
Diaz Benavides et al. 
Journal of Biomedical Semantics           (2023) 14:15  
https://doi.org/10.1186/s13326-023-00295-7

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of
Biomedical Semantics

Analysis and implementation of the DynDiff 
tool when comparing versions of ontology
Sara Diaz Benavides1, Silvio D. Cardoso2, Marcos Da Silveira1 and Cédric Pruski1* 

Abstract 

Background Ontologies play a key role in the management of medical knowledge because they have the properties 
to support a wide range of knowledge-intensive tasks. The dynamic nature of knowledge requires frequent changes 
to the ontologies to keep them up-to-date. The challenge is to understand and manage these changes and their 
impact on depending systems well in order to handle the growing volume of data annotated with ontologies 
and the limited documentation describing the changes.

Methods We present a method to detect and characterize the changes occurring between different versions 
of an ontology together with an ontology of changes entitled DynDiffOnto, designed according to Semantic Web 
best practices and FAIR principles. We further describe the implementation of the method and the evaluation 
of the tool with different ontologies from the biomedical domain (i.e. ICD9-CM, MeSH, NCIt, SNOMEDCT, GO, IOBC 
and CIDO), showing its performance in terms of time execution and capacity to classify ontological changes, com-
pared with other state-of-the-art approaches.

Results The experiments show a top-level performance of DynDiff for large ontologies and a good performance 
for smaller ones, with respect to execution time and capability to identify complex changes. In this paper, we further 
highlight the impact of ontology matchers on the diff computation and the possibility to parameterize the matcher 
in DynDiff, enabling the possibility of benefits from state-of-the-art matchers.

Conclusion DynDiff is an efficient tool to compute differences between ontology versions and classify these dif-
ferences according to DynDiffOnto concepts. This work also contributes to a better understanding of ontological 
changes through DynDiffOnto, which was designed to express the semantics of the changes between versions 
of an ontology and can be used to document the evolution of an ontology.

Keywords Diff computation, Ontology management, Ontology evolution, Knowledge graph evolution

Background
Annotated datasets are key for the successful implemen-
tation of Artificial Intelligence systems. These annota-
tions, whether generated manually or automatically, are 

usually linked to controlled vocabularies or ontologies to 
explicitly express a common understanding of the anno-
tated data, making them interpretable by humans and 
machines, and thus promoting more efficient reuse by 
algorithms. For instance, medical ontologies play a key 
role in data-intensive tasks, such as reporting on diagno-
ses, medical procedures, medications, body characteris-
tics, etc. and are widely used by healthcare professionals 
and institutions involved in providing health services to 
patients [1–4]. It is therefore important to keep the con-
tent of these termino-ontological resources up-to-date, 
especially for dynamic domains such as life sciences. 
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More than 1000 biomedical ontologies are available in 
public repositories such as Bioportal [5] and they change 
over time. Implementing a fully manual documenta-
tion process is not realistic, since the changes need to be 
understandable by humans and computers. Therefore, 
there is a need to efficiently and automatically document 
the changes in the ontologies as well as to determine the 
impact of these changes in dependent resources such as 
semantic mappings and annotations [6]. This chain of 
maintenance process is necessary to ensure interoperabil-
ity between systems and understandability of documents.

In our previous work, we studied the impact of ontol-
ogy changes on associated mappings [7] and semantic 
annotations [8]. Based on our findings, we have designed 
rule-based methods to (semi-)automatically maintain 
mappings [9] and annotations [10] rendered invalid/out-
dated by the evolution of underlying ontologies. These 
rules require, as input, the type of change occurring 
in the underlying ontology since it will conditioned the 
mapping adaptation (or annotation adaption) actions to 
be applied to maintain the validity of existing mappings 
and semantic annotation. For instance, detecting that 
a concept has been split into other concepts in the new 
version of an ontology will not trigger the same map-
ping adaptation action as if the concept was deleted. 
The mappings impacted by the split could, for instance, 
be associated to the new concepts (resulting from the 
split), while the later case (concept delete) will result 
into mapping delete. This is why, we need to identify 
and characterize the changes that occurred between two 
ontology versions [11–13]. This problem, known as the 
Diff problem, has already been approached in different 
ways in the literature. Logging or structural diff [14–16] 
consists of using a log file, often generated manually by 
experts, where changes are stored incrementally. The file 
is updated every time a new modification takes place, 
and the changes can be searched for using temporal que-
ries. However, this manual work is error-prone and an 
automatic log generator that calculates the changes a 
posteriori by comparing two input versions of an ontol-
ogy was proposed. This solution solved some inconsist-
encies detected in the manual log generation process. 
One of the first implementations of this type of approach 
was PromptDiff [11], in which changes are computed 
between two versions of an ontology using a set of 
rules. The identified changes are presented as instances 
of the Changes and Annotation Ontology (ChAO) [17]. 
ChAO was designed to facilitate collaborations between 
humans. It supports the generation of annotations about 
users’ actions e.g. whether a change was accepted (and 
some comments about reasons for the decision). Thus, 
a lot of useful information was expressed in the com-
ments, and the types of changes were limited to just a few 

classes. This format was widely adopted by Protégé users, 
however, the semantics of changes remains difficult to 
exploit since there is no consensus on a standard descrip-
tion language for the changes. Another type of approach 
uses ontology axioms to detect the consequences of 
the changes on the semantics of the new version of the 
ontology [13, 18, 19]. The resulting changes are comple-
mentary to the previous approaches, but they are still 
not intuitive for end-users since they are expressed as 
Description Logics rules. The size of the ontologies of the 
biomedical domain and the frequency of changes demand 
more advanced solutions for the Diff calculation. COnto-
Diff (Complex Ontology Diff) [12] is a tool that proposes 
a two-phase diff approach: during the first phase, there is 
a matching algorithm to determine conceptual mappings 
between versions. The second phase generates high-level 
changes like merge and split of concepts based on these 
mappings. COnto-Diff was evaluated with biomedical 
ontologies expressed in OWL and OBO, demonstrating 
the efficiency of the tool to detect changes in these lan-
guages. Another relevant approach is presented by Papa-
vasileiou et al. [20]. Their work was designed to compute 
the diff between RDFS datasets. The authors propose a 
language of changes with 132 change actions, complete 
application semantics and the proof of completeness, 
consistency, uniqueness and non-overlapping classes. 
Their algorithm starts by computing the delta of triples to 
identify all triples that change, i.e. added and deleted tri-
ples, and regroups these triples to compose more human 
representative changes (Basic, Composite and Heuristic 
Changes). The approach prevents triples being re-used 
to compose more than one type of change. One of the 
innovative aspects of this language is that it takes into 
account the schema (i.e. classes and properties), instance 
level (i.e. individuals) and group of these schema enti-
ties (i.e. meta-classes and meta-properties). These five 
groups allow to focus on the nodes rather than the edges 
of the graph and they consider that this makes the lan-
guage more human-intuitive. The approach was designed 
to be applied to RDFS, limiting its use to more sophisti-
cated axioms like those provided by OWL. The matcher 
is an optional feature to map the changes and establish 
potential semantic links between them. In a more recent 
work [21], the authors provide a unified list of complex 
changes together with a classification for those complex 
changes. In [22], the method introduced focuses on RDF 
data (not on ontologies) to detect and express elemen-
tary and complex changes. Similarly, in [23] the authors 
proposed a declarative language for defining complex 
changes on RDF(S) knowledge bases and discussed how 
this language can be used to detect complex change 
instances among dataset versions (which can be queried 
for analysing evolution).
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In our work, we cover OWL ontologies that have con-
cepts, relationships, individuals and properties. The 
approaches of [12, 20] inspired us to design DynDiff1 for 
the formal description of types of changes and detection 
rules; DynDiff has the following characteristics:

• Rule-based system: It is based on specific change 
detection rules. This set of rules constitutes change 
patterns allowing the classification of the changed 
entities into different categories. The rules were 
defined in a revision process of the state-of-the art 
approaches, aiming to combine the strongest points 
from existing approaches [12, 20] and extend them.

• Human and machine-interpretable: The classifica-
tion of changes provided by our approach is intuitive 
for humans and, at the same time, granular enough 
to be used by machines. This classification is repre-
sented as an ontology of changes (DynDiffOnto) and 
is made available to the community at <https:// git. 
list. lu/ dynac curate/ change- ontol ogy>. The proposed 
ontology was designed following the best practices of 
the Semantic Web [25] and the FAIR principles [26].

• Decoupled from heuristic semantics: End-users have 
the possibility of configuring the matcher used to 
compute some types of changes. This option allows a 
detachment from heuristic strategies that add a ran-
domness to the results and allows end-users to ben-
efit from the latest advances in the domain without 
changing the DynDiff code.

• Scalable and robust: The solution is able to work with 
different sizes of inputs i.e. ontologies with a small or 
large number of ontological elements. The outputs 
(i.e. change types) are computed in an efficient man-
ner. Our experiments show that DynDiff is able to 
compute Diffs between large ontologies in a reason-
able time (less than 1,000 sec to compute more than 
70,000 changes)

Based on these characteristics, we made the following 
contributions [24]: 

a) A change language that extends those proposed by 
Hartung et  al. [12] and Papavasileiou et  al. [20] by 
proposing rules for individuals and making the dis-
tinction between relationships (e.g. addSubGraph) 
and attributes (e.g. we distinguish between comment, 
label and other attributes). As evoked, many tools are 
restricted to classes only, limiting the exploitation of 
the changes in instances. The proposed change lan-
guage is presented as an ontology of changes (Dyn-

DiffOnto) and the instantiation of the classes of this 
ontology represents the changes that were detected 
between the different versions. Inspired by previous 
attempts using ontologies to specify changes [27], the 
objective of this ontology is to give a way to docu-
ment the changes at ontology evolution time which 
will therefore be unambiguously interpreted by user 
exploiting the newly release version of these dynamic 
ontology.

b) A change detection algorithm that provides a clas-
sification of changes based on DynDiffOnto classes. 
This structure provides transparency for the user in 
terms of the description of the results.

In this paper, we i) refine the explanation of the previ-
ous contributions, ii) give further details of the construc-
tion of the DynDiffOnto and iii) evaluate the proposed 
framework on a set of biomedical ontologies taking into 
account to several dimensions, such as time of execu-
tion, influence of the selected ontology matchers and 
the capacity of DynDiff to classify identified ontological 
changes.

Methods
Our objective is to design scalable methods for comput-
ing the Diff between ontology versions, including the 
diff between classes, properties and individuals. By scal-
able, we mean an algorithm able to analyse small and 
large ontologies, such as SNOMEDCT or NCI thesau-
rus. In this section, we will formalize the problem we are 
addressing and detail the solution we have designed.

Problem statement
Ontology Diff approaches look for a set of rules or heuris-
tics that enable the detection and description of changes 
between two versions of the same ontology. It is a func-
tion Diff(Oold,Onew ) that takes two ontology versions as 
input and produce a set of triples as output. In our work, 
an ontology is a set of RDF triples [20]

where U denotes resources (all things described by RDF) 
and L denotes literals (values such as strings and inte-
gers). The general problem addressed in our work can be 
described as follows:

Given two versions of an ontology ( Oold and Onew ), we 
aim to: 

1 Determine the set of all basic changes BC computed 
according to the definition given by [20]: 

T = U ×U × (U ∪ L)

(1)
BC = {t ∈ T |t ∈ (Onew \ Oold) or t ∈ (Oold \ Onew)}

1 This paper is an extended version of [24]

https://git.list.lu/dynaccurate/change-ontology
https://git.list.lu/dynaccurate/change-ontology
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2 Determine the sets of complex changes CC and 
heuristic changes HC, where CC and HC are dis-
jointed, i.e. CC ∩HC = ∅ and HC and CC form a 
partition of BC.

3 Determine the subsets of basic changes BC∗ that 
have all basic changes that were not used to compose 
neither HC nor CC.

The DynDiffOnto ontology
The DynDiff framework presented in this paper aims to 
identify changes between two ontology versions. These 
changes are formalized as concepts of the DynDiffOnto. 
The idea of having an ontology to formalize the change is 
to provide a mean to unambiguously interpret the type of 
change that DynDiff is able to detect. This will help peo-
ple in charge of generating new versions of ontology to 
document the changes in an unambiguous format that 
can later be interpreted by user/systems exploiting their 
ontology as it is done in [9, 28]. This ontology could in the 
future be extended with other type of changes and could 
also be reused by other diff computation approaches to 
have a unified way of representing ontological changes. It 
has been designed based on the NeON methodology for 
ontology building [25] and the FAIR principles to opti-
mize findability, accessibility, interoperability and reuse 
[26]. We have used the well-known Protégé ontology edi-
tor2 and the OWL2.0 W3C recommendation and in par-
ticular the RL profile, by virtue of its abilities to represent 
advanced axioms and its support for reasoning.

The DynDiffOnto represents 60 different change 
actions (9 abstract classes and 51 leaf classes) as well 
as 9 object properties and 7 data properties. The defi-
nition of the classes started by analysing the changes 
produced by two different Diff methods (i.e. those pre-
sented in [12, 20]) when they were applied to 5 widely 
adopted ontologies in the medical domain. We com-
pared them and mapped the changes with the same 
semantics in order to regroup them as classes of Dyn-
DiffOnto. Regarding changes that cannot be regrouped, 
we analysed them one-by-one and selected the classes 
according to the precision of the changes or their intui-
tiveness. The main inspiration comes from the work 
of Papavasileiou et  al. [20]; we subsequently extended 
the definitions of some rules according to the work 
of [12], to finally add new rules from our own expe-
rience of evaluating the impact of changes in other 
artefacts presented in [8, 9]. By combining the idea of 
the class change attributes (from [12]) and the class 
change label and comments (from [20]), we created the 

BasicChangeAttributes and HeuristicChangeAttributes 
classes. This allows regrouping changes affecting com-
ments, labels and other attributes that describe classes, 
individuals or properties. For instance, assuming that 
the following modifications were made in the old ver-
sion of an ontology: adding the property rdfs:comment 
and assigning a textual description to comment each 
class. DynDiff will detect two different types of change 
actions: (1) the addP (add property) from the Basic-
ChangeProperties; and (2) the addComment (add the 
text describing the class) from the BasicChangeAttrib-
ute. If one existing comment is slightly modified in a 
future version of the ontology, then DynDiff will detect 
a HeuristicChange (i.e. changeComment). These dis-
tinctions are important when we want to analyse the 
impact of changes in Semantic Mappings and Semantic 
Annotations because we use lexical and semantic simi-
larity measures for this analysis [10]. The lexical simi-
larity measures use information from attributes while 
semantic similarity measures take the relationships 
into account. We are currently working on a new rep-
resentation format for the history of an ontology [28] 
that tracks changes in OtherA and OtherR classes of 
DynDiffOnto. Tables  1, 2 and 3 present the outcomes 
of our analysis including the label of the DynDiffOnto 
concepts and Fig.  1 illustrates the organization of 
DynDiffOnto.

In order to favour reusability, we followed the FAIR prin-
ciples and used dedicated methods [29] and tools to evalu-
ate and improve the FAIRness of DynDiffOnto. Each new 
concept is described with a definition. We also attached 
standard metadata (e.g. those provided by the Dublin Core) 
to the ontology to better describe its content as advocated 
by the FAIR principles. DynDiffOnto is publicly available at 
the https:// git. list. lu/ dynac curate/ change- ontol ogy perma-
nent URL. We have associated this resource with a creative 
commons licence to clarify the reuse of the ontology. More-
over, the documentation of the ontology was generated 
using the WIDOCO software application [30]. Finally, we 
used the Oops! application [31] to detect potential incon-
sistencies of DynDiffOnto and then corrected them.

DynDiff for comparing large and dynamic ontologies
In this section, we explain how DynDiff computes the 
changes between two ontology versions. The granularity 
of the description of the changes is an important aspect 
that provides rich information about the evolution of the 
ontology. The change description can be low-level, when 
composed of add and remove changes only, or high-level, 
when low-level changes are regrouped in order to report 
a more intuitive interpretation of these changes. As Fig. 1 
shows, the change actions were regrouped into three dif-
ferent categories: Basic, Complex and Heuristic changes.2 https:// prote ge. stanf ord. edu

https://git.list.lu/dynaccurate/change-ontology
https://protege.stanford.edu


Page 5 of 19Diaz Benavides et al. Journal of Biomedical Semantics           (2023) 14:15  

• Basic changes: this is a set of low-level changes that 
are meant to be machine-understandable. Examples 
would be the addition of a Concept (abbreviated as 
addC). These are obtained by identifying triples that 
exist in a recent version but not in the older one.

• Heuristic changes: These are composed of at least 
one basic change and the main characteristic of 
these high-level changes is that they depend on 
the mappings computed through the user-selected 
matcher (i.e. the method chosen by the user to 

Table 1 Basic change rules and their relations to [12] and [20] existing rules

Change actions Description Hartung [12] Papavasileiou [20]

addC(c) Add concept c addC(c) Add_Type_Class(a)

delC(c) Delete concept c delC(c) Delete_Type_Class(a)

addP(p) Add property p - Add_Type_Property(a)

delP(p) Delete property p - Del_Type_Property(a)

addI(i) Add instance i - Add_Type_Individual(a)

delI(i) Delete instance i - Del_Type_Individual(a)

addSupC(r) Add relationship r where the property = subclass addR(r) Add_Superclass(a,b)

delSupC(r) Del relationship r where the property = subclass DelR(r) Del_Superclass(a,b)

addSupP(p,q) Add subproperty p to property q addR(r) Add_Superproperty(a,b)

DelSupP(p,q) Del subproperty p to property q delR(r) Del_Superproperty(a,b)

addComment(a) Add attribute a where the prop. = comment addA(a) Add_Comment(a,b)

delComment(a) Del attribute a where the property = comment delA(a) Delete_Comment(a,b)

addLabel(a) Add attribute a where the property = label addA(a) Add_Label(a,b)

delLabel(a) Del attribute a where the property = label delA(a) Delete_Label(a,b)

addOtherA(a) Add attribute a where the prop.  = label or comment addA(a) Add_Property_Instance(a1,a2)

delOtherA(a) Del attribute a where the prop.  = label or comment delA(a) Del_Property_Instance(a1,a2)

addOtherR(r) Add rel r where the prop.  = subClass or subProperty addR(r) Add_Property_Instance(a1,a2)

delOtherR(r) Del rel r where the prop.  = subClass or subProperty delR(r) Del_Property_Instance(a1,a2)

Table 2 Heuristic change rules and their relations to [12] and [20] existing rules

Change actions Description Hartung [12] Papavasileiou [20]

renP(i1, i2) Rename property - Rename_Property(i1, i2)

renI(i1, i2) Rename instance - Rename_Individual(i1, i2)

mergeC(Cs , ct) Merge multiple source concepts 
into one target concept

merge(Cs , ct) Merge_Classes(Cs , ct)

mergeP(Ps , pt) Merge multiple source properties 
into one target property

merge(Ps , pt) Merge_Properties(Ps , pt)

mergeCInto(Cs , ct) Merge multiple source concepts 
into one target concept ct ∈ Cs

merge(Cs , ct) Merge_Classes_Into_Existing(Cs , ct)

mergePInto(Ps , pt) Merge multiple source properties 
into one target property pt ∈ Ps

merge(Ps , pt) Merge_Properties_Into_Existing(Ps , pt)

splitC(Cs , ct) Split multiple source concepts 
into one target concept

split(Cs , ct) Split_Classes(Cs , ct)

splitP(Ps , pt) Split multiple source properties 
into one target property

split(Ps , pt) Split_Properties(Ps , pt)

splitCInto(Cs , ct) Split multiple source concepts 
into one target concept ct ∈ Cs

split(Cs , ct) Split_Classes_Into_Existing(Cs , ct)

splitPInto(Ps , pt) Split multiple source properties 
into one target property pt ∈ Ps

split(Ps , pt) Split_Properties_Into_Existing(Ps , pt)

changeCom-
ment(c, attname , VOld , VNew)

Change the value of the comment 
of c

chgAttValue(c, attname , VOld , VNew) Change_Comment(u,a,b)

changeLabel(c, attname , VOld , VNew) Change the value of the label of c chgAttValue(c, attname , VOld , VNew) Change_Label(u,a,b)

changeOtherA(c, attname , VOld , VNew) Change the value of the attribute 
of c

chgAttValue(c, attname , VOld , VNew) -
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map ontological entities before and after their evo-
lution). Since this method is based on heuristics, 
we named this group heuristic changes. An exam-
ple would be the split of a concept (abbreviated as 
splitC ). This type of change requires the determi-
nation of a mapping between the original concept 
(older version) and all other concepts from the 
new ontology that compose the split. This changes 
significantly depending on the matcher used and 
thus is non-deterministic. This type of change is 
more easily understood by humans. Indeed, it is 
easier to understand a split rather than a combi-
nation of basic changes. Thus, the more complex 
changes can be detected, the more the evolution of 
the ontology will be understandable for humans. 
Moreover, from a system point of view, having 
higher-level inferred-diff-annotations facilitate the 
maintenance of ontology mappings or semantic 
annotations as demonstrated in [9, 28].

• Complex changes: in contrast to the previous cat-
egory, these high-level changes are deterministic, 
independent of the matcher, and use well-defined 
logic rules to combine basic changes. This is why 
we separated them from the heuristic changes, as 

it would make the determinism more transparent 
to the user. An example is addSubGraphC, which 
regroups all concepts and relationships from a new 
branch of the ontology.

Algorithm  1 shows the sequence of instructions per-
formed. In this work, we implemented the rules proposed 
by [20] to generate the low-level triples, basic changes 
and complex changes. We adopted the approach of [12] 
to compute the heuristic changes. This decision ensures 
that all proofs presented in [20] also apply to this work. 
Readers can find a detailed explanation of the algorithm 
in the referenced articles.

The set of low-level changes, including all added and 
removed triples, is computed following the algorithm 
described in [20]. The triples are used as the input for 
the matcher (algorithm  2, line 3) and are also used to 
compute the Basic changes (algorithm 2, line 4). Exam-
ples of basic changes generated from the triples are 
addC, delA, addI, etc. By combining the basic changes, 
the heuristic and complex changes can be identified. 
Thus, the elements of the set of basic changes that are 
used/consumed to create more complex changes are 
deleted from the basic changes set (algorithm  3, line 

Table 3 Complex change rules and their relations to [12] and [20] existing rules

Change actions Description Hartung [12] Papavasileiou [20]

pullUpC(c, B1, B2) Move c to a higher position in the hierarchy - Pull_up_Class(c, B1, B2)

pullUpP(p, B1, B2) Move p to a higher position in the hierarchy - Pull_up_Property(p, B1, B2)

pullDownC(c, B1, B2) Move c to a lower position in the hierarchy - Pull_down_Class(c, B1, B2)

pullDownP(c, B1, B2) Move p to a lower position in the hierarchy - Pull_down_Property(p, B1, B2)

moveC(c, B1, B2) Move c horizontaly move(c, B1, B2) Move_Class(c, B1, B2)

moveP(p, B1, B2) Move p horizontaly - Move_Property(c, B1, B2)

recastI(i, B1, B2) Change type of i to B2 - Reclassify_Individual(i, B1, B2)

toObsC(c) c becomes obsolete toObsolete(c) -

revObsC(c) revoke obsolete status of c revokeObsolete(c) -

toObsP(p) p becomes obsolete toObsolete(p) -

revObsP(p) revoke obsolete status of p revokeObsolete(p) -

addLeafC(c,p) add c as leaf of p addLeaf(c,p) -

delLeafC(c,p) del c as leaf of p delLeaf(c,p) -

addLeafP(p1, p2) add leaf property p1 below class p2 - -

delLeafP(p1, p2) del leaf property p1 below class p2 - -

addSubGraphC(c,B) add a subgraph with root c and children B p1 below class p2 addSubGraph(c,B) -

delSubGraphC(c,B) del a subgraph with root c and children B p1 below class p2 delSubGraph(c,B) -

addSubGraphP(p,B) add a subgraph with root p and children B p1 below class p2 - -

delSubGraphP(p,B) del a subgraph with root p and children B p1 below class p2 - -

renC(i1, i2) rename C from id1 to id2 - Rename_Class(i1, i2)

reclassIHigher(i1, i2) When the instance is reclassified to a more generic class (i.e., 
the new class is an acester of the old class)

- Reclassify_Individual_Higher(i, B1, B2)

reclassILower(i1, i2) When the instance is reclassified to a more specific class (i.e., 
the new class is subsumed by the old class)

- Reclassify_Individual_Lower(i, B1, B2)
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9). This deletion action follows the principle of unam-
biguity (avoiding overlapped changes) proposed by 
[20]. The matcher searches for potential links between 
the triples and expresses these links as mappings. Sev-
eral matching systems aggregate different categories of 
matcher. This can be done in either a sequential man-
ner, where the output of one is fed to the next matcher; 
or in a parallel composition, where the algorithms run 
independently of each other and their results are later 
combined given certain criteria. Once these compu-
tations have concluded, a global strategy has to be 
executed to get the final optimized mappings. These 
strategies include trimming, which applies thresholds 
to keep the most relevant results, e.g. the maximal 
weight similarity [32]. Moreover, recent approaches 
have begun to include additional post-computing pro-
cesses like checking to prune illogical mappings or 
even full-fledged repair tasks to ensure the coherence 
of the final results [33]. In [34], readers can find dif-
ferent examples of these categories and better under-
stand how to use them. Given the amount of matcher 

available, we narrowed our search/evaluation to those 
with a good performance in the Ontology Alignment 
Evaluation Initiative (OAEI)3.

For this work, we present the results obtained when 
adopting the same matcher as used in COnto-Diff. We 
had to add a small modification in the matching rules 
in order to allow mappings to be generated for proper-
ties and instances. Note that the difference in the map-
ping rule is:

COnto-Diff rule: r ∈ R(Relationships) ∧ a, r ∈ Oold ∧ b ∈ Onew ∧ rsource =

ra ∧ rtarget = b ∧ r ∈ {“part_of ′′ , “is_a′′ , “synonym′′} → match(a,b)

D y n D i f f  r u l e :  a ∈ O old ∧ b ∈ O new ∧matchC(a, b) ∧ a �= b 
∧¬isObsolete(a) ∧ ¬isObsolete(b) → create [mapC(a,b)]

Similar DynDiff rules for properties and instances were 
defined. Since COntoDiff uses the OBO format to com-
pare ontologies, the restriction on the relationships is 
justified. DynDiff uses subsumption relationships defined 
by RDFS (e.g. rdfs:subClassOf) and several formats for 

Fig. 1 Illustration of the main classes of DynDiffOnto

3 http:// oaei. ontol ogyma tching. org/

http://oaei.ontologymatching.org/
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synonyms (e.g. skos:altLabel). The reasons for adopting 
the same matcher are: (1) To compare the performance of 
both approaches fairly; (2) To demonstrate the efficiency 
of our approach to identify changes.

Based on the mappings and the basic changes, 
the algorithm will compute probabilistic relations 
between the basic changes in order to represent more 
abstract changes such as split, merge, change label, 
etc. (algorithm  3, line 6). The Complex changes con-
sume the basic changes according to a set of deter-
ministic rules in order to represent more abstract 
change actions (e.g. moveC consumes addSupC and 
delSupC) (algorithm 3, line 8). The set of all rules used 
in this project can be downloaded from the project 
repository4.

The algorithms below will show how these rules were 
used to implement DynDiff. Algorithm  1 presents the 
Compute Diff change detection algorithm:

Algorithm 1 Compute diff change detection algorithm:

Algorithm 2 Compute diff:

 
Algorithm 3 Finding High-Level Changes

As explained in [20], in theorems 7.2 and 7.3, the complex-
ity of algorithm 1 is O(N 2) where N is the size of the input: 
ontology versions Vold,Vnew , and mappings which are given 
by a chosen matcher M(MConcepts,MProperties,MInstances) .  
This complexity can be explained by the size of the input 
of the PullUpConcept(concepta,  oldParents,  newParents) 
complex changes where the size of (oldParents, newParents)  
is equivalent to the size of the ontology.

Implementation
The application functions under the MVC (model - view 
- controller) design pattern and the implemented service 
is exposed as a RESTful API. Figure  2 shows the over-
all layout of the service architecture and its associated 
technologies:

The client makes requests to the API through the API 
endpoint. It goes to the Front Controller of the applica-
tion that serves as a handler and dispatches the respec-
tive service controller, as shown in Fig.  2. Then, it calls 
the service layer, where the implementation of the above-
mentioned algorithms are executed. The service layer 
loads the data stored in the triplestore5 through the data 
access object (DAO) layer into an in-memory Spark6. The 
intermediary Spark data layer is accessed when we need 
large-scale data processing capabilities, e.g. diff between 
400.000 concepts and the Triplestore when we need to 
compute, logical queries, e.g. subClassOf. The final Diff 
is stored in the triplestore database. This architecture 
decouples the algorithms and the databases, allowing tri-
plestores to be switched easily, if necessary.

All the application’s API architecture is developed 
using the Spring Framework and Java 11. The API is 
documented using Swagger, which follows the OpenAPI 
Specification version 3.0.3 which defines a standard, 
language-agnostic interface to RESTful APIs and allows 
humans and computers to discover and understand the 
capabilities of the service without access to source code, 
other documentation, or through network traffic inspec-
tion. Spark SQL is used to manipulate the data for the 
services, before storing it in Apache Jena’s triplestore, 
which is accessed by the Fuseki Sparql endpoint. The 

4 https:// git. list. lu/ dynac curate/ change- ontol ogy/-/ blob/ master/ Compa 
rison. pdf

5 https:// jena. apache. org/ docum entat ion/ fusek i2/
6 https:// spark. apache. org/ docs/ latest/ index. html

https://git.list.lu/dynaccurate/change-ontology/-/blob/master/Comparison.pdf
https://git.list.lu/dynaccurate/change-ontology/-/blob/master/Comparison.pdf
https://jena.apache.org/documentation/fuseki2/
https://spark.apache.org/docs/latest/index.html
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triplestore’s schema is the proposed change ontology. The 
service is deployed with the help of Apache Maven and as 
a Docker container which is orchestrated with the other 
services using Kubernetes.

Results
DynDiff has been experimentally evaluated on large 
ontologies in the biomedical domain. Our goal was to 
assess the performance of the algorithm on existing tools 
in terms of execution time, as well as its ability to iden-
tify the right change actions. We also propose additional 
experiments to evaluate the influence of the ontology 
matcher on our method.

Materials
During this evaluation, we used seventy-three versions 
from seven different ontologies. Table  4 provides the 
average number of classes (C), properties (P), individuals 
(I), subsumption relationships (R) and attributes (A) that 
are contained in the various version of these ontologies.

We collected these ontologies from BioPortal [5]. For 
each of the dataset versions, the initial and last ID used 
are listed in the “versions” column, as well as the num-
ber of versions (in parentheses). We used the notation 
AA to indicate that for these ontologies we selected 
the latest version published in January of each year. For 
Gene Ontology (GO), Interlinking Ontology for Biologi-
cal Concepts (IOBC) and the Ontology of Coronavirus 
Infectious Disease (CIDO) we indicate in the table the 
first and last version used.

Experimental method and metrics
The main research objective of this work deals with the 
scalability, robustness and completeness of the method. 
The scalability and robustness aspects deal with the abil-
ity of the approach to compare large ontologies while 
the completeness aspect deals with the ability of the 
approach to identify a larger set of ontological changes 
compared with state-of-the-art methods. To evaluate 
these objectives we executed DynDiff and COnto-Diff 

Fig. 2 DynDiff algorithm service layout with its technology dependencies

Table 4 Average number of concepts ( C ), properties ( P) , individuals ( I  ), subsumption relationships ( R ) and attributes ( A ) in the 
different versions of each of the datasets. The Versions column shows the versions collected

Acronym Versions (#) Average number of

C P I R A

ICD9CM 2005AA - 2016AA (12) 21,765 2 0 21,765 54,572

MESH 2005AA - 2016AA (12) 25,820 2 0 34,899 215,971

NCIT 2005AA - 2016AA (12) 70,396 2 0 79,525 179,983

SNOMEDCT 2005AA - 2016AA (12) 309,572 2 0 496,084 800,158

GO 01072017 - 21072020 (4) 52,574 54 0 492,651 395,285

IOBC 1.0.0 - 1.4.0 (7) 115,114 84 59,346 707,970 904,443

CIDO 01262020 - 06142020 (14) 3,599 165 294 15,368 25,407
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algorithms in the same computing environment and used 
the following metrics to analyse the results obtained.

• Execution time: With this metrics we will be able 
to compare the computation time required by Dyn-
Diff and COnto-Diff to measure the scalability and 
robustness of both algorithms. Here we studied two 
main indicators:

– Composition: we studied the composition of the 
execution discerning between the loading and 
actual algorithm execution time. We did this to 
understand the performance of the DAO (loading) 
and service (algorithm execution) layers. Addi-
tionally, it provides a benchmark of the algorithms 
based on the Apache Jena Fuseki implementation.

– Trends and behaviours: to understand the behav-
iour and trends of the execution time given a set 
of characteristics (like input size, output size and 
result composition in terms of changes, among 
others); in addition, we analysed the outcomes to 
evaluate the scalability of the algorithm in terms of 
these characteristics.

• Composite to low-level ratio: for this indicator, the low-
level are the basic changes while the composite changes 
are the higher level changes, regrouping the complex 
and heuristic ones. We look for the ratio between com-
posites and low-level changes to analyse how good the 
algorithm to compute them is in terms of complete-
ness. Note that composite changes are harder to com-
pute and require more computational time/resources.

• % change tool comparison: The following indicator 
is used to compare the results of DynDiff (DD) with 
those of COnto-Diff (CO) [12]: 

 where N is the number of changes of a given tool and 
of a given type: basic or composite (complex or heu-
ristic). The COnto-Diff algorithm serves as a ground 
truth since it was also compared (in previous work) 
with other existing solutions like PromptDiff. We 
compared the “execution time” indicator and evalu-
ated the proposed “%changeTools” indicator. This 
analysis also enabled us to explain the differences in 
the composite-to-low-level ratio. The methodology 
here is the same, except that there is no API service 
(and thus no UI); everything is set up through the 
IDE and the intermediary and final results are kept in 
a local database.

(2)%ChangeToolstype =
AVG(NDD,type − NCO,type)

AVG(NCO,type)
, type ∈ {Basic,Composite}

• % change matcher comparison : To compare with 
our default matcher, we selected the AML (Agree-
ment Maker Light) matcher7 because it is an open 
source (we were able set up a comparable environ-
ment and execute the code) and because of the good 
performance of this matcher in the OAEI from 2019. 
By changing the default matcher of our tool, we are 
able to see the effect of the new matcher on the per-
formance of our algorithms. We used the following 
equation to measure the matcher impact: 

where DM refers to the default matcher and AML 
to the new one. N refers to the amount of heuris-
tic changes for the given matchers (DM, AML). 
The methodology to gather the results of the new 
matcher is the same as that described for the default 
one, although we limit the analysis to three ontolo-
gies: SNOMEDCT in order to evaluate the results in 
a large ontology; ICD9CM because it is a medium-
sized ontology; and CIDO as it also contains proper-
ties and instances.

Evaluation of DynDiff
The first set of experiments examines the relationship 
between the execution time (in seconds) of DynDiff and 
the total amount of detected changes (referenced as 
“composition” in the previous section).

The total execution time is made up of two processes: 
the loading time of the local triplestore and the actual 
execution time of the algorithm. As shown in Fig. 3, in 
at least 75% of the cases, the loading time represents 
less than 18% of the total execution time (see the upper 
hinge). The maximum loading time was observed for 

GO ontology and represents 34% of the total execu-
tion time, the minimum loading time was observed for 
cido ontology and represent is 4% of the total execu-
tion time. The high loading time is probably due to the 
parsing step undertaken to transform the original OBO 
format of GO into OWL. The other ontologies have a 
native OWL format, avoiding the parsing step. We 
observed that the parsing process adds extra triples to 
GO, such as blank nodes, that require more processing 
time to load and to recompose the graph in memory.

(3)%ChangeMatchers =
AVG(NAML − NDM)

AVG(NPA)

7 https:// github. com/ Agree mentM akerL ight/ AML- Proje ct/ relea ses/ tag/ v3.1

https://github.com/AgreementMakerLight/AML-Project/releases/tag/v3.1
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The next step of our evaluation will better detail how 
the execution time of the algorithm is used. For this, 
we will start with the analysis of “trends and behav-
iours”. Figure  4 shows the total amount of changes 
computed per ontology (diff between consecutive  
versions) versus the execution time. The plotted exe-
cution time represents the average of 10 iterations 
for each Diff calculated between two consecutive  
versions. The goal of this analysis is to determine if 
the execution time increases proportionally to the 
number of changes in order to validate the scalability 
of our algorithm.

As shown in Fig. 4 the execution time follows two pat-
terns: (i) reference, (ii) high variance. The reference pat-
tern is characterized by the fact that, for each ontology, 

there is a proportional relation between the execution 
time and the number of changes. Notice that the ratio 
can be different for different ontologies (as indicate by 
the red, for NCIt, and green, for SNOMED CT, doted 
lines in Fig. 4). According to our findings, two ontologies 
do not follow the reference pattern: GO and IOBC. For 
instance, GO (with many concepts and few instances) 
has an execution time varying between 300s and 850s to 
compute 30K to 300K changes. IOBC (with few concepts 
and many instances) expends between 400s and 900s to 
compute 50K to 700K changes. For both ontologies, we 
observed a non-linear increase of the execution time vs 
number of changes. In the next steps of our analysis, we 
will evaluate the potential impact of other factors on the 
execution time of our algorithm.

Fig. 3 Variance of the ratio of loading time to execution time through all iterations of the proposed ontologies

Fig. 4 Average execution time (secs) vs total of changes per computed diff between consecutive versions of ontologies
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The first analysed factor was the computation environ-
ment. Figure  5 shows that there is an inherent variabil-
ity among the 10 iterations to compute the diff between 
the different versions. Here we see the total amount of 
changes produced, and a box-plot quartile analysis over 
the 10 iterations done. This is mainly due to the start-up 
time used by the Java Virtual Machine in the first itera-
tions as well as the randomness intrinsic to not using a 
dedicated server or machine for the computation.

Additionally, Spark is used here for resource manage-
ment and is known to have high costs at the start and fin-
ish of jobs according to the benchmark done by [35].

The next series of experiments will demonstrate that 
computing composite changes can have an impact on the 
execution time. This is an important analysis because our 
approach proposes to compute more composite changes 
than the other existing approaches.

Composite vs low‑level changes
One of the main objectives of this work is to identify and 
characterize changes that are not only machine- but also 
human-interpretable. For this reason, it is important to 
evaluate the capacity of DynDiff to transform the basic 
changes into composite ones. Figure 6 shows the percent-
age of basic changes consumed by the composite changes 
(consumed basic changes/total basic changes) for 2-3 dif-
ferent computed diffs per ontology.

Note that IOBC consumes few basic changes. The 
most frequent change observed in this ontology was the 
deletion of labels, which is classified as a basic change. 
It can partially explain the low execution time required 
for 700K changes, as shown in Fig.  4. In contrast, the 
algortithm consumes (on average) more than 50% of the 
basic changes for NCIt and SNOMEDCT. For example, 
for NCIt 2005-2006 diff computation, the algorithm was 
able to identify a large subgraph that was composed of 
a little more than 48k concepts (addSubgraphC), con-
suming almost all the basic changes. The consequence 
of this higher quantity of basic change consumption is 
observed in Fig.  4 by a higher execution time for these 
ontologies. Thus, the reduction of the execution time 
can be obtained by observing the evolution of an ontol-
ogy and selecting the composite changes that are useful 
for the end-users. The analysis of the composite changes 
is closely related to the context and the use that will be 
made of this information. For instance, we plan to use the 
types of changes to evaluate the impact of these changes 
on the mappings [9] and on the semantic annotations 
of documents [10]. The ultimate goal is to automatically 
update the mappings and annotations according to the 
evolution of the ontologies. For this context, the set of 
rules that we selected covers all our needs. Other con-
texts would require only a sub-set of these rules, resulting 
in a reduction of the calculation of composite changes 

Fig. 5 Average of execution time (secs) vs Average of total changes for DynDiff
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and consequently in a reduction of the execution time for 
some ontologies. However, the bottlenecks can also come 
from the matcher and the rules for detecting heuristic 
changes. According to the chosen matcher and the type 
of ontology that it will be applied for, the performance of 
our algorithm can be different. This will be detailed later 
when the differences in the results given by the matchers 
are analysed.

Combining the size of the ontology, the quantity of 
detected changes, and the ratio of composite changes 
enables a multi-perspective view of the execution time, 
as shown in Fig. 7. The width of the bars represents the 
size of the input versions (number of triples represent-
ing concepts, relationships, attributes, properties and 
instances) and the height of the bars represents the num-
ber of detected changes. The colours inside the bars dis-
tinguish basic changes from composite ones. The ratio 
between basic and composite changes is also indicated 
by a red label. The horizontal axis of the figure indi-
cates the average execution time of the algorithm. Note 
that increasing the input (width) or output (height) can-
not justify per se the increase of the computation time. 
However, if the quantity of composite changes is also 
taken into account, the correlation becomes clearer. The 
bar furthest to the right (with the higher execution time) 
has the following characteristics: large input ontolo-
gies and high number of detected changes, with 20% of 
them being composite changes. Although this does not 
explain all the cases, it is definitively clear that all execu-
tion time over 500s has a large ontology as its input even 
if the number of the detected changes is not that big. For 
instance, one diff computed for SNOMEDCT has an exe-
cution time greater than 900s and the number of changes 

is close to 100K. Thus, the type of ontology also impacts 
the execution time. By comparing Figs. 7 and 4, we can 
observe that it is time-consuming to compute diffs for 
SNOMEDCT. One hypothesis is that the sophisticated 
hierarchical relationship within SNOMEDCT could par-
tially justify this high execution time. Deeper analysis is 
necessary to demonstrate this hypothesis. But, this dem-
onstration is out of the scope of our work since it impacts 
all Diff algorithms in the same way.

The next step will be to compare our approach with the 
state-of-the-art in this domain, i.e. COnto-Diff.

Comparison with COnto‑Diff
The close collaboration with the University of Leipzig and 
in particular, with the researchers developing COnto-Diff 
tool [12] was crucial to the setup of an execution environ-
ment in order to fairly compare the tools. The rules for 
Properties P and Instances I , cannot be compared with 
COnto-Diff because COnto-Diff was not designed to  
analyse these elements. Inspired by the work of [20], our 
approach added this more granular view to characterize the 
changes with, for instance, addSubClass, addSubProperty, 
addOtherRelationship, etc.

Execution time
The first comparison’s factor is the total execution time 
spent to compute the Diff. In Fig. 8 we can observe the 
total changes computed by each algorithm (COnto-Diff 
and DynDiff ) for the consecutive versions of the seven 
ontologies proposed (we used the average execution 
time of its 10 iterations). Note that on average, the exe-
cution time of DynDiff varies less than that of COnto-
Diff, especially for larger ontologies or for a large 

Fig. 6 Percentage of consumed basic changes by computed diff. We present some examples computed for seven different ontologies
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number of changes. The trend of execution time of both 
algorithms are presented as dotted lines in the figure. 
For instance, when there are more than 230K changes, 
COnto-Diff needs twice as much time as DynDiff to 

compute the changes. The IOBC exception (700K 
changes) is observed because COnto-Diff does not 
compute changes in instances (what is mostly the case 
for IOBC). Moreover, the GO 2019-2020 was excluded 

Fig. 7 Effect of number of changes (output), input size of version ontologies (width), and the percentage of complex changes in average execution 
time (secs)

Fig. 8 Comparison of average execution time (secs) vs total changes per computation between consecutive versions of proposed ontologies
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from the analysis because COnto-Diff was unable to 
compute the diff.

The variance in the total execution time for each 
approach can be seen in Fig.  9. Note the good perfor-
mance of COnto-Diff for smaller ontologies. This can 
be explained by the bigger quantity of rules to test and 
the higher loading time for DynDiff. The novelty is that 
DynDiff performs well for larger ontologies and even bet-
ter for larger ontologies with a big quantity of changes 
which confirms the robustness of DynDiff. The box-plot 
presents the total execution time per Diff. We regrouped 
the Diffs by ontology and, within each group, the values 
are ordered (ascendant) by the number of computed 
changes.

By looking more closely at the variability in the 
execution time, COnto-Diff shows a higher vari-
ance for CIDO on some diffs, such as 0403-0408 and 
0202-0312, which has the highest amount of complex 
changes in this group. These two diffs contain up to 
300% more complex changes than the other versions. 
For larger ontologies, the variability is more evident, 
such as for IOBC 105-111. This variability can be 
caused by certain characteristics of the ontology. For 
instance, IOBC 105-111 uses labels in both Japanese 
and English. This high variability was not observed 
with DynDiff. However, for MESH 2015-2016 or NCIt 
2015-2016, we observe a higher variability with Dyn-
Diff. Since the quantity of changes in these two ontolo-
gies are quite small (near 200), we suspect that the 
start-up and finishing overheads given by Spark had an 
impact on our experiments.

As an indicator of accuracy, we compare the changes 
detected by DynDiff with those from COnto-Diff. We 
defined the %changeToolstype metric (see Eq. 2) to quan-
tify the differences of changes computed by each tool. 
We start by comparing the basic changes as shown in 
Fig. 10. Having a value close to 0% indicates that the same 
number of changes were found by both tools. The dif-
ferences observed, such as for IOBC and CIDO, express 
the capacity of either DynDiff or COnto-Diff to charac-
terize more types of changes than the other one. If the 
value is positive, then DynDiff detects more changes, if 
it is negative, then COnto-Diff detects more changes. For 
IOBC and CIDO, a plausible explanation for the differ-
ences is based on the inability of COnto-Diff to process 
the labels in Japanese as well as on the inability of COnto-
Diff to identify the changes in instances and properties 
(since it does not have rules for that). Similar results are 
also observed for the analysis of composite changes. The 
slight differences of 2-4% for the ontologies are mainly 
due to the rules for heuristic changes.

The negative percentages are due to the ability of 
COnto-Diff to compute addInnerC and delInnerC in 

order to detect the concepts added or deleted between 
a leaf and non-leaf node. Our approach uses addSub-
Graph and delSubGraph, which group several add/delete 
operations into a more complex operation. This deci-
sion generates more changes for COnto-Diff, expressed 
as negative values in the figure. This analysis shows that 
both approaches behave similarly for ontologies that do 
not have changes in properties or individuals, but only 
DynDiff can identify these kinds of changes making 
DynDiff more complete in its ability to detect high-level 
changes.

Influence of the matcher
The reason for evaluating several matchers is to show 
their potential impact on the results and to highlight the 
importance of choosing one matcher wisely. The compar-
ison will be between the built-in matcher and the AML8 
matcher version 3.1. Before selecting AML, we evaluated 
7 matchers (all matchers that performed well for large 
biomedical ontologies in the OAEI 2019 [36]). In this 
evaluation, AML had the highest overall F-measure and 
took fourth position in terms of execution time. From a 
technical perspective, our experiments were executed on 
an Ubuntu 18 Laptop with an Intel Core i5-6300HQ CPU 
@ 2.30GHz x 4 and 15Gb of RAM. The ontologies used 
were SNOMEDCT (with 306.500 concepts on average) 
and NCIT (with 66,724 concepts on average).

For the experiments presented in Fig. 11, we decided to 
deactivate the feature word-matcher from AML because 
when applied to our dataset, it generates an “outof-mem-
ory” error for large ontologies such as SNOMEDCT. The 
alignment threshold used was 60%, meaning that matches 
with a similarity value below 60% were discarded. For 
readability reasons, we present the outcomes of our 
evaluation for three ontologies: SNOMEDCT, ICD9CM 
and CIDO. We compared the metric changeMatcher (see 
Eq. 3) between the default matcher and AML. Note that 
we evaluated only the difference in heuristic changes, 
since we observed that the impact is less sensible for the 
other types of changes. In Fig. 11, we can observe the sig-
nificant impact of AML on one diff computation of CIDO 
and one SNOMEDCT computation. These diffs have few 
heuristic changes, thus a small variation in the quantity 
of detected changes significantly increases the outcome 
of the metrics that we used. Otherwise, AML has a posi-
tive impact on the detection of changes in SNOMEDCT, 
allowing us to detect (on average) more cases of heuristic 
changes than our built-in matcher. The impact was less 
impressive in the other types of ontologies. The reason 

8 https:// github. com/ Agree mentM akerL ight/ AML- Proje ct/ relea ses/ tag/ 
v3.1

https://github.com/AgreementMakerLight/AML-Project/releases/tag/v3.1
https://github.com/AgreementMakerLight/AML-Project/releases/tag/v3.1


Page 16 of 19Diaz Benavides et al. Journal of Biomedical Semantics           (2023) 14:15 

Fig. 9 Comparison of the execution time per iteration and its variance for each of the computed diffs. a small to medium and b large sized 
ontologies
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Fig. 10 Comparison of the basic changes computed by DynDiff vs ones computed by COnto-Diff

Fig. 11 Comparison of increase in heuristic changes using AML matcher



Page 18 of 19Diaz Benavides et al. Journal of Biomedical Semantics           (2023) 14:15 

for this is the complexity of the relations within the ontol-
ogy; the mappings between triples are more complex to 
determine, requiring more efficient matchers. Another 
factor to consider is the quantity of changes between ver-
sions. A matcher can increase the execution time of the 
algorithm. Thus, it is necessary to balance the efficiency 
of a matcher, the quantity of heuristic changes and the 
execution time of the algorithm.

To better understand how matchers affect the execu-
tion time, we recommend looking at the benchmarks 
provided by the OAEI. In our case, we used the 2019 
benchmark [36] to select AML. When using DynDiff, the 
end-users can select the most adapted matcher for their 
applied scenario.

Conclusion
Computing ontology diff in a scalable and efficient man-
ner is still a problem, especially for the ever-growing size 
of ontologies. In this paper, we presented DynDiffOnto, 
an ontology that defines a balanced set of change actions 
to support the interpretation of how ontologies evolve. 
We also present the DynDiff tool designed to compute 
the Diff between versions of ontologies and classify them 
according to DynDiffOnto. Our analysis shows that Dyn-
Diff is efficient for handling large ontologies, even those 
with dynamic instances and properties. Finally, we com-
pared our approach with the state-of-the-art tools used 
in this field and observed a very close performance in 
terms of execution time and ability to identify changes. 
This tool was evaluated with ontologies from the medi-
cal domain and the importance of wisely selecting the 
matcher was also discussed and evaluated. The impact 
of blank nodes in the diff calculation is still an open 
question and is part of the perspectives of this work. 
The future of this tool now depends on Dynaccurate9, a 
spinoff that took over the development and commerciali-
zation of this technology.
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