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Abstract 

Background Predicting gene-disease associations typically requires exploring diverse sources of information 
as well as sophisticated computational approaches. Knowledge graph embeddings can help tackle these challenges 
by creating representations of genes and diseases based on the scientific knowledge described in ontologies, which 
can then be explored by machine learning algorithms. However, state-of-the-art knowledge graph embeddings are 
produced over a single ontology or multiple but disconnected ones, ignoring the impact that considering multiple 
interconnected domains can have on complex tasks such as gene-disease association prediction.

Results We propose a novel approach to predict gene-disease associations using rich semantic representations 
based on knowledge graph embeddings over multiple ontologies linked by logical definitions and compound 
ontology mappings. The experiments showed that considering richer knowledge graphs significantly improves 
gene-disease prediction and that different knowledge graph embeddings methods benefit more from distinct types 
of semantic richness.

Conclusions This work demonstrated the potential for knowledge graph embeddings across multiple and inter-
connected biomedical ontologies to support gene-disease prediction. It also paved the way for considering other 
ontologies or tackling other tasks where multiple perspectives over the data can be beneficial. All software and data 
are freely available.

Keywords Ontologies, Knowledge graph, Knowledge graph embeddings, Machine learning, Gene-disease 
association prediction

Introduction
More than 1,400 Mendelian conditions (single genetic 
locus) present an unknown molecular cause  [1]. Addi-
tionally, almost all medical conditions are somehow 
influenced by human genetic variation. Despite the 
advancements in genomics over the past two decades, 
identifying the genetic basis of diseases remains an 

open challenge. Furthermore, most diseases present a 
highly heterogeneous genotype, which hinders biologi-
cal marker identification. Diseases like Autism Spec-
trum Disorder that often have multiple etiologies with 
the involvement of possibly hundreds of different genes 
represent an additional challenge [2]. However, this chal-
lenge also presents itself as an opportunity to under-
stand the mechanisms of diseases and human biology by 
exploring the interplay between genes, phenotypes, and 
diseases, uncovering new diagnostic markers, and thera-
peutic targets.

Genomic studies and high-throughput experiments, 
such as linkage studies, generate a large amount of data 
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that can point toward associations between genes and 
diseases. However, precisely validating these associations 
in the wet lab is expensive and time-consuming. This 
fostered the development of computational approaches 
for predicting gene-disease associations and identifying 
the most promising associations to be further validated. 
These approaches typically explore diverse databases 
(e.g., DisGeNet [3], dbSNP [4]) and employ various com-
putational approaches ranging from machine learning to 
network-based algorithms.

Opap and Mulder [5] have identified three main chal-
lenges in gene-disease associations: 

1. how to represent the data in a readily accessible man-
ner for researchers;

2. how to attribute evidence to assertions made by algo-
rithms;

3. how to scale the algorithms with the rate of increase 
in data size and complexity.

Methods that explore the scientific knowledge described 
in ontologies can provide an answer to the first two chal-
lenges. Ontologies are formal and explicit specifications 
of a conceptualization of a given domain [6]. They pro-
vide a structured way to define concepts and relations 
between them and have been used in the biomedical 
domain for the past two decades to support a shared 
and computationally amenable description of biologi-
cal entities. Hundreds of biomedical ontologies have 
been developed, covering almost all domains of biologi-
cal and biomedical research. Biomedical ontologies have 
become increasingly important to structure and describe 
existing biological knowledge and have propelled a new 
panorama of semantic biomedical data, where millions 
of semantically described biomedical entities are anno-
tated with ontology concepts and structured in knowl-
edge graphs. Knowledge graphs structure and link data 
described through an ontology, creating a graphical rep-
resentation of the information [7]. However, ontologies 
and knowledge graphs do not directly address the third 
challenge, but can be explored by different algorithmic 
approaches to tackle the challenges of data size and, per-
haps more importantly, complexity.

Several well-established works explore biomedical 
ontologies to support gene-disease association pre-
diction, with some exploring ontology annotations 
directly  [8, 9] while others use semantic similarity  [2, 
10, 11], i.e. the similarity between two entities based 
on their shared meaning under an ontology  [12]. More 
recently, approaches based on knowledge graph embed-
dings (KGE)  [13] have also been successful in predict-
ing gene-disease associations [14–16]. Knowledge graph 
embeddings allow the representation of each entity with 

a vector that approximates the similarity properties of the 
graph and can then be used either to compute similar-
ity or to feed a machine learning algorithm. Knowledge 
graph embeddings support in principal more powerful 
representations than semantic similarity since they con-
sider multiple types of relations and are multi-dimen-
sional. However, these works employ straightforward 
approaches that work either over a single ontology  [14, 
16] or multiple but disconnected ones  [15] ignoring 
potential semantic links across different ontologies. In 
a complex task such as predicting gene-disease asso-
ciations, employing a single ontology may be insufficient 
since multiple perspectives, such as gene function and 
phenotype, may be necessary for prediction, and estab-
lishing richer connections between the ontologies can 
help integrate the different perspectives. Figure 1 shows 
an example of a relationship between a gene and disease 
through gene functions and phenotypes. In preliminary 
work, we established that knowledge graph embeddings 
outperform semantic similarity measures in gene-disease 
prediction and that combining multiple ontologies has 
the potential to support gene-disease prediction [17].

The main goal of this work is to investigate the impact 
of the semantic richness of the knowledge graph in the 
prediction of gene-disease associations employing knowl-
edge graph embeddings. Our guiding hypothesis is that 
richer representations covering both multiple domains 
and linking them with more complex relations can 
improve the performance of knowledge graph embed-
dings methods in gene-disease association prediction. 
We propose a novel approach for gene-disease predic-
tion that is based on building rich knowledge graphs to 
represent both genes and diseases under multiple richly 
connected ontologies and then exploring it with exist-
ing knowledge graph embeddings methods. We investi-
gate the role of logical definition and compound ontology 
mappings in establishing links between different ontolo-
gies and how different knowledge graph embeddings 
methods effectively explore them.

Methods
Overview
We model the problem of predicting gene-disease asso-
ciations as a supervised learning task where positive 
examples are pairs of one gene and one disease related 
to it, and negative examples are pairs of genes and dis-
eases without known association. Genes and diseases are 
represented by vectors generated by applying knowledge 
graph embeddings methods over a knowledge graph 
composed of genes, diseases and ontologies that describe 
them. These embeddings are combined with different 
strategies to represent gene-disease pairs, which are then 
fed to machine learning models for training.
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An overview of the methodology is shown in Fig.  2. 
In a preliminary step, we create the gene-disease asso-
ciation dataset by exploring DisGeNET. Then, the first 
step in the approach is to integrate the different ontolo-
gies and annotation data to build the knowledge graph. 

In a second step, the embeddings that represent the 
gene and the disease according to their representation 
in the knowledge graph are created. In a third step, these 
embeddings are combined using vector operators pro-
ducing a representation of genes and diseases in what 

Fig. 1 Example of a direct relationship between hearing loss and the EPS8LA Gene

Fig. 2 Overview of the methodology with four basic steps: 1) build the knowledge graph with ontologies and annotations; 2) create embeddings 
to represent each gene and disease; 3) produce a final vector of the pairs in the dataset; 4) gene-disease association prediction
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then becomes a shared semantic space. Finally, in a fourth 
step, supervised learning algorithms are trained over the 
embeddings to predict gene-disease associations. This 
approach is also evaluated against a non-machine learn-
ing-based baseline that computed the cosine similarity of 
knowledge graph embeddings.

This methodology is applied to a diverse set of knowl-
edge graphs that we create to evaluate the impact of the 
semantic richness of the knowledge graph on gene-dis-
ease prediction. All experiments were performed on the 
same machine1.

Data
Gene‑disease associations
84038 curated gene-disease associations were extracted 
from DisGeNET - a discovery platform that contains a 
comprehensive catalogue of genes and variants associ-
ated with human diseases  [3]. These pairs corresponds 
to combinations between 9703 genes and 11181 dis-
eases, with the average number of genes per disease 
and diseases per gene being two. These pairs were then 
filtered to account for potential data leakage. Data leak-
age is when information from outside the training data-
set is used to create the model  [18]. DisGeNET  [3] 
includes gene-disease associations extracted from mul-
tiple sources, including Uniprot  [19], OMIM  [1], or 
Orphanet  [20], which are the same sources used to cre-
ate some of the ontology annotations. These gene-disease 
pairs were filtered out resulting a total of 73469 pairs, 
composed of 8545 genes and 6490 diseases remained. 
Finally, only genes and diseases with annotations to HP 
and GO, or just HP respectively, were kept. This resulted 
in a total of 2716 genes, 1807 diseases, and 8189 gene-
disease associations.

Considering that negative samples are not included in 
DisGeNET, we employed a random sampling method 
to create negative examples composed of the genes and 
diseases present in the positive examples but without 
known associations between them, building a final bal-
anced dataset with 16378 entries.

Ontologies and knowledge graphs
The knowledge graphs built to support the experiments 
are composed of one (or more ontologies) and the gene 
and disease annotations to them. We selected the Human 
Phenotype Ontology (HP) since it provides annotations 
of both genes and diseases according to the phenotypes 
they are related to and the Gene Ontology (GO), that 
provides functional annotations for gene products.

The Human Phenotype Ontology provides a compre-
hensive resource for the analysis of human diseases and 
phenotypes, offering a computational bridge between 
genome biology and clinical medicine. This ontology is 
organized as five independent subontologies covering 
different categories: Frequency, Clinical Course, Clinical 
Modifier, Mode of Inheritance and Phenotypic Abnor-
mality  [21, 22]. In addition, it also provides annotations 
to diseases and human genes. In the latter case, all phe-
notype classes linked to a disease caused by variants of a 
certain gene are assigned to that gene.

The Gene Ontology is the most successful case of the 
use of an ontology in biomedical research, supporting the 
functional annotation of gene products for multiple spe-
cies under three branches: biological process, molecu-
lar function and cellular component  [23, 24]. The Gene 
Ontology Annotation initiative provides annotations for 
gene products, which associate a gene product with a GO 
class (also referred to as a GO term) identified the type of 
evidence behind the association.

Logical definitions and ontology mappings
The HP also includes logical definitions that provide 
a definition of its classes in terms of a composition of 
classes from different ontologies with complex semantic 
relations, facilitating interoperability and data integra-
tion  [25]. Logical definitions can be explored to bridge 
domains and contextualize relations between differ-
ent entities, such as genes and diseases. An example of 
a logical definition is the one that states that the Human 
Phenotype ontology class for “Hearing impairment” 
(HP:0000365) is equivalent to a restriction that involves 
four other ontologies, as depicted in Fig. 3.

To uncover additional links between HP and GO, we 
employed AML-Compound2 [26] a variant of the Agree-
mentMakerLight ontology matching system that is able 
to retrieve relations between ontology classes  [27, 28]. 
Using an empirically determined threshold of 0.8, we 
found 494 mappings, where 37 were identical to the 
existing logical definitions.

Knowledge graph integration
In simple terms, a knowledge graph is composed by enti-
ties, their relations and an ontology that describes their 
domain  [29]. We built different knowledge graphs com-
posed by different sets of ontologies and types of seman-
tic links between them. In these graphs, entities are not 
instances of classes of the ontologies in the graph (the 
ontologies do not describe what genes and diseases are), 

1 Machine specifications: Ncores: 16; Disk: SSD 1TB + 4TB HDD; RAM: 
64 GB 2 https://github.com/AgreementMakerLight/AML-Compound
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but are connected to the ontology classes that describe 
their different aspects.

To evaluate the impact that knowledge graph semantic 
richness has on gene-disease association prediction we 
created different knowledge graphs: 

(i) HPf: composed by the full version of the HP ontology 
and annotations for genes and diseases;

(ii) HPf+GO: composed by the full version of the HP 
ontology merged with GO using a virtual root, and 
including HP annotations (for genes and diseases) 
and GO annotations (for genes);

(iii) HPs+GO+LD: composed by HP without logical 
definitions merged with GO using a virtual root, 
HP annotations (for genes and diseases) and GO 
annotations (for genes) and logical definitions for 
HP classes that reference GO;

(iv) HPs+GO+Map: composed by HP without logical 
definitions merged with GO using a virtual root, 
HP annotations (for genes and diseases) and GO 

annotations (for genes) and mappings between HP 
classes and GO classes;

(v) HPs+GO+LD+Map: the union of HPs+GO+LD 
and HPs+GO+Map;

HPf represents the baseline, where a single ontology is 
used. HPf+GO, represents an enriched knowledge graph, 
with two ontologies being used and all logical definitions 
present in HP. We created other three variants based on 
a streamlined version of HPf+GO where all logical defini-
tions present in HPf were removed which is strategically 
enriched with only logical definitions and/or mappings 
with the GO to produce the final three knowledge 
graphs. Regarding these, to simplify the graph embed-
dings approach, as seen in the example of Fig.  4, the 
existing logical definitions and mappings are simplified 
to a more direct relation between the HP class and GO 
class through an equivalent class statement. This allows 
the extraction of a single triple that includes classes from 
each ontology to power triple-based approaches, and 

Fig. 3 Example of a logical definition of the class Human Phenotype ontology class for “Hearing impairment” (HP:0000365): ’Hearing impairment’ 
EquivalentTo ’has part’ some (’decreased rate’ and (’inheres in’ some ’sensory perception of sound’) and (’has modifier’ some ’abnormal’))

Fig. 4 Example of a Logical definition simplified with a more direct relation between two classes. The HP term for “Hearing impairment” 
(HP:0000365) is related to a restriction that involves the GO term “Sensory perception of sound” (GO:0007605)
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shorter paths linking the ontologies to support random-
walk based knowledge graph embeddings methods. 
The simplification is important given each original logi-
cal definition has restrictions with four other ontologies 
when we only want to gather relations between HP and 
one of them specifically. Table 1 summarizes relevant sta-
tistics about the ontologies for each knowledge graph as 
well as knowledge graphs without annotations to specific 
branches created for further studies.

Knowledge graph embeddings and representation
Knowledge graph embeddings were used to learn fea-
ture vectors for entities in each knowledge graph and 
create representations of each gene and disease, cov-
ering four types of popular knowledge graph embed-
dings methods: Translational Distance (TransE  [30]), 
Geometric (HAKE  [31]); Semantic Matching 
(DistMult  [32]); and Path-based (RF2Vec  [33], 
OWL2Vec*  [34] and OPA2Vec  [14]). Every method 
generated embeddings with 200 dimensions (Table 1 in 
Additional file).

Our focus on path-based methods is guided by the 
intuition that path-based methods are better suited to 
capture long-range relations. This aspect is relevant in 
our case, where there are no relations between instances 
of the graph, so to uncover the relations between genes 
and diseases, the ontology graph must be explored, mak-
ing it necessary to capture relations at a greater distance. 
Moreover, OPA2Vec also explores embeddings of the 
textual component of the ontologies, which is typically 
rich in biomedical ontologies, with the HP and GO being 
no exception.

After the knowledge graph embeddings methods, each 
gene-disease pair corresponds to two vectors, fi(g) and 
fi(d) , associated with a gene and a disease, respectively. 
We defined a binary operator over the corresponding fea-
ture vectors g and d in order to generate a joint repre-
sentation r(g , d) such that r : V × V −→ R

d′ where d’ is 

the representation size for the pair (g , d) . Several choices 
for the binary operator were considered from a set of 
commonly employed operators with knowledge graph 
embeddings [35]. The chosen operators are summarized 
in Table 2.

Gene‑disease prediction
The knowledge graph embeddings were used to sup-
port prediction using two different approaches: machine 
learning (with Random Forest (RF)  [36], eXtreme Gra-
dient Boosting (XGB)  [37]) and similarity-based (with 
cosine similarity and learned threshold using grid 
search). A grid search was also employed to obtain opti-
mal parameters for the machine learning algorithms 
(Table 2 in Additional file).

We performed a stratified ten-fold cross-validation 
and, for each fold, the Weighted Average of F-measures 
(WAF) of classifications were assessed and reported in 
the form of a median. Also, the same folds were used 
throughout all experiments, including the baseline pre-
sented in the following section.

Results and discussion
Our main experiment is a comparative evaluation using 
knowledge graphs with different levels of semantic rich-
ness resulting from one or more ontologies, and the use 
of LDs and mappings. Additional experiments focused on 
different ablations studies that removed gene annotations 

Table 1 Statistics for each ontology and knowledge graph regarding classes, annotations, logical definitions and mappings

HP version date October 2020; GO version date December 2020. HP branches: Frequency (F); Clinical Course (CC); Clinical Modifier (CM); Mode of Inheritance (MI); 
Phenotypic Abnormality (PA). GO branches: Biological Process (BP); Cellular Component (CC); Molecular Function (MF)

HP HP(‑F) HP(‑PA) HP(‑MI) HP(‑CC) HP(‑CM) HP(Only PA)
Classes 15340

Gene Annotations 136068 1360067 5988 131960 136050 135696 130080

Disease Annotations 40583 40583 2593 38642 40572 40471 37990

GO GO(‑BP) GO(‑CC) GO(‑MF) GO(OnlyBP)
Classes 44117

Gene Annotations 76161 33482 57938 60846 42651

HPf HPs+GO+LD HPs+GO+Map HPs+GO+LD+Map
LDs or Mappings 3203 350 494 844

Table 2 Choice of binary operators

Operator Definition

Concatenation fi(g)+ gi(d)

Average fi (g)+gi(d)
2

Hadamard fi(g)× gi(d)

Weighted-L1 |fi(g)− gi(d)|

Weighted-L2 |fi(g)− gi(d)|
2
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to HP, or gene and disease annotations related to specific 
annotations of GO and HP.

Vector combination approaches for embeddings
One of the challenges in achieving a rich semantic rep-
resentation of genes and diseases when using knowledge 
graph embeddings is to define a suitable approach to 
combine the gene and disease vectors.

Initial experiments with a stratified 70% training 
and 30% testing split compared the five chosen vector 
operations with AUC-ROC evaluated using the three 
best knowledge graph embeddings methods (RDF2Vec, 
OPA2Vec, and DistMult) coupled with Random Forest 
classifier (one of the best-performing machine learning 
algorithms) using the richest knowledge graph (HP-sim-
ple + LD + GO). The results are summarized in Fig. 5.

The Hadamard operator outperforms other operators 
when using RDF2Vec, OPA2Vec, and TransE, whereas 
Concatenation works best with OWL2Vec* and Dist-
Mult. Overall, Hadamard and Concatenation are the top 
two performing combination approaches, with Hadamard 
achieving the best prediction results when combined with 
OPA2Vec and Random Forest or XGB. While Hadamard, 
Average, Weighted-L1, and Weighted-L2 all produce 
vectors of the same size (200), Concatenation produces 
double-sized vectors (400). This impacts the training time 
of the machine learning algorithms. Going forward, all 
reported experiments employ the Hadamard operator.

Impact of semantic richness of the knowledge graphs
Table  3 illustrates the impact of employing knowledge 
graphs with varying degrees of semantic richness with 
different embedding methods3

Predictions made with machine learning algorithms 
achieve better results than cosine similarity. This is 
unsurprising since reducing the representation of a gene-
disease association to a similarity score may be too lim-
iting. Instead, a model learned on multi-dimensional 
representations is much better at capturing the complex-
ity of the associations.

We can also observe performance differences between 
knowledge graph embeddings methods. OPA2Vec 
achieves the best results, with a maximum performance 
of 0.775 in WAF, followed by RDF2Vec with 0.753. Dist-
Mult and OWL2Vec* lag behind with 0.734 and 0.715, 
respectively.

Multiple factors can explain the better performance 
of OPA2Vec: it uses asserted and inferred logical axi-
oms in ontologies by using a reasoner; it combines them 
with vector representations for the lexical component of 
the ontologies learned over PubMed abstracts using the 
word2vec model. A clear difference between OPA2Vec 
and RDF2Vec is the use of rich OWL axioms and word 
embeddings, which may explain the observed differ-
ences. Biomedical ontologies are rich in synonyms, and 
exploring their similarities in the context of scientific lit-
erature can be immensely informative. In other words, 
this algorithm shows better results because it is better 
tailored to the specifics of bio-ontologies. Path-based 
methods appear to be better performers that DistMult, 
TransE, and HAKE, however OWL2Vec* presents worse 
results compared to RDF2Vec and OPA2Vec. OWL2Vec* 
is based on a deeper exploration of OWL axioms which 
counterintuitively does not improve performance, pos-
sibly by introducing noise into the representations. All 
embedding methods employed receive literals and deal 
with them differently.

Curiously, knowledge graph embeddings methods 
show different behaviours depending on the knowledge 

Fig. 5 ROC curves and AUC values obtained for different vector operators with RF classifier for the HP‑simple + LD + GO 

3 TransE and HAKE underperformed (Table 3 in Additional file) and pre-
dictive approaches.



Page 8 of 12Nunes et al. Journal of Biomedical Semantics           (2023) 14:11 

graph they are applied to. For RDF2Vec, performance is 
significantly improved over the baseline HPf when using 
HPf+GO, but this is not the case for the other knowl-
edge graph embeddings methods. A possible reason 
behind this is that when a knowledge graph with richer 
semantics is processed by methods that can explore 
them, it results in entity vectors that capture many dif-
ferent aspects that may not be relevant for gene-disease 
association prediction. Another motive could be the 
proximity in the graph between the HP class declara-
tion and the related GO class. Logical definitions can 
be quite complex and include many different entities 
from different ontologies as well as semantic constructs 
(Fig.  3). In triple oriented methods, such as OPA2Vec 
and DistMult, the relation between the HP class and the 
GO class is not directly encoded at the triple-level, and 
it needs to be learned by jointly training on all triples. In 
random-walk based methods, such as RDF2Vec, paths 
linking both classes can be found, making the relation 
more explicit.

To delve deeper into this issue, the logical definitions 
declared in the HP ontology were analyzed, and a total 
of 3203 definitions were identified, but only around 
10% of those (350) are related to the Gene Ontology. 
This motivated the creation of another knowledge 
graph, HPs+GO+LD that addresses both challenges: 
it only includes logical definitions with GO (poten-
tially removing noise), and it establishes direct links 

between HP and GO classes (making the relation more 
explicit in the graph). We also created two more vari-
ants HPs+GO+Map and HPs+GO+LD+Map where 
mappings between HP and GO found through ontol-
ogy matching are added to the knowledge graph. When 
using the three HPs+GO variants, both OPA2Vec and 
OWL2Vec* show significant improvements over the 
baseline, but DistMult performance is never signifi-
cantly improved over the baseline regardless of the 
knowledge graph employed.

To better understand the impact of semantic richness, 
we compared precision and recall values for the five 
knowledge graphs using OPA2Vec and RDF2Vec embed-
dings combined with Hadamard operator and a Random 
Forest model (Fig. 6). In general, for both OPA2Vec and 
RDF2Vec performance increases with semantic rich-
ness, with HPf as the knowledge graph with lowest per-
formance in both methods. In both methods, the greater 
recall gains are seen with HPf+GO, but with some preci-
sion being sacrificed. Precision is overall improved when 
using the HPs+GO variants, but with greater impacts on 
precision for RDF2Vec.

Overall, both RDF2Vec, OPA2Vec and OWL2Vec* are 
able to produce richer semantic representations when 
given richer knowledge graphs, which in turn improve 
the prediction of gene-disease predictions.

Ablation studies
We performed two types of ablation studies to study the 
impact that a richer ontological layer can have on miss-
ing data: (1) removal of the gene annotations using HP; 
(2) removal of gene and disease annotations of specific 
branches of the ontologies.

The predictive performance is considerably impacted 
by the removal of HP gene annotations (Table 4). How-
ever, OPA2Vec is still able to achieve WAF values above 
0.7. This prediction scenario is perhaps the most realis-
tic one, where knowledge about the phenotype caused by 
genes is still not known, but disease phenotype and gene 
function are.

Table 5 presents the ontology branch annotations abla-
tion studies, taking as a baseline HPs+GO+LD and 
using RDF2Vec and OPA2Vec with the Hadamard opera-
tor for RF and XGB.

The GO ablation studies show that in most cases, the 
removal of annotations of a single branch, or consider-
ing just biological process (BP) annotations has little to 
no impact on prediction. The exception is the removal 
of cellular component (CC) annotations which posi-
tively impacts predictions made by XGB coupled with 
RDF2Vec. It appears that the removal of any branch of 
the GO ontology is at least partly compensated by the 
inclusion of logical definitions.

Table 3 Median WAF scores for the combinations of knowledge 
graph embeddingss with Cosine similarity, RF or XGB for the 
different knowledge graphs using the Hadamard operator. Best 
result for each knowledge graph embeddings and machine 
learning algorithm or CS is bold. Results that are statistically 
significantly different when compared to HPf are underlined

RDF2Vec OPA2Vec OWL2Vec* DistMult

CS HPf 0.687 0.671 0.664 0.699

HPf+GO 0.682 0.670 0.660 0.678

HPs+GO+LD 0.689 0.677 0.656 0.701

HPs+GO+Map 0.682 0.667 0.668 0.693

HPs+GO+LD+Map 0.681 0.676 0.669 0.695

RF HPf 0.737 0.756 0.690 0.727

HPf+GO 0.753 0.761 0.696 0.717

HPs+GO+LD 0.749 0.770 0.716 0.729

HPs+GO+Map 0.745 0.771 0.703 0.728

HPs+GO+LD+Map 0.742 0.775 0.711 0.721

XGB HPf 0.732 0.748 0.689 0.728

HPf+GO 0.743 0.758 0.690 0.716

HPs+GO+LD 0.737 0.768 0.706 0.734

HPs+GO+Map 0.735 0.765 0.698 0.727

HPs+GO+LD+Map 0.733 0.765 0.702 0.726
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The HP ablation studies show that the annotations 
removal of any branch significantly lowers performance, 
with the removal of phenotypic abnormality annota-
tions producing the largest decrease. When considering 
only phenotypic abnormality annotations, performance 
is less affected. This indicates that HP annotations of any 

branch are essential for the prediction and cannot be 
compensated by logical definitions.

Scalability study
As knowledge graphs grow larger and more complex, 
ensuring the knowledge graph embeddings can handle 
it efficiently becomes increasingly important. We inves-
tigate the scalability of the knowledge graph embedding 
methods by analyzing their runtime when applied to dif-
ferently sized knowledge graphs.

Figure  7 shows the results of the computational time 
for the best embedding methods with two knowledge 
graphs where the smallest size corresponds to remov-
ing the main branch of the human phenotype ontology 
(Phenotypic abnormality). We can see by the results that 
RDF2Vec and OPA2Vec are the promptest methods, 
while OWL2Vec and DistMult are slower. We also can 
observe that the increase in the size of the knowledge 
graph is proportional to the increase of the computa-
tional time.

When comparing different embedding methods, we 
must consider whether they utilize path-based strategies 
(random walks) or access triples. For OPA2Vec, TransE, 
and DistMult, embeddings were generated using tri-
ples. In contrast, RDF2Vec and OWL2Vec utilized ran-
dom walks for generating embeddings. Specifically, 500 

Fig. 6 Recall-Precision diagram including f-measure values as height-lines. The diagram uses all knowledge graphs for OPA2Vec and RDF2Vec 
with RF using a 70-30 split

Table 4 Median WAF scores for the HP gene annotation ablation 
study. Best result for each knowledge graph embeddings 
approach and machine learning algorithm or CS is bold

RDF2Vec OPA2Vec OWL2Vec* DistMult

CS HPd-f+GO 0.484 0.532 0.493 0.499

HPd-s+GO+LD 0.503 0.525 0.502 0.497

HPd-s+GO+Map 0.463 0.526 0.495 0.500

HPd-
s+GO+LD+Map

0.506 0.525 0.502 0.502

RF HPd-f+GO 0.664 0.689 0.597 0.551

HPd-s+GO+LD 0.657 0.703 0.604 0.576

HPd-s+GO+Map 0.659 0.700 0.617 0.568

HPd-
s+GO+LD+Map

0.663 0.702 0.617 0.576

XGB HPd-f+GO 0.635 0.672 0.571 0.547

HPd-s+GO+LD 0.634 0.683 0.587 0.565

HPd-s+GO+Map 0.632 0.679 0.588 0.570

HPd-
s+GO+LD+Map

0.631 0.684 0.595 0.569
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random walks were generated for each knowledge graph 
for RDF2Vec and OWL2Vec. Furthermore, the entities 
used for learning the embeddings varied among the dif-
ferent methods. RDF2Vec and OWL2Vec only generated 
embeddings for the entities asked. OPA2Vec, TransE, 
and DistMult generated embeddings for all entities in the 
knowledge graph.

Conclusions
Deciphering the links between genes and diseases is 
a crucial area of research. Computational approaches 
present themselves as an answer to the data deluge 

in the life sciences, and ontologies and knowledge 
graphs have become increasingly crucial to support 
data-intensive applications in biology, in particu-
lar, the prediction and prioritization of gene-disease 
associations.

We proposed a novel approach to predict gene-disease 
associations using rich semantic representations based 
on knowledge graph embeddings over multiple ontolo-
gies, in this case, the Human Phenotype Ontology and the 
Gene Ontology. We investigated different approaches to 
build a shared rich semantic representation for genes and 
diseases exploring both logical definitions and compound 

Table 5 Median WAF scores for the ontology ablation studies. Comparison of the best knowledge graph embeddings methods 
RDF2Vec and OPA2Vec with Random Forest or XGB for the knowledge graph HPs+GO+LD. Results that are statistically significantly 
different when compared to HPs+GO+LD are underlined. Best results in bold

Random Forest XGB

RDF2vec OPA2vec RDF2vec OPA2vec

HPs+GO+LD 0.749 0.770 0.737 0.768
GO Ablation HPs+GO(-BP)+LD 0.747 0.763 0.740 0.759

HPs+GO(-CC)+LD 0.744 0.767 0.765 0.765

HPs+GO(-MF)+LD 0.749 0.770 0.748 0.763

HPs+GO(Only BP)+LD 0.742 0.769 0.730 0.767

HP Ablation HPs+GO(-F)+LD 0.720 0.740 0.713 0.734

HPs+GO(-PA)+LD 0.553 0.564 0.562 0.567

HPs+GO(-MI)+LD 0.723 0.738 0.716 0.738

HPs+GO(-CC)+LD 0.712 0.733 0.713 0.731

HPs+GO(-CM)+LD 0.731 0.736 0.714 0.733

HPs+GO(Only PA)+LD 0.743 0.735 0.742 0.734

Fig. 7 Computational time for each embedding method with two knowledge graphs where the smallest size corresponds to removing the main 
branch of the human phenotype ontology (Phenotypic abnormality)
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ontology matching, and how these different approaches 
influence the performance of representative knowl-
edge graph embeddings methods. A benchmark dataset 
without potential data leakage was created to support 
evaluation, ensuring its appropriateness for gene-disease 
prediction.

Our experiments showed that considering richer 
knowledge graphs, composed by more than one ontol-
ogy and with rich links between them significantly 
improve gene-disease prediction based on knowledge 
graph embeddings. Interestingly, different knowledge 
graph embeddings methods benefit more from dis-
tinct types of semantic richness. While the perfor-
mance of RDF2Vec improves more when considering 
the most complete version of HP with all logical defi-
nitions integrated with GO, OPA2Vec and OWL2Vec* 
achieve their best performance when considering 
a streamlined version of HP with direct links to GO 
generated by exploring the logical definitions. It is 
likely that the reliance of OPA2Vec and OWL2Vec* 
on lexical information results in the introduction 
of noise when considering the full spectra of logical 
definitions. We also determined that in the absence 
of logical definitions, strategies for compound ontol-
ogy alignment can be employed to establish rich 
links across ontologies that cover different domains. 
Despite this, it is important to note that graph con-
volutional networks (GCNs) and other graph neural 
network-based methods were not considered in this 
study, as the focus was on exploring the potential of 
knowledge graph embeddings across multiple ontolo-
gies and this type of methods are not yet tailored for 
the semantic richness of the KGs. Furthermore, Graph 
Neural Networks (GNNs) algorithms rely on mes-
sage passing and require node features, which are the 
messages passed through the edges. However, ontolo-
gies are often not rich in node properties, with only 
labels available in most cases. Moreover, textual node 
properties are not easily represented in a vectorial 
format, which is the typical approach used by GNNs. 
Therefore, adapting GNNs to such problems can be 
challenging.

This work demonstrated the potential for knowledge 
graph embeddings across multiple and interconnected 
biomedical ontologies to support gene-disease predic-
tion. All software is freely available and the approach can 
be easily generalized to consider other ontologies (for 
instance the Disease Ontology or the ChEBI ontology) 
and to solve different tasks where multiple perspectives 
over the data can be beneficial (e.g., protein function pre-
diction, protein-protein interaction prediction, or patient-
disease prediction, etc.).

Abbreviations
AUC-ROC  Area under the receiver operating characteristic curve
GO  Gene ontology
HP  Human phenotype ontology
KG  Knowledge graph
KGE  Knowledge graph embeddings
LD  Logical definitions
OMIM  Online mendelian inheritance in man
OWL  Web ontology language
RF  Random Forest
WAF  Weighted average of f-measures
XGB  eXtreme gradient boosting

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13326- 023- 00291-x.

Additional file 1. 

Acknowledgements
Not applicable.

Authors’ contributions
All authors designed the methodology and the evaluation approach. SN 
implemented all methods and evaluation. All authors analyzed the results and 
devised the discussion. SN wrote the manuscript, which RT and CP revised. All 
authors read and approved the final manuscript.

Funding
CP, RTS, SN are funded by the Fundação para a Ciência e a Tecnolo-
gia (FCT) through LASIGE Research Unit (ref. UIDB/00408/2020 and ref. 
UIDP/00408/2020). It was also partially supported by the KATY project which 
has received funding from the European Union’s Horizon 2020 research and 
innovation program under grant agreement No 101017453. RTS is also funded 
by FCT PhD grant (ref. SFRH/BD/145377/2019).

Availability of data and materials
All data and code are available at: https:// github. com/ liseda- lab/ KGE_ Predi 
ctions_ GD.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 5 December 2022   Accepted: 29 July 2023

References
 1. Amberger J, Bocchini C, Schiettecatte F, Scott A, Hamosh A. OMIM.org: 

Online Mendelian Inheritance in Man (OMIM®), an Online catalog of 
human genes and genetic disorders. Nucleic Acids Res. 2014;43. https:// 
doi. org/ 10. 1093/ nar/ gku12 05.

 2. Asif M, Martiniano H, Couto F. Identifying disease genes using machine 
learning and gene functional similarities, assessed through Gene Ontol-
ogy. PLoS ONE. 2018;12(13):e0208626. https:// doi. org/ 10. 1371/ journ al. 
pone. 02086 26.

https://doi.org/10.1186/s13326-023-00291-x
https://doi.org/10.1186/s13326-023-00291-x
https://github.com/liseda-lab/KGE_Predictions_GD
https://github.com/liseda-lab/KGE_Predictions_GD
https://doi.org/10.1093/nar/gku1205
https://doi.org/10.1093/nar/gku1205
https://doi.org/10.1371/journal.pone.0208626
https://doi.org/10.1371/journal.pone.0208626


Page 12 of 12Nunes et al. Journal of Biomedical Semantics           (2023) 14:11 

 3. Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, Ronzano F, Centeno E, Sanz F, 
et al. The DisGeNET knowledge platform for disease genomics: 2019 update. 
Nucleic Acids Res. 2019;48:D845–55. https:// doi. org/ 10. 1093/ nar/ gkz10 21.

 4. Sherry ST, Ward M, Sirotkin K. dbSNP-database for single nucleotide 
polymorphisms and other classes of minor genetic variation. Genome 
Res. 1999;9(8):677–9.

 5. Opap K, Mulder N. Recent advances in predicting gene-disease associa-
tions. F1000Research. 2017;6:578. https:// doi. org/ 10. 12688/ f1000 resea rch. 
10788.1.

 6. Bodenreider O, Stevens R. Bio-ontologies: current trends and future direc-
tions. Brief Bioinforma. 2006;7(3):256–74. https:// doi. org/ 10. 1093/ bib/ 
bbl027.

 7. Paulheim H. Knowledge graph refinement: A survey of approaches and 
evaluation methods. Semantic Web. 2016;8:489–508. https:// doi. org/ 10. 
3233/ SW- 160218.

 8. Vanunu O, Magger O, Ruppin E, Shlomi T, Sharan R. Associating genes 
and protein complexes with disease via network propagation. PLoS 
Comput Biol. 2010;6(1):1–9.

 9. Zakeri P, Simm J, Arany A, ElShal S, Moreau Y. Gene prioritization using 
Bayesian matrix factorization with genomic and phenotypic side informa-
tion. Bioinformatics. 2018;34:i447–56.

 10. Robinson P, Köhler S, Oellrich A, Genetics S, Wang K, Mungall C, et al. 
Improved exome prioritization of disease genes through cross-species 
phenotype comparison. PCR Methods Appl. 2014;24(2):340–8. https:// 
doi. org/ 10. 1101/ gr. 160325. 113.

 11. Luo P, Xiao Q, Wei PJ, Liao B, Wu FX. Identifying disease-gene associations 
with graph-regularized manifold learning. Front Genet. 2019;10:270.

 12. Pesquita C, Faria D, Falcão A, Lord P, Couto F. Semantic similarity in bio-
medical ontologies. PLoS Comput Biol. 2009;5(1-12).

 13. Wang Q, Mao Z, Wang B, Guo L. Knowledge Graph Embedding: A 
Survey of Approaches and Applications. IEEE Trans Knowl Data Eng. 
2017;29:2724–43.

 14. Smaili FZ, Gao X, Hoehndorf R. OPA2Vec: combining formal and informal 
content of biomedical ontologies to improve similarity-based prediction. 
Bioinformatics. 2019;35(12):2133–40.

 15. Alshahrani M, Khan MA, Maddouri O, Kinjo AR, Queralt-Rosinach N, 
Hoehndorf R. Neuro-symbolic representation learning on biological 
knowledge graphs. Bioinformatics. 2017;33(17):2723–30. https:// doi. org/ 
10. 1093/ bioin forma tics/ btx275.

 16. Vilela J, Asif M, Marques AR, Santos JX, Rasga C, Vicente A, et al. Biomedi-
cal knowledge graph embeddings for personalized medicine: Predicting 
disease-gene associations. Expert Syst. 2022;40:e13181.

 17. Nunes S, Sousa RT, Pesquita C. Predicting gene-disease associations with 
knowledge graph embeddings over multiple ontologies. Bio-Ontologies 
COSI (ISMB 2021). arXiv preprint arXiv: 2105. 04944. 2021.

 18. Kaufman S, Rosset S, Perlich C. Leakage in data mining: formulation, 
detection, and avoidance. In: ACM Transactions on Knowledge Discovery 
from Data (TKDD), volume 6, number 4. New York: ACM; 2012. p. 1–21.

 19. UniProt Consortium. UniProt: a worldwide hub of protein knowledge. 
Nucleic Acids Res. 2019;47:D506–15. https:// doi. org/ 10. 1093/ nar/ gky10 49.

 20. Wakap S, Lambert D, Olry A, Rodwell C, Gueydan C, Valérie L, et al. 
Estimating cumulative point prevalence of rare diseases: analysis of the 
Orphanet database. Eur J Hum Genet. 2019;28. https:// doi. org/ 10. 1038/ 
s41431- 019- 0508-0.

 21. Köhler S, Gargano MA, Matentzoglu N, Carmody L, Lewis-Smith D, Vasi-
levsky NA, et al. The Human Phenotype Ontology in 2021. Nucleic Acids 
Res. 2021;49:D1207–17.

 22. Köhler S, Carmody L, Vasilevsky N, Jacobsen J, Danis D, Gourdine JP, et al. 
Expansion of the Human Phenotype Ontology (HPO) knowledge base 
and resources. Nucleic Acids Res. 2019;47(D1018–D1027).

 23. Consortium TGO. The Gene Ontology resource: enriching a GOld mine. 
Nucleic Acids Res. 2020;49(D1):D325–34. https:// doi. org/ 10. 1093/ nar/ 
gkaa1 113.

 24. Ashburner MM, Ball CAC, Blake J, Botstein D, Butler H, Cherry JMJ, et al. 
Gene Ontology: tool for the unification of biology. The Gene Ontology 
Consortium. Nat Genet. 2000;25:25–9.

 25. Köhler S, Bauer S, Mungall CJ, Carletti GON, Smith CL, Schofield PN, et al. 
Improving ontologies by automatic reasoning and evaluation of logical 
definitions. BMC Bioinformatics. 2011;12:418–418.

 26. Oliveira D, Pesquita C. Improving the interoperability of biomedical ontol-
ogies with compound alignments. J Biomed Semant. 2018;9. https:// doi. 
org/ 10. 1186/ s13326- 017- 0171-8.

 27. Faria D, Pesquita C, Santos E, Cruz IF, Couto FM. AgreementMakerLight 
results for OAEI 2013. In: Shvaiko P, Euzenat J, Srinivas K, Mao M, Jiménez-
Ruiz E, editors. Proceedings of the 8th International Workshop on Ontol-
ogy Matching, volume 1111 of CEUR Workshop Proceedings; 2013. p. 
101–8.

 28. Faria D, Pesquita C, Santos E, Palmonari M, Cruz IF, Couto FM. The 
agreementmakerlight ontology matching system. In: OTM Confederated 
International Conferences “On the Move to Meaningful Internet Systems”. 
Springer; 2013. p. 527–541.

 29. Kulmanov M, Smaili FZ, Gao X, Hoehndorf R. Semantic similarity and 
machine learning with ontologies. Brief Bioinforma. 2020;22. https:// doi. 
org/ 10. 1093/ bib/ bbaa1 99.

 30. Bordes A, Usunier N, García-Durán A, Weston J, Yakhnenko O. Translating 
embeddings for modeling multi-relational data. In: Advances in Neural 
Information Processing Systems (NIPS), volume 26: Curran Associates, Inc.; 
2013.

 31. Zhang Z, Cai J, Zhang Y, Wang J. Learning hierarchy-aware knowledge 
graph embeddings for link prediction. Proceedings of the AAAI Confer-
ence on Artificial Intelligence. 2020;34(03):3065–72. https:// doi. org/ 10. 
1609/ aaai. v34i03. 5701.

 32. Yang B, Yih SWt, He X, Gao J, Deng L. Embedding Entities and Relations 
for Learning and Inference in Knowledge Bases. In: Proceedings of the 
International Conference on Learning Representations (ICLR) 2015. 2015. 
https:// www. micro soft. com/ en- us/ resea rch/ publi cation/ embed ding- 
entit ies- and- relat ions- for- learn ing- and- infer ence- in- knowl edge- bases/.

 33. Ristoski P, Paulheim H. RDF2Vec: RDF graph embeddings for data mining. 
In: Groth P, editor. The Semantic Web - ISWC 2016 : 15th International 
Semantic Web Conference, Kobe, Japan, October 17-21, 2016, Proceed-
ings, Part I. vol. 9981. Cham: Springer International Publishing; 2016. p. 
498–514. https:// doi. org/ 10. 1007/ 978-3- 319- 46523-4_ 30.

 34. Chen J, Hu P, Jimenez-Ruiz E, Holter OM, Antonyrajah D, Hor-
rocks I. OWL2Vec*: embedding of OWL ontologies. Mach Learn. 
2021;110(7):1813–45.

 35. Grover A, Leskovec J. node2vec: Scalable Feature Learning for Networks. 
Proceedings of the 22nd ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining. 2016.

 36. Breiman L. Machine Learning, Volume 45, Number 1 - SpringerLink. Mach 
Learn. 2001;45:5–32. https:// doi. org/ 10. 1023/A: 10109 33404 324.

 37. Chen T, Guestrin C. XGBoost: a scalable tree boosting system. In: Proceed-
ings of the 22nd ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining, KDD ’16. New York: Association for Comput-
ing Machinery; 2016. p. 785–94.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1093/nar/gkz1021
https://doi.org/10.12688/f1000research.10788.1
https://doi.org/10.12688/f1000research.10788.1
https://doi.org/10.1093/bib/bbl027
https://doi.org/10.1093/bib/bbl027
https://doi.org/10.3233/SW-160218
https://doi.org/10.3233/SW-160218
https://doi.org/10.1101/gr.160325.113
https://doi.org/10.1101/gr.160325.113
https://doi.org/10.1093/bioinformatics/btx275
https://doi.org/10.1093/bioinformatics/btx275
http://arxiv.org/abs/2105.04944
https://doi.org/10.1093/nar/gky1049
https://doi.org/10.1038/s41431-019-0508-0
https://doi.org/10.1038/s41431-019-0508-0
https://doi.org/10.1093/nar/gkaa1113
https://doi.org/10.1093/nar/gkaa1113
https://doi.org/10.1186/s13326-017-0171-8
https://doi.org/10.1186/s13326-017-0171-8
https://doi.org/10.1093/bib/bbaa199
https://doi.org/10.1093/bib/bbaa199
https://doi.org/10.1609/aaai.v34i03.5701
https://doi.org/10.1609/aaai.v34i03.5701
https://www.microsoft.com/en-us/research/publication/embedding-entities-and-relations-for-learning-and-inference-in-knowledge-bases/
https://www.microsoft.com/en-us/research/publication/embedding-entities-and-relations-for-learning-and-inference-in-knowledge-bases/
https://doi.org/10.1007/978-3-319-46523-4_30
https://doi.org/10.1023/A:1010933404324

	Multi-domain knowledge graph embeddings for gene-disease association prediction
	Abstract 
	Background 
	Results 
	Conclusions 

	Introduction
	Methods
	Overview
	Data
	Gene-disease associations
	Ontologies and knowledge graphs
	Logical definitions and ontology mappings

	Knowledge graph integration
	Knowledge graph embeddings and representation
	Gene-disease prediction

	Results and discussion
	Vector combination approaches for embeddings
	Impact of semantic richness of the knowledge graphs
	Ablation studies
	Scalability study

	Conclusions
	Anchor 22
	Acknowledgements
	References


