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Abstract 

Motivation Phenotypes are observable characteristics of an organism and they can be highly variable. Information 
about phenotypes is collected in a clinical context to characterize disease, and is also collected in model organ-
isms and stored in model organism databases where they are used to understand gene functions. Phenotype data 
is also used in computational data analysis and machine learning methods to provide novel insights into disease 
mechanisms and support personalized diagnosis of disease. For mammalian organisms and in a clinical context, 
ontologies such as the Human Phenotype Ontology and the Mammalian Phenotype Ontology are widely used 
to formally and precisely describe phenotypes. We specifically analyze axioms pertaining to phenotypes of collections 
of entities within a body, and we find that some of the axioms in phenotype ontologies lead to inferences that may 
not accurately reflect the underlying biological phenomena.

Results We reformulate the phenotypes of collections of entities using an ontological theory of collections. By refor-
mulating phenotypes of collections in phenotypes ontologies, we avoid potentially incorrect inferences pertaining 
to the cardinality of these collections. We apply our method to two phenotype ontologies and show that the refor-
mulation not only removes some problematic inferences but also quantitatively improves biological data analysis.

Keywords Cardinality phenotypes, Phenotype ontologies, Genotype–phenotype associations

Introduction
Phenotypes are the observable characteristics of organ-
isms and they arise from an organisms phenotype and 
interactions with the environment [1]. Phenotypic data 
is critical for deciphering the biological pathways that 
cause a disease [2]. A formal ontological description of 
phenotype data can assist in identifying, interpreting, 

and inferring phenotypic features from experimental 
data in different species [3–6]. Many ontologies cover 
the phenotype domain for specific organisms, such as the 
Human Phenotype Ontology (HP) [7] and the Mammalian 
Phenotype Ontology (MP) [8].

In biomedical ontologies, the Entity–Quality approach 
(EQ) [9] is used to logically formalize phenotypic 
descriptions. In the EQ approach, phenotype descrip-
tions can be divided into (at least) two components. 
The first component represents the affected entity. 
This may include entities that are a part of an organ-
ism, including anatomical structures, liquids, and col-
lections of entities that are part of a body. The second 
component describes the entity’s quality. Qualities 
are described in the Phenotype And Trait Ontology 
(PATO) [10] and qualities are divided into qualita-
tive and quantitative qualities. For instance, the pheno 
type cleft upper lip (MP:0005170) is defined using the 
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qualitative quality class split (PATO:0001786) and the 
entity class upper lip (UBERON:0001834). The phe-
notype class hyperalgesia (MP:0005407) is defined 
using the quantitative quality decreased threshold 
(PATO:0000708) and the entity nociceptive behavior 
(NBO:0000331). The quantitative quality decreased 
threshold (PATO:0000708) includes an implicit “nor-
mal” to which the quantity is compared [11].

The ontological representation of phenotypes has 
been intensively studied [11]. However, while this onto-
logical analysis of phenotype ontologies has focused 
on the classification of anatomical structures and 
processes [12–14], the collections of entities that are 
part of a human body have not explicitly been ana-
lyzed. Phenotypes of collections include the decrease 
in the number, or the absence, of types of blood cells. 
For example, in the MP ontology, we can find a class 
absent T cells (MP:0008070) or absent lymphocyte 
(MP:0000726), as well as decreased pancreatic alpha 
cell number (MP:0009177), increased osteocyte num-
ber (MP:0030482).

The MP also contains a class absent NK T cell 
(MP:0008041) which is inferred to be a subclass of 
absent T cell (MP:0008070). T cells are white blood 
cells and have several subtypes, including natural killer 
(NK) T cells, regulatory T cells, and gamma-delta T 
cells. Consequently, the absence of NK T cell does not 
necessarily imply the absence of (all) T cells. More sub-
tly, a decreased amount of a type of cell (such as NK T 
cell) does not imply a decreased amount of the super-
class (such as T cell). Nevertheless, the MP asserts that 
decreased NK T cell number (MP:0008040) is a sub-
class of decreased T cell number (MP:0005018).

We consider this as a problem resulting from an insuf-
ficient ontological analysis of the underlying phenom-
enon, and offer an analysis which considers the cells of 
a certain cell type within a body as a collection. Based 
on an ontology of collections and collectives [15], we 
reformulate the axioms pertaining to classes using the 
amount (PATO:0000070) quality in phenotypes ontol-
ogies. Specifically, the MP ontology contains 569 pheno-
type classes related to the cardinality of a collection of 
cell types within a body and the HP ontology contains 63 
cardinality phenotype classes related to cells contained 
in a body. We apply the results of our analysis to the 
MP and HP, modify the axioms of abnormalities of col-
lections of cells, and reclassify the ontology to derive a 
novel taxonomy of phenotype classes. We then use this 

novel taxonomy with a semantic similarity measure to 
predict gene–disease associations based on phenotypic 
similarity between genes annotated by MP and disease 
annotated by HP. We find that our new formulation of 
cardinality phenotypes improves predictions of gene–
disease associations based on phenotypic similarity.

Materials and methods
Entity–Quality statements of collections
Phenotypes include the organism’s appearance, devel-
opment, and behavior. The phenotype of an organism is 
determined by its genotype as well as its interactions with 
the environment [16]. In biomedical ontologies, pheno-
types are represented using the EQ formalism [9, 12]. 
The EQ formalism splits a phenotype into two parts, the 
Entity (E) which is a class from an ontology that contains 
parts of an organism (such as anatomy or cell types), and 
a Quality (Q) from the PATO [10]. The common formal 
representation of phenotype classes using Description 
Logic syntax [17] is either

or

⊑ represents the subsumption or subclass axiom, ∃R.C 
represents the existential restriction of relation R of class 
C, and ⊓ represents conjunction. Here, we exclusively 
use the first formulation. This formulation allows for 
describing an entity with some qualitative or quantitative 
quality. For instance, the phenotype decreased vertebrae 
number (MP:0004645) is defined using the quality class 
decreased amount (PATO:0001997) and the entity class 
vertebra (UBERON:0002412). In Description Logic, the 
corresponding axiom is:

where ≡ represents equivalence.
Similar EQ axiom patterns are utilized in many pheno-

type ontologies including the HP and the MP ontology. 
However, the use of qualities that express an increased or 
decreased amounts may lead to inferences that could be 
considered to be incorrect. In Fig.  1, we illustrate some 
of the consequences of the current axiom patterns. In the 
first example, the axioms that define the classes decreased 
T cell number and decreased NK T cell number are:

(1)EQ ⊑ ∃has_part.(Q ⊓ ∃characteristic_of .E)

(2)EQ ⊑ ∃has_part.(E ⊓ ∃has_characteristic.Q)

(3)

‘decreased vertebrae number’ ≡ ∃has_part.(‘decreased amount’⊓

∃characteristic_of .vertebra ⊓ (∃has_modifier.abnormal))

(4)‘decreased T cell number’ ≡∃has_part.(‘decreased amount’

⊓ ∃characteristic_of .‘T cell’ ⊓ (∃has_modifier.abnormal))
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As a consequence of these axioms and the fact that 
every NK T cell is a T cell, we can infer that decreased NK 
T cell number is a subclass of decreased T cell number. 
decreased NK T cell number is a class representing the 
phenotype of having an abnormally low number of NK 
T cells; decreased T cell number is a class representing 

(5)

decreased NK T cell number ≡∃has_part.(‘decreased amount’

⊓ ∃characteristic_of .mature NK T cell

⊓ (∃has_modifier.abnormal))

the phenotype of having an abnormally low number of 
T cells in the blood. Considering the intended meaning 
of these classes, and the way in which they are used in 
databases of phenotypes, the inferred subclass statement 
is likely incorrect and not intended; it is not necessar-
ily the case that the decreased number of NK T cells in 
the blood results in a decreased number of T cells in the 
blood (because other types of T cells may increase as a 
consequence of a reduced NK T cell count).

In the second example (bottom of Fig. 1), we illustrate 
another example that may be even more explicit in how 

Fig. 1 This figure presents examples of a potentially incorrect inference between phenotypes. At the top is the axiom inferred 
between (decreased number of NK T Cells) and the phenotype (decreased number of T Cells), at the bottom is the axiom 
inferred between (absent NK T Cells) and the phenotype (absent T Cells) as well as the suggested revised classification
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the axioms can lead to consequences that contradict the 
intended meaning of the classes; we illustrate the relation 
between the classes absent NK T cells (MP:0008041) 
and absent T cells (MP:0008070), which are formally 
defined as:

Again, based on these axioms, it can be inferred that 
absent NK T cells is a subclass of an absent T cells, which 
is clearly not the case. Instead, the opposite should be 
true [13, 14]: if there are no T cells within a body, this will 
imply that there are no NK T cells in a body (because NK 
T cells are special types of T cells).

Ontologies and datasets
For our experiments, we used the MP [18] (04-11-2021 
release), and the HP [7] (10-10-2021 release). For the 
purpose of providing a quantitative evaluation, we 
acquired human gene–disease associations from the 
Mouse Genome Informatics (MGI) database [19] which 
are based on those from the Online Inheritance in Men 
(OMIM) database [20] and other sources, including 
NCBI’s Gene Review [21]. This dataset includes 4,930 
human genes, 4,619 OMIM diseases, and 17,833 human 
gene–disease associations. Among those, 425 diseases 
have at least one cardinality phenotype with 873 gene–
disease associations. We downloaded this data in March 
2023 from the MGI (file MGI_DO.rpt). To annotate 
the human genes, we use the phenotypes of their mouse 
orthologs. This information we acquired from MGI from 
the file HMD_HumanPhenotype.rpt. The version we 
used was downloaded in March 2023. Human disease–
phenotype annotations were obtained from the HP data-
base [22], from the file phenotype_to_gene.txt 
downloaded in March 2023. Mouse gene–phenotype 
annotations were obtained from MGI database MGI_
GenePheno.rpt which uses MP, downloaded in March 
2023.

Integrating HP and MP with corrected cardinality 
phenotypes
To evaluate our new representation of cardinality phe-
notypes, we integrated HP and MP, extended by refor-
mulating cardinality phenotypes with our proposed 
representations, as described in Representing phenotypes 

(6)‘absent NK T cells’ ≡∃has_part.(absent

⊓ ∃characteristic_of .‘mature NK T cell’) ⊓ (∃has_modifier.abnormal))

(7)‘absent T cells’ ≡∃has_part.(absent

⊓ ∃characteristic_of .T cell) ⊓ (∃has_modifier.abnormal))

of collections section. We created 211 collection classes, 
634 phenotypes of collection classes, and 214 grouping 
classes. Initially, we extended the MP ontology and the 
HP ontology independently, while maintaining the same 
identifiers for the grouping classes and the collection of 

cell classes. Then, we categorized both extended ontolo-
gies using the Konclude reasoner [23]. We apply the 
Konklude reasoner as it supports OWL 2 DL and the axi-
oms we have defined for collections and collection phe-
notypes include negation and universal restrictions. We 
combine MP, HP, and the (deductively closed) extension 
with collections. Then, we add equivalent class axioms 
between the MP and HP classes using the Agreement-
MakerLight ontology alignment tool [24]. Our approach 
is illustrated in Fig. 2.

Semantic similarity
We utilized Resnik’s semantic similarity [25] to compare 
a set of phenotype classes representing genes and dis-
eases. Resnik’s similarity is a similarity measure based on 
information content (IC). IC is a class specificity measure 
[26] and is defined as:

where p represents the probability of a class being used 
to annotate an entity (gene or disease). The similarity 
between two ontology classes is defined as the informa-
tion content of the most informative common ancestor 
(MICA) of two classes:

where gi is defined as the ith phenotype annotation of 
gene g and dj is the jth annotation of disease d. As we 
compare groups of classes, we use the best match average 
method (BMA) [27] to calculate the similarity between 
genes and diseases:

(8)IC(class) = −log(p(class))

(9)simResnik(gi, dj) = IC(MICA(gi, dj))

(10)simBMA(gene, disease) =

(11)

gn
i=1 max1≤j≤dn (simResnik (gi , dj))

2 ∗ gn
+

dn
i=1 max1≤j≤gn (simResnik (di , gj))

2 ∗ dn
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Implementation
We developed our software in Groovy [28] using the 
OWLAPI [29] to generate ontology axioms and using 
the Semantic Measures Library (SML) [30] to compute 
semantic similarities. We used the Numpy library [31], 
scikit-learn [32] for evaluation, and Protégé [33] to visu-
alize the ontology and classes.

Results
Ontological analysis of collections and maximal collections
Our aim is to find a formal ontological representation 
of phenotypes of collections of cells (and other entities) 
that is as close as possible to the EQ formalism used in 

the phenotype ontologies yet avoids the problematic 
inferences we identified. To achieve this goal, we reuse 
an ontological theory of collections and collectives [15] 
which introduces different properties of collections and 
collectives. Here, we are primarily concerned with defin-
ing collections of entities (such as cells) that are either 
contained in or part of an organism.

We focus on biomedical applications for our formula-
tion where we are interested in collections of entities that 
are part of a body. As such, members of a collection can 
change over time, and collections can be empty (such as 
in the case of absent T cells). Empty collections are impor-
tant as they are used to signify disorders, such as those 

Fig. 2 This figure explains the processes we followed to integrate MP, HP, and the expanded collection classes. We applied this update to MP 
and HP separately before classifying both ontologies using the Konklude reasoner. We generated a merged ontology using these additional axioms, 
MP and HP, and pre-computed equivalence alignments of MP and HP
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resulting from congenital abnormalities, where certain 
types of cells or types of chemicals cannot be produced 
and therefore these collections are empty.

We can define mereological relations between collec-
tions [34]. Of particular importance for us is the rela-
tion between subclass (of members) and the parthood 
between the respective collections. For example, every T 
cell is a kind of lymphocyte; consequently, while a collec-
tion of T cells is a kind of collection of lymphocytes, it is 
also the case that every collection of T cells is a part of a 
collection of lymphocytes.

This may just be trivially true due to the reflexivity of 
part-of as long as we do not restrict these collections fur-
ther. However, we are not particularly interested in just 
defining collections of types of cells; there are many col-
lections of T cells that are part of a human body. Instead, 
we are interested in the notion of a “maximal” collection 
of entities that are a part of a body, i.e., the collection of 
all entities of type X that are a part of a single (instance of 
a) body. We call this the maximal collection of X within 
a Y (where Y is a class representing an organism or the 
body of an organism). We can define this class in first 
order logic (where ↔ represents bi-conditional logical 
symbol, read as “if and only if ”, ∧ is a conjunction, ∃ and ∀ 
are the existential and universal quantifiers):

or, using temporalized parthood and membership rela-
tions (such as used in the Basic Formal Ontology,  
BFO [35]):

We cannot equivalently represent these axioms in a 
Description Logic that is used to represent phenotype 
ontologies. However, we may be able to assume that the 
universe over which we quantify ranges only over enti-
ties that are a part of a single body, allowing us to omit 
the condition on the right-hand side of Eqn. 12. We then 
define X-Collection as the collection of all the individu-
als of type X (where “all” ranges over parts of Y, e.g., the 
parts of a body):

While this is an axiom in first order logic, we are 
mainly interested in an implementation in a Descrip-
tion Logic such as the one underlying OWL 2 DL [36] so 
that our results are compatible with the MP and HP. In 
Description Logic, we assert two axioms for these collec-
tion classes containing X:

(12)
X-Collection(x) ↔ (∃y(Y (y) ∧ (∀a(X(a) ∧ part_of (a, y)) ↔ has_member(a, x))))

(13)
X-Collection(x, t) ↔ (∃y(Y (y) ∧ (∀a(X(a) ∧ part_of (a, y, t)) ↔ has_member(a, x, t))))

(14)X-Collection(xc) ↔ (∀a(X(a) ↔ has_member(a, xc)))

(15)X-Collection ⊑ ∀has_member.X

These axioms do not yet capture the intuition that 
an X-Collection should be the collection of all X in the 
domain of discourse; we can further strengthen these axi-
oms by asserting that there is only one such collection:

Here, x-collection is a new individual name that is not 
used anywhere else, and {...} is the Description Logic 
constructor for nominals (class descriptions defined by 
enumerating the class members). Because every instance 
of X will be a member of this collection (Eqn. 16), X will 
approximate the notion of the maximal collection of Xs 
within a body.

Nevertheless, this is only a weak approximation of the 
first order logic axiom. In particular, we can infer from 
the first order logic axioms that, if X is a subclass of Y, 
then every X_Collection is a part of some Y _Collection . 
In Description Logic, this is not inferred and we instead 
assert this consequence directly as a set of axioms: 
given an ontology O and its deductive closure O⊢ , and 
for every pair X and Y such that X ⊑ Y ∈ O⊢ , we assert 
X-Collection ⊑ ∃part_of .Y-Collection.

Representing phenotypes of collections
Our aim is to identify a set of axioms for representing 
quantitative phenotypes (phenotypes of collections) so 
that the inferences drawn from the axioms more accu-
rately reflect the intended inferences from these axioms, 
while we aim to preserve interoperability with other axi-
oms in phenotype ontologies that do not pertain to col-
lections; consequently, we still have to follow the EQ 
formalism and the way it is implemented in phenotypes 
ontologies.

Qualities of cells and qualities of collections
We will use the following terms to refine the formal 
characterization of cardinality phenotypes in phenotype 
ontologies:

• X and Y are classes from an anatomy or cell type 
ontology, such as the class T cell or NK T cell;

• X-Collection and Y-Collection are classes represent-
ing (maximal) collections where all the members of 
these collections are instances of X and Y, respec-
tively.

• amount is a quality (including the class amount 
(PATO:0000070), increased amount (PATO: 
0000470), decreased amount) (PATO:0001997),  

(16)X ⊑ ∃member_of .X-Collection

(17)X-Collection ≡ {x-collection}



Page 7 of 11Alghamdi and Hoehndorf  Journal of Biomedical Semantics            (2023) 14:9  

absent (PATO:0000462), and duplicated (PATO: 
0001473) defined in the PATO ontology.

The current phenotype ontologies represents phe-
notypes of collections in the EQ formalism where the 
Entity E is a cell class and the quality Q is a phenotype 
class from PATO (Eqn. 1); the class from PATO will be 
a subclass of the quality quantitative in PATO, such as 
amount. We reformulate these phenotype classes using 
the collection classes we defined earlier. We define a 
CP class that represents a cardinality phenotype on a 
collection of cells, employing an EQ pattern where the 
entity is the collection of cells, X-Collection , defined as 
follows:

Specifically, for a phenotype of the collection of T cells, 
we first define the class T cell-Collection and then an 
Abnormality of T cell number as:

Another type of cardinality abnormality is the absence of 
certain entity X. These absence phenotypes are currently 
formulated using the same EQ patterns, with Q being the 
class absence (PATO:0000462), therefore leading to the 
consequence that an absence of NK T cells is a subclass of 
an absence of T cells. We can use the notion of the empty 
collection to formulate absence:

Here, ⊥ represents the bottom concept interpreted as an 
empty set. While we can use this notion of an empty collec-
tion, we still have to establish a relation between the empty 
collection of X and a body not having any instance of X as 
part; this would be possible in first order logic but not easy 
in Description Logic. Consequently, we also use the follow-
ing formulation to relate absence to the parthood relation 
(where ¬ represents negation):

By defining absent_X twice we also make the right-
hand sides of the definitions equivalent and thereby can 
infer that having a quality of an empty collection of X is 
equivalent to not having a quality of X, i.e., we ensure 

(18)

CP ⊑ ∃has_part.(amount ⊓ (∃characteristic_of .X-Collection)⊓

(∃has_modifier.abnormal))

(19)‘Abnormality of T cell number’ ⊑ ∃has_part.(amount⊓

(∃characteristic_of .‘T cell-Collection’) ⊓ (∃has_modifier.abnormal))

(20)

absent_X ≡ ∃has_part.(quality ⊓ ∃characteristic_of .

(X_Collection ⊓ ∀has_member.⊥) ⊓ (∃has_modifier.abnormal))

(21)
absent_X ≡ ¬∃has_part.(quality ⊓ ∃characteristic_of .X)

equivalence between the two distinct formulations of 
absence.

We further define grouping classes, based on collections 
and based on qualities. For instance, any cardinality abnor-
mality, whether it is a decrease or increase in number of T 
cells can be classified as a cardinality abnormality of collec-
tion of T cells. Therefore, we create the class CXP to group 
all the abnormalities of a certain collection XCollection 
defined as follows:

Another way to classify cardinality phenotypes is to 
group them based on qualities. For instance, we create 
a class that groups all the “increased cardinality” pheno-
types. Therefore, we create the class CQ to group abnor-
malities of type amount of any collection XCollection 
using the root collection class C. CQ is defined as follows:

Figure 3 illustrates the use of these grouping classes.

A revised hierarchy of cardinality phenotypes improves 
prediction of genes associated with rare disease
We quantitatively evaluate the new classified phenotype 
ontologies based on our new formulation of cardinal-
ity phenotype. The approach we use follows a task-based 
evaluation [37, 38]. In a task-based evaluation, we apply 
different variants of an ontology and evaluate their per-
formance with respect to a specific task. We utilize an 
ontology-based phenotypic similarity measure to pre-
dict the association between genes and diseases. For 
this experiment, we utilized a dataset from the Mouse 
Genome Informatics (MGI) database [21] which includes 
associations between human genes and Mendelian dis-
eases as reported in OMIM database. Using phenotypes 
associated with mouse orthologs of human genes (from 
MGI) and human disease phenotypes from the HP data-
base [7], we calculate the degree of similarity between 
their phenotypes, rank genes for each disease, and deter-
mine whether we can identify the correct disease-associ-
ated gene at a certain rank; we quantify the performance 
using the area under the receiver operating characteris-
tic (ROC) curve [39], similar to other studies [3, 4]. To 
directly compare human and mouse phenotypes, we use 
an integrated ontology consisting of HP and MP, where 

(22)

CXP ⊑ ∃has_part.(quality ⊓ ∃characteristic_of .X_Collection⊓

∃has_modifier.abnormal)

(23)CQ ⊑ ∃has_part.(Q ⊓ ∃characteristic_of .C ⊓ ∃has_modifier.abnormal)
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equivalences between HP and MP classes have been 
determined using an automated ontology alignment tool 
(see Integrating HP and MP with corrected cardinality 
phenotypes section). The use of ontology alignment is in 
contrast to an integration based on axioms as used in the 
integrated Monarch knowledge graph [40] or the Phe-
nomeNET ontology [4]; while the integrated ontologies 
may provide more alignments between classes, relying 
exclusively on ontology alignment allows us to evaluate 
the modifications to HP and MP directly without the 
need to rewrite or add further axioms. Figure 4 illustrates 
the steps of our evaluation.

We compare only diseases and genes which are anno-
tated with at least one cardinality phenotype, using 425 

diseases and 4,471 genes. We first compare their phe-
notype similarity only based on cardinality phenotype 
classes, i.e., ignoring all other phenotypes; we compare 
their similarity twice: first we use the original classifica-
tion of phenotype classes in HP and MP, and, second, we 
use the revised classification of the cardinality pheno-
type classes based on our ontological analysis. For each 
disease, we rank all genes based on their similarity (the 
gene with the highest phenotype similarity is ranked 
first), and evaluate where we rank the correct disease-
associated gene using the area under the ROC curve 
(ROCAUC).

Using the original classification of cardinality phenotypes 
in HP and MP, we obtain a ROCAUC of 0.6931 whereas the 

Fig. 3 Illustration of grouping classes; the green class is an example of a quality-based grouping class decreased cardinality. This class will be inferred 
to be the superclass of every abnormality of a decreased cardinality of any collection of cells, including decreased cardinality of B cells, decreased 
cardinality of T cells, decreased cardinality of lymphocytes, etc. the blue classes are examples of grouping based on the entities collection of T cell, 
collection of B cell, and collection of lymphocytes. For instance, the class abnormality of collection of T cell will be inferred to be the superclass of any 
abnormality of collection of T cells, including decreased cardinality of T cells, and absent T cells 
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ROCAUC increases to 0.7384 with our revised hierarchy. 
While this demonstrates an improvement, it is not a real-
istic scenario in finding gene–disease associations because 
the majority of phenotypes is omitted. As a second test, we 
compared the same set of genes and diseases using all their 
phenotype annotations (cardinality phenotypes and non-
cardinality phenotypes). Again, the ROCAUC improves 
from 0.9166 with the original classification of phenotypes 
to 0.9265 with the revised classification.

Discussion
We provide an ontological analysis of the question what 
constitutes an abnormality of a collection; is an abnor-
mality the absence of a normal member of a collection or 
the presence of a single abnormal member? In phenotype 
ontologies such as MP or HP, collections are not explic-
itly introduced. Furthermore, collections are not explicitly 
available in anatomy ontologies; while Uberon [41] contains 

classes such as Collection of hairs (UBERON:0010164), it 
does not contain collections of cells.

There has been a substantial body of work on defin-
ing absence of entities in phenotype ontologies [13, 
14]. However, the majority of this research has also 
focused on the absence of single anatomical entities 
or processes, not on the absence of members of collec-
tions. Our analysis, building on an established theory 
of collections and collectives [15], fills this gap. We 
also provide axioms in first order logic and an approxi-
mation in Description Logic that leads to desirable 
entailments.

Importantly, we are able to evaluate our ontological 
treatment of abnormalities of collections both qualita-
tively (through automated reasoning) and quantitatively 
through a task-based evaluation. Phenotype ontologies are 
widely used in finding gene–disease associations or rank-
ing and prioritizing variants in rare disease [3, 42–47]. 

Fig. 4 This figure present the workflow of this work with the example of the phenotype (increased number of T Cells) 
and the phenotype (absent T Cells). In this particular example, we created the class (collection of T cells) representing all the T 
cells. Then we created the phenotype classes (increased number of T Cell within a collection) and (absence of all T 
Cells). We added two structuring classes, one based on the quality (increased amount) and one based on the collection (collection 
of T cell). In order to evaluate, we applied a quantitative evaluation based on a biomedical task, in particular the gene–disease association 
prediction task using semantic similarity between phenotypes
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Our task-based evaluation demonstrates how our work 
is directly relevant to these kind of applications and how 
refinement of ontologies can improve the application of 
phenotype ontologies for personalized interpretation of 
genomic variants.

One specific example where we improve the predic-
tion of gene–disease associations is for the disease 
Omenn syndrome (OMIM:603554) which is associated 
with three genes: DCLRE1C (ENTREZ:64421), RAG2 
(ENTREZ:5897) and RAG1 (ENTREZ:5896). Origi-
nally, using phenotypic similarity based on MP and HP, 
the first correct gene associated with Omenn syndrome 
was found at rank 409; with the improved phenotype 
representation, the highest-ranked disease-associated 
gene was found at rank 11. Among the annotations of 
this disease, we found the class Severe B lymphocytope-
nia (HP:0005365), i.e., absent B cells. In the seman-
tic similarity computation, the information content 
of this class changed from originally 6.2645 bits to 
10.8289 with the use of collection phenotypes. Simi-
larly, among the classes that are used to annotate all of 
the three genes associated with this disease, we find the 
class absent B cell (MP:0008071) which originally had 
an information content of 6.0927 bits and increased to 
7.1653 using the new ontology formulation of a collection 
of classes.

The application of collections to represent cardinal-
ity phenotypes extends beyond the cardinality of col-
lections of cells. Similar issues as those we identified 
for collections of cells can be found, for instance, for 
the cardinalities of collections of chemicals. However, 
for chemicals, the entity in which they are contained 
(or rather, the entity with respect to which average 
numbers are counted) may not be “body” but rather 
certain cell types within a body. For example, the phe-
notypes Increased level of galactonate in red blood 
cells (HP:0410063) or Increased level of N-acetylneu-
raminic acid in fibroblasts (HP:0410157) or Storage in 
hepatocytes (HP:0031137) represents the increase of 
accumulated material in specific cell types, not within 
the entire body. Here, a refined ontological analysis may 
“stack” collections, i.e., define collections of chemicals 
within members of collections of cell types. However, 
we leave this analysis for future work.

Conclusion
We have identified axioms that cause undesirable infer-
ences in several phenotype ontologies. These axioms 
relate to cardinality phenotypes, i.e., quantitative phe-
notypes related to the amount (PATO:0000070) qual-
ity. We have provided a novel ontological analysis of 
these phenotypes based on an ontological theory of col-
lections; our analysis allowed us to reformulate a large 

number of classes in phenotype ontologies, and reclas-
sify the ontology in order to derive a new taxonomy of 
phenotype classes. We demonstrated that this novel 
classification can improve the use of ontologies in bio-
medical tasks.
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