a study cohort table and 
extracts text from within each cell. In the second step, 
our algorithm identifies row sub-headers within the 

table to convert it into a hierarchical table structure. In 
the third step, KG elements are identified from the text 
within the table, including numbers, statistical meas-
ures, and biomedical terminology. Since the terminology 
across the population descriptions varies from one ontol-
ogy to another, we have leveraged the National Center for 
Biomedical Ontology (NCBO) Annotator [78] for seman-
tic alignment. In the final step, the hierarchical structure 
is leveraged to assemble these elements into an SCO KG. 
Figure 4 shows how these four steps operate on an exam-
ple of a study cohort table.

Results
We outline three different software artifacts generated 
as part of this research that demonstrate the semantic 
enhancement of CDS systems using our approach and 
infrastructure.

Breast Cancer Characterization
Breast Cancer Staging (BCS) Ontology
Standard terms used in the staging process were incorpo-
rated into our Cancer Staging Terms (CST) ontology [79]. 
Taking the different staging criteria into account, as 
explained above, we created ontologies for the AJCC 7th 
edition, i.e., Breast Cancer Staging 7 th Edition (BCS7) 
ontology  [80] and the AJCC 8th edition, i.e., Breast 

Fig. 3 A high‑level overview of the study cohort extraction pipeline. Step 1: Table text extracted from PDF. Step 2: Hierarchical structure of table 
identified. Step 3: Knowledge graph elements identified within the table. Step 4: Knowledge graph assembled from disparate elements

Fig. 4 The four steps of the study cohort extraction pipeline, shown with an example snippet of a study cohort table
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Cancer Staging 8th Edition (BCS8) ontology  [81]. BCS7 
and BCS8 contains 22 and 31 distinct classes respectively.

Inferring Cancer Stage using the BCS Ontology
We developed a deductive inference agent on the Whyis 
KG framework [82] to infer the stage of a tumor and 
the corresponding treatment and monitoring plans. 
The inference agent reasons over nanopublications  [83] 
that contain sample patient data records against the 
CST ontology. We built SPARQL templates for differ-
ent OWL reasoning profiles, as well as custom inference 
rules based on shape of the data contained in the patient 
records, to be consumed by the inference agent [38]. We 
obtained the patient data samples from the Surveillance, 
Epidemiology, and End Results (SEER) [84] datasets. 
We browsed the datasets using the statistical software, 
SEER*Stat  [85] and downloaded a subset of that data to 
create the patient nanopublications. These datasets con-
tained the desired features to construct the patient KG. 
The features extracted for the inference process include 
tumor stage, as per the older AJCC 6th edition, and other 
relevant information, such as the demographics and the 
survival status of patients treated from 1980-2012.

Figure  5 shows a visualization tool that incorporates 
the Whyis deductive inference agent to display different 
treatment paths and guideline impacts on a patient in the 
form of an interactive report. In this visualization tool, 
it is possible to choose between the latest AJCC staging 
guidelines, i.e., AJCC 7th and 8th editions. Once a guide-
line is selected, the view dynamically loads the newly 
derived knowledge. The derived knowledge includes the 
inferred stage, whether it is up-staged/down-staged/no-
change, and the explanations behind the inferred stage.

Software Availability
Detailed information about characterizing breast can-
cer staging as per the authoritative CPGs using semantic 
technologies is available at  [86]. A similar approach can 
be utilized for characterizing other diseases. Further-
more, the software for the Whyis deductive inference 
agent is available at [87].

Guideline Provenance
G‑Prov Ontology
The G-Prov ontology, which is available on biopor-
tal at  [88], contains 138 classes and 317 properties. The 
ontology heavily reuses many concepts from existing 
foundational provenance ontologies, and domain-specific 
biomedical ontologies.

G‑Prov Annotation of ADA CPG to Generate a KG
We demonstrate our work on annotating CDS sys-
tem rules using recommendations in a CPG for type 

2 diabetes using the ADA CPG, and discuss how this 
assists in utilizing CPGs in various medical settings. For 
this purpose, we used an existing ontology for diabetes 
management, the Diabetes Mellitus Treatment Ontology 
(DMTO) [89], that contains several useful rules written in 
the Semantic Web Rule Language (SWRL) [90]. DMTO 
is an ontology that provides treatment suggestions for 
type 2 diabetes. It uses information from several medical 
guidelines on diabetes, including the ADA [27], Diabetes 
Canada [91], and the European Association for the study 
of Diabetes  [92]. However, DMTO lacks information on 
the source of each rule within the ontology. Therefore, it 
is difficult to evaluate the accuracy of and the evidence 
for each rule in DMTO. We attached provenance to the 
SWRL treatment rules of the DMTO with recommenda-
tions from the ADA Standards of Medical Care guideline, 
also known as the ADA CPG recommendation [93].

To annotate a treatment rule with its ADA CPG rec-
ommendation, we first did a manual pass on the CPG to 
understand its structure. Subsequently, we wrote a web 
scraping script to extract all the guideline contents into 
a structured data file. The content of this structured data 
file includes all the guideline recommendations, their 
grades, possible evidence sentences, and the citations 
within each sentence. Our initial efforts focused on two 
chapters from the ADA CPG, namely the “Pharmacologic 
Approaches to Glycemic Treatment”  [94] and “Cardio-
vascular Disease and Risk Management”  [95] chapters. 
To construct the KG, we created a spreadsheet to organ-
ize the extracted guideline data. Further, we manually 
identified applicable guideline recommendations for 
DMTO treatment rules and mapped them within the 
spreadsheet. Our medical domain expert went over these 
annotations to confirm both completeness and accuracy. 
Finally, we wrote a Semantic, Extract, Transform, and 
Load (SETL) script to automatically convert the content 
of the spreadsheet to an RDF KG [96]. Figure 6 highlights 
the resulting KG from modeling a selected recommenda-
tion within the ADA CPG using the G-Prov ontology.

Applications of G‑Prov
We leveraged the G-Prov ontology and the ADA KG in 
an application to showcase its versatility. The applica-
tion evolved out of the need for healthcare practitioners 
to identify the sources of treatment suggestions made by 
CDS systems. Our application captures three main use 
cases: 

 (i) Providing a healthcare provider with the prove-
nance information of treatment suggestions made 
by CDS systems.

 (ii) Assisting content developers of CDS systems in 
entering provenance information while creating/
editing the decision rules.
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Fig. 5 Example of downstaged breast cancer characterization
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 (iii) Providing a population health manager an identifi-
cation of subgroups (cohorts) of patients who may 
benefit from the recommendations.

In the healthcare provider’s view as seen in Fig. 7, prov-
enance information is displayed alongside the CPG rec-
ommendation. This includes the source of information in 
the recommendation, other medical literature that sup-
ports the recommendation, and the publication date of 
the recommendation. Thus, when a CDS system makes a 
treatment suggestion, the healthcare provider will be able 
to query the system for more information. In the content 
developer’s view as seen in Fig. 8, there is a form to collect 
information from the user in a friendly, easy to read man-
ner to create the RDF snippet of the information entered 
using the G-Prov ontology. Compared to other editing 
tools such as Protégé, the added advantage of this is that 
this view does not assume that the user has any semantic 

web technology knowledge. In the population health 
manager’s view as seen in Fig. 10, we have incorporated 
the Study Cohort Ontology, which is described in detail 
in Section Modeling of Study Cohorts in Research Stud-
ies Cited in Clinical Practice Guidelines. Using this view, 
it is possible to analyze the research publications linked 
from the guidelines, which serve as evidence for recom-
mendations to find any relevant research publications for 
a patient cohort.

Explaining CDS Decisions
Providing coherent explanations in CDS systems is 
another core objective of our work in addition to rep-
resenting the provenance of guidelines, which pro-
vides one dimension of explanations. Even though 
CPGs enable evidence-based, clinical decision making, 
observed clinical actions could deviate from recom-
mended actions. Therefore, it is equally essential to 
be able to explain the rationale behind such treatment 

Fig. 6 Instance diagram showing the modeling of a single recommendation within the ADA CPG using G‑Prov Ontology
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Fig. 7 G‑Prov Healthcare Providers’ View

Fig. 8 G‑Prov CPG Content Developers’ View, where they can input details for new formal rules that are based off of guideline recommendations



Page 13 of 21Seneviratne et al. Journal of Biomedical Semantics            (2023) 14:8  

decisions. Thus, there is a need for novel reasoning 
strategies that provide explanations when clinical deci-
sions do not align with the guidelines. To address this 
challenge, we introduced a taxonomy of literature-
derived explanation types with refined definitions of 
nine explanation types in [97]. Using that initial tax-
onomy, we created an Explanation Ontology (EO) for 
clinical settings [98]. The explanation types in the EO 
include: 

CaseBased−  “To what other situations has this 
recommendation been applied?”

Contextual−  “What broader information about 
the current situation prompted the 
suggestion of this recommendation?”

Contrastive−  “Why choose option A over option 
B that I typically choose?”

Counterfactual−  “What if input A was B instead?
Everyday−  “Why does option A make sense?”
Scientific−  “What research publications have 

backed this recommendation?”
SimulationBased−  “What would happen if this rec-

ommendation is followed?”
Statistical−  “What percentage of people with 

this condition have recovered?”
TraceBased−  “What steps were taken by the system 

to generate this recommendation?”

  To elicit EO’s application requirements, we con-
ducted a user study in the clinical domain [99]. The 
study results indicated that healthcare providers 
most often used or required contrastive, counter-
factual, and contextual explanations to understand 
and reason about complicated patient cases. How-
ever, they indicated the need for diverse explanation 
types to address a range of questions. Therefore, 
in deriving such semantics-driven explanations to 
assist healthcare providers, we move closer towards 
creating more intelligent CDS systems that can per-
form clinical diagnostics with the use of the EO in 
conjunction with G-Prov.

Software Availability
G-Prov website at  [100] contains comprehensive doc-
umentation of the ontology and the applications dis-
cussed. Utilizing G-Prov, KGs similar to the ADA 
guideline provenance we created can be created for 
other diseases. The Explanation Ontology that can be 
used to encode the criteria useful to explain guideline 
recommendations is available at [101].

Representing Study Populations
The SCO
The SCO was developed to model the overall structure 
and patterns of cohort variables and control/inter-
vention groups defined within the structured popula-
tion descriptions (commonly referred to as Table1’s or 
Cohort Summary Tables) of observational case studies 
and RCTs. We maintain only domain agnostic and com-
monly accruing subject variables and interventions in 
SCO, and we have a suite of ontologies (Diseases, Medi-
cations, LabResults etc.,) to encode Diabetes related 
terminology. We have adopted a bottom-up approach 
to modeling and we have revised the structure of SCO 
upon investigation of several research studies from 
the “Pharmacological Interventions” and “Cardiovas-
cular Complications” of the 2018 ADA CPG  [94]. The 
ontology contains 3,568 classes and 629 properties. It is 
available for download and reuse at [102].

Study Cohort KG
As a proof-of-concept, we modeled 41 cited research 
publications in the pharmacologic recommendations 
and cardiovascular complications chapters in the ADA 
CPG. 19 of these publications came from the 2018 ADA 
CPG [94], and 22 came from the 2019 ADA CPG [103]. 
Furthermore, for Medline citations, we have extracted 
additional study metadata from PubMed and plan to 
incorporate mappings to Medical Subject Heading 
(MeSH) terms. Figure 9 highlights the modeling of the 
fundamental components in SCO, including the study 
subject collection, their subject characteristics, and 
the statistical measures associated with the recorded 
characteristic.

Analyzing Study Populations
Applications may use SCO to support analyses that 
require a deep understanding of study populations. 
Providers could choose a subset of characteristics they 
wish to view as a part of the deep dive, or our visuali-
zations could build off characteristics common to both 
patients and patient groups studied.

Lenert et al. [104] have developed a couple of compel-
ling visualizations of cohort similarity to county popu-
lations. However, we did not find sufficiently detailed 
descriptions about their data analysis, knowledge rep-
resentation, and machine learning methods to support 
our direct reuse. Additionally, study bias is common 
in scientific research  [105] and we did not find direct 
evidence that previous approaches provided enough 
transparency to support identification of bias or confir-
mation of no bias. Later in this section, we demonstrate 
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how our knowledge representation of population 
descriptions can uncover some of these biases.

For an example SCO application, consider the star 
plots in Fig. 10, which overlay a set of characteristics of 
the Metformin study arm from the “10-year follow-up of 
intensive glucose control in type 2 diabetes” study cited 
in chapter  8 of the ADA CPG  [94]. The study charac-
teristics are displayed in red, and patient characteristics 
are displayed in blue. For this illustration, a couple of 
patients exemplifying a good study fit and a bad study 
fit are selected from the National Health And Nutrition 
Examinations 2015-2016 Survey (NHANES)  [106]. It 
is clear that patient 1 is an excellent match to the study, 
because on almost all axes, i.e., the age, diastolic blood 
pressure, hemoglobin A1C, etc., the patient is within the 
mean+/-standard deviation of the values for the corre-
sponding features of the study population. However, for 
patient 2, we see that the patient’s age is below the lowest 

age range of the study population. Hence from this plot, 
a healthcare provider can quickly tell that this study does 
not apply to patient 2.

Identifying Gaps in Clinical Populations
Our SCO KGs provide the ability to identify gaps in clini-
cal populations utilized by research publications that are 
cited in CPGs, which are in turn used in CDS systems. 
To achieve this capability, we designed clinically relevant 
scenarios around the following: 

 (i) Study match: Is there a study that matches this 
patient on one or more features? (For example, 
find studies with a representation of female African 
American study subjects?)

 (ii) Study limitation: Is there an absence or an under-
representation of population groups in this study? 
(For example, find study arms without female Afri-
can American above the age of 70?)

Fig. 9 SCO KG snippet



Page 15 of 21Seneviratne et al. Journal of Biomedical Semantics            (2023) 14:8  

Fig. 10 Cohort Similarity Application using SCO and GProv
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 (iii) Study quality evaluation: Are there adequate 
population sizes and is there a heterogeneity of 
treatment effects among arms? (For example, find 
studies with cohort sizes > 1000 and study arm 
administered drugs of the guanidines family, 
with sizes 1/3 of those cohort sizes?)

We addressed a competency question for each of 
these scenarios (explained in detail in  [55]). From the 
data available in the research publications we consid-
ered  [107], we found that 75% of them had a represen-
tation of African-American patients, ≈ 50% considered 
older adults above the age of 70, and only 6% of the large-
scale research publications (total population size across 
study arms ≥ 1000 ) had a good treatment to effect ratio. 
While we have demonstrated visualization and the gap 
identification capabilities, we believe that the declarative 
representation of study cohorts can enable further analy-
ses to further evidence-based medicine.

Software Availability
The Study Cohort Ontology website [108] contains com-
prehensive documentation on our knowledge representa-
tion approach backed by our study cohort ontology and 
the knowledge graphs instantiating research study tables.

Discussion
Summary
CDS systems have been viewed as aiding health care pro-
viders in diagnosis, treatment, and patient monitoring. 
We demonstrated knowledge representation and engi-
neering techniques supported by semantic technologies 
to be very suitable to handle heterogeneous and distrib-
uted clinical information and decision criteria available 
in CPGs. Such semantic technologies support the inte-
gration of heterogeneous knowledge, the expression of 
rich and well-defined models for knowledge aggregation 
through knowledge acquisition pipelines, and the appli-
cation of logical reasoning for the generation of new 
knowledge and clinical decision criteria. Since the rep-
resentation of knowledge is static in traditional CDS sys-
tems, the type of knowledge represented can be limiting, 
which motivates the adoption of semantically-rich and 
agile software systems. As described in Section  Char-
acterizing Disease Based on Guideline Modeling, we 
applied the semantic technologies we developed in cases 
where it is useful to have the relevant information for 
diagnoses that are highly changeable due to the natural 
evolution of medical research and where new findings 
and advances are being continuously made.

Furthermore, we show how semantic technologies can 
support interoperability of terminologies that are needed 
when interacting with multiple CDS systems. Using the 

Semantic Web technologies described in this paper, we 
achieve high interoperability because we use standards-
based, community-accepted vocabularies, and practices. 
For example, in our G-Prov Ontology, we reused commu-
nity accepted ontologies including the PROV-O [41] and 
BIBO [43]. In the SCO [55], we reused other study design 
ontologies such as ProvCaRe [44], widely utilized medical 
terminologies such as the NCIT [39], DO [54, 70], statis-
tical ontologies such as the UO [109], and STATO [62], 
and upper-level ontologies such as the SIO [53].

When developing our ontologies described in 
this paper (i.e., BCS7, BCS8, G-Prov, and SCO), we 
adopted a use case and competency question-driven 
approach [110]. Wherever we needed to import a portion 
of a large-scale ontology, we utilized community accepted 
practices such as Minimum Information to Reference an 
External Ontology Term (MIREOT) [111]. Furthermore, 
we designed our ontologies to interoperate with each 
other. For example, the G-Prov ontology can also provide 
SCO information about the citations for the recommen-
dation, and SCO, in turn, will provide information about 
the patient cohorts used within the study. Therefore, we 
can trace back the provenance for cited clinical research 
publications, and vice versa. Also, in our work, the usage 
of semantic technologies is not limited to knowledge rep-
resentation. Where applicable, we include a significant 
focus on the reuse from the expanding body of biomedi-
cal ontologies. The CDS semantic application we devel-
oped leverages the Whyis knowledge graph framework, 
which provides a flexible application ecosystem.

Limitations
The work described in this paper is a prototype CDS sys-
tem developed under the guidance of a clinical expert 
who is also a co-author of the paper. However, further 
validation of the system’s efficacy in real-world user study 
settings is necessary. Nevertheless, we believe that inte-
grating interoperable semantic technologies in CDS sys-
tems has many benefits. Healthcare providers will be 
able to navigate CPGs better, apply the most appropriate 
guidelines to their patients without having to pour over 
voluminous documentation, utilize advanced reasoning 
capabilities that provide coherent explanations, and ulti-
mately deliver the best care possible for their patients in 
an equitable manner.

Future Work
Using the ontologies we have developed as a springboard, 
we are investigating novel reasoning mechanisms with 
explanations. Healthcare providers agree that it may not 
always be wrong to deviate from a CPG if there are good 
clinical reasons, such as the context of a patient’s unique 
situation [23]. Healthcare providers should consider any 
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concomitant disease(s) and underlying risk factors when 
following the recommendations given in CPGs. Ontolo-
gies targeted for CDS systems should capture the provid-
ers’ reasoning processes by defining clinical concepts, 
mapping patient data to these concepts, and defining the 
semantic relationships. For example, a provider should be 
able to indicate that a particular medication needs to be 
prescribed to the patient, even though the patient is on 
a medication that could potentially interact with the pre-
scribed drug because the patient has previously tolerated 
the medication combination. A systematic review of clin-
ical research ontologies that analyzed 38 different rea-
soning systems published in the literature  [24] outlines 
various challenges in reasoning systems, which motivates 
the need to have such special-purpose reasoning that 
explains certain clinical decisions. We are investigating 
mechanisms using the ontologies we have developed to 
understand which guideline recommendation is applica-
ble in the context of discrepancies between past inter-
ventions applied to an individual patient and what the 
guideline would have recommended at those decision 
points. Specifically, we are expanding reasoning capa-
bilities in the Whyis KG framework [82] by developing a 
semantically-enabled special-purpose clinical reasoning 
component to assist in discovering the potential ration-
ales of past treatment options. This reasoner utilizes 
special-purpose, hybrid reasoning strategies (i.e., deduc-
tive and abductive reasoning capabilities), in conjunction 
with the ontologies we have developed to address some 
of the lapses in reasoning systems deployed on CDS sys-
tems to guide the providers in their treatment decisions. 
We plan to evaluate the success of the clinical inference 
activities powered by semantics by comparing healthcare 
provider conclusions to that of the system and examining 
discrepancies between the sets of conclusions. Addition-
ally, we are developing an interactive web-based applica-
tion founded upon RCT equity metrics  [112], SCO, and 
Artificial Intelligence (AI) techniques to measure ineq-
uities caused by unrepresentative uni-/multi-variable 
subgroups in clinical research publications and guide 
equitable decisions for diverse users, including health-
care providers, researchers, and health policy advocates. 
Our semantic tools and techniques, especially the SCO, 
support the calculation of the equity metrics, which 
requires an aligned analysis of the patient characteris-
tics, the study data, and reference surveillance data (e.g., 
NHANES) necessary for the cohort similarity calcula-
tions and visualizations.

Conclusions
In this paper, we highlighted several challenges in encod-
ing guideline-based recommendations of today’s clinical 
decision support systems, along with our methods for 

addressing the challenges. There are numerous CPGs for 
effective diagnosis and treatment of diseases that change 
rapidly as new evidence for the disease comes to light, 
and there is a great deal of heterogeneous data of varying 
quality that healthcare providers may need to consider 
when making treatment decisions. We demonstrated sev-
eral technologies that lay the foundation towards seman-
tically enriched CDS systems.

One of our main focuses was to develop a scalable 
knowledge extraction pipeline using semantic technolo-
gies to address the challenges that healthcare providers 
face when creating and evolving a treatment plan for 
their patients. As an example, we converted the CPG 
for breast cancer staging into a computer-interpretable 
guideline representation with links to their cited research 
publications. We found that connecting recommenda-
tions in guidelines to the source literature and their study 
populations preserves the provenance and enhances the 
transparency of the decision rules that could be imple-
mented in CDS systems. We furthermore considered the 
diabetes guidelines and demonstrated how the informa-
tion contained in the guideline documentation could be 
extracted at various levels of specificity to ascertain the 
provenance of the guidelines and understand cohort 
characteristics of the research studies contained in the 
guideline recommendations.

We argue that characterizing diseases using semantic 
technologies is needed because, with the rapid advance-
ments in medical research, the information useful for 
characterizing diseases, such as diabetes and cancer, has 
been changing at a pace that creates challenges when pro-
viders try to remain current. We provide an example of 
the value of our approach using our breast cancer appli-
cation (Section Characterizing Disease Based on Guide-
line Modeling) that demonstrates how providers may 
easily re-stage existing patients or patient populations, 
allowing them to find patients whose stage has changed 
within a given patient cohort. Our work also includes 
guideline provenance for attributing the decision rules 
to the relevant guideline recommendations where we 
capture the evolution and application of guidelines in 
a highly evolving medical information space through 
G-Prov (Section  Modeling of Guideline Provenance). 
We demonstrated how to utilize the G-Prov encodings 
for annotating CPG recommendations implemented as 
computer-interpretable SWRL rules for diabetes and 
how to discover the study populations these recommen-
dations are based on. Furthermore, we believe that lev-
eraging information available in scientific study cohorts 
will enable systems that are tailored to the unique needs 
of health professionals to give personalized recommen-
dations based on their patients’ unique situations (Sec-
tion  Modeling of Study Cohorts in Research Studies 
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Cited in Clinical Practice Guidelines). We demonstrated 
how the SCO annotated KGs support visualizations that 
provide the capability to view the fit of a patient as a 
whole, with the various treatment arms, to help the pro-
vider ascertain study applicability. Thus, providers can 
reliably find information tailored to their patients from 
CPGs, as well as research publications cited in the CPGs, 
which is generally a difficult task given the limited time 
they have to peruse large volumes of literature. Finally, 
we discussed how the application of the tools and tech-
niques described in this paper could supplement CDS 
systems with advanced reasoning processes, timely and 
relevant explanations, and analysis of equity of RCTs the 
CPGs are based on (Section Discussion).

Based on our discussions with healthcare practi-
tioners  [99], we believe that our semantic web-based 
approach of providing enhanced, evidence-based, clini-
cal knowledge to healthcare providers will make their 
workstreams much more efficient, and, more impor-
tantly, lead to increased trust in clinical decision support 
recommendations.
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