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Abstract 

Background A huge amount of research is carried out nowadays in Artificial Intelligence to propose automated 
ways to analyse medical data with the aim to support doctors in delivering medical diagnoses. However, a main issue 
of these approaches is the lack of transparency and interpretability of the achieved results, making it hard to employ 
such methods for educational purposes. It is therefore necessary to develop new frameworks to enhance explainabil-
ity in these solutions.

Results In this paper, we present a novel full pipeline to generate automatically natural language explanations 
for medical diagnoses. The proposed solution starts from a clinical case description associated with a list of correct 
and incorrect diagnoses and, through the extraction of the relevant symptoms and findings, enriches the information 
contained in the description with verified medical knowledge from an ontology. Finally, the system returns a pattern-
based explanation in natural language which elucidates why the correct (incorrect) diagnosis is the correct (incorrect) 
one. The main contribution of the paper is twofold: first, we propose two novel linguistic resources for the medical 
domain (i.e, a dataset of 314 clinical cases annotated with the medical entities from UMLS, and a database of bio-
logical boundaries for common findings), and second, a full Information Extraction pipeline to extract symptoms 
and findings from the clinical cases and match them with the terms in a medical ontology and to the biological 
boundaries. An extensive evaluation of the proposed approach shows the our method outperforms comparable 
approaches.

Conclusions Our goal is to offer AI-assisted educational support framework to form clinical residents to formulate 
sound and exhaustive explanations for their diagnoses to patients.

Keywords AI in medicine, Natural language processing, Information extraction, Argument-based natural language 
explanations, Healthcare

Introduction
Explanatory Artificial Intelligence (XAI) is a main topic 
in AI research nowadays, given, on the one side, the pre-
dominance of black box methods, and on the other side, 

the application of these methods to sensitive scenarios 
like medicine and law. One of the main reasons why 
making AI solutions explainable and trustable lies in the 
law. With the AI Act, for instance, the European Com-
mission regulates the use of “high-risk artificial intel-
ligence” [1] for the medical domain, discussing sensitive 
topics like explainability, responsibility and gouvernance. 
Among the huge set of contributions in this area  [2, 3], 
some approaches highlight the need to build explana-
tions which are sound and clearly interpretable, leading 
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to the investigation of the generation of argument-based 
explanations  [4]. These explanations are intended to be 
not only rational, but “manifestly” rational [5], such that 
arguers can see for themselves the rationale behind the 
inferential steps taken. This is particularly important 
when explanations are used for educational purposes, 
like to form students to present the elements which con-
ducted them to take a certain decision in a clear way. 
Again, in sensible scenarios like medicine and law this is 
a mandatory requirement, e.g., clinical residents need to 
explain grounding on evidence how they come up with a 
certain diagnosis, and law students need to explain how 
they build a certain deliberation based on the law and the 
previous cases. Although this task is already challenging 
when dealing with formal representation of the explana-
tions [6, 7], it becomes even more challenging if we tar-
get the generation of natural language argument-based 
explanations  [4, 8]. We refer the reader to Tran et  al. 
(2021) for a systematic overview of existing research on 
healthcare recommender systems, highlighting the com-
plexity and variety of approaches in this domain.

In this paper, we address this open research challenge 
in the medical domain. More precisely, we answer the 
following research question: how can we generate fine-
grained natural language explanations for correct and 
incorrect diagnoses?

To answer this research question, we rely on a corpus 
of training data for med residents. These students are 
trained through tests which consist of a textual descrip-
tion of a clinical case (i.e., symptoms experienced by the 
patient, results of clinical exams and analysis, findings 
and vital signs, and some further information concern-
ing the patient herself like the age), and then the follow-
ing question “Which of the following is the most likely 
diagnosis?” arises. The test is composed of a number of 
possible answers to this question, i.e., potential diagno-
ses, among which one of them is the correct diagnosis 
and the others are incorrect. The solution consists in 
selecting the correct answer. To ensure the effectiveness 
of this approach, cognitive and epistemological criteria 
are proposed in Explainable Artificial Intelligence (XAI), 
as discussed by Cabitza et  al. (2023). In order to gener-
ate automatically natural language explanations about 
why the correct and incorrect diagnoses are so, we rely 
on three main modules: first, we identify the symptoms 
and the findings in the textual description of the clinical 
case, secondly we align the detected symptoms with the 
concepts in the verified medical ontology called Human 
Phenotype Ontology (HPO) in order to find what are the 
diseases associated to these symptoms, and finally, we 
convert the detected findings into medical terms con-
sidering their biological boundaries (e.g., “temperature 
over 38 degrees” can be converted into “fever”). Given all 

the retrieved knowledge pieces, we automatically gener-
ate explanations of the kind: “The patient is affected by 
[ diagnosisx ] because the following relevant symptoms 
have been identified: [correct diagnosis symptoms and 
converted findings]. The [ diagnosisy ] is incorrect because 
the patient is not showing the symptoms [incorrect 
diagnosis symptoms]. Furthermore, symptoms [correct 
diagnosis missing frequent symptoms] are also frequent 
symptoms observed for [ diagnosisx ] and could not be 
found in the clinical case”.

The main contribution of the paper is twofold: first, 
we present two novel linguistic resources for the medi-
cal domain, i.e., the MEDQA-UMLS-Symp dataset which 
contains a set of clinical case descriptions together with a 
set of possible questions and answers on the correct diag-
nosis from MedQA [9], annotated with medical entities 
from UMLS [10], and a database of biological boundaries 
for common findings; second, we introduce a complete 
pipeline to generate natural language explanations for 
correct and incorrect diagnosis, relying on clinical enti-
ties detected from clinical cases and aligned with medi-
cal ontologies. This journal paper extends our previous 
contribution [11] showing that medical findings and vital 
signs can enhance explanations by converting observed 
values to a medical terminology, based on a manually 
verified medical database and large Language Models, 
and enriching explanations with findings information.

The work presented in this paper is, to the best of our 
knowledge, one of the very few examples of full frame-
work to automatically generate natural language expla-
nations in medicine. Given the sensibility of the medical 
scenario, we rely on an hybrid AI approach mixing both 
symbolic AI (i.e., the ontology alignment with the HPO 
ontology, and pattern-based approach to generate the 
explanations) and numerical AI (i.e., the Large Language 
Models and generative AI). This approach allows us to 
obtain good results (outperforming standard baselines 
and competing approaches) always ensuring the verifica-
tion of the medical knowledge employed in the generated 
evidence composing the explanations.

The paper is organised as follows. In Background sec-
tion, we present the existing approaches in the literature 
for information extraction on medical text and medical 
term ontology alignment, and we compare them with 
the proposed approach. In Resources  section, we intro-
duce the two linguistic resources we built and how we 
assess the reliability of these resources. Methods  sec-
tion presents the proposed pipeline for natural language 
explanation generation and details the different modules 
composing it. In Experiments  section, we present the 
experimental setting, we report on the obtained results 
and we address an error analysis. In Generating Natu-
ral Language Explanations  section, we introduce the 
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patterns for generating the explanations both for correct 
and for incorrect diagnoses. A discussion and conclusion 
end the paper.

Background
Artificial intelligence (AI) has become a lever for pro-
gress in the medical field. This field deals with different 
sources of information such as images, analysis records, 
biomedical data and text in natural language. Focusing 
on the latter, ongoing research projects are investigating 
how to automate diagnosis prediction using unstructured 
text  [12]. Previous approaches have focused on building 
rule-based systems to predict diagnoses [13, 14] wheras, 
more recently, approaches based on machine learning 
methods have been developed to predict breast can-
cer [15], psychiatric conditions [16], and HIV risks [17]. 
As another example, Bracchi et al. [18] propose a system 
based on RNN and CNN to predict the cerebrovascular 
cause of transient ischemic attacks. While many stud-
ies attempt to predict medical diagnoses, very few seek 
to explain them [19]. This section presents and discusses 
existing work on the generation of natural language 
explanations and the role of verified sources of medical 
knowledge such as ontologies and thesauri in generating 
such explanations. We will first present available data-
sets, then we will describe existing approaches aligning 
medical entities with ontologies, and finally we will focus 
on the existing methods to generate natural language 
explanations.

Medical data and linguistic resources
A considerable amount of research effort focused on the 
construction of robust and trustworthy sources of knowl-
edge like ontologies and vocabularies. Several of these 
resources are centered around clinical terms, such as 
SNOME D CT [20]1 and ICD-10 codes [21], while others 
focus on more specific areas. RxNorm [22], for instance, 
is devoted to clinical drugs, CPT  [23] is built around 
procedural terminology, and MeSH  [23] is designed for 
cataloging and searching biomedical information. The 
Human Phenotype Ontology (HPO) [24] provides a com-
prehensive platform for discussing human phenotypic 
abnormalities. Furthermore, Bodenreider  [10] proposed 
a Metathesaurus based on the aforementioned vocabu-
laries and many others, into a unified structure. This inte-
grated resource includes names, relationships, attributes, 
and other details related to biomedical and health-related 
concepts.ad

In parallel to the efforts made in creating reliable medi-
cal vocabularies, significant advancements have been 
made in the compilation of medical datasets, particularly 

in natural language. Notably, this has been accomplished 
through shared tasks such as i2c2 (renamed as n2c2) for 
Information Extraction (IE) [25, 26], MEDIQA (QA) used 
in Natural Language Inference (NLI), Recognizing Ques-
tion Entailment (RQE), and Question Answering  [27], 
and SemEval 22 with IE and NLI tasks [28–30].

While Johnson et  al.  [31] proposed the MIMIC-III 
dataset consisting of textual data about vital signs, medi-
cations, laboratory measurements, observations and 
more, other efforts have focused both on structured and 
unstructured data. For instance, eICU and PhysioNet[32, 
33] are two contributions that have been key in enhanc-
ing the body of available medical datasets by collecting 
respectively anonymized structured data from patients 
(including vital sign measurements, care plan documen-
tation, diagnosis information, treatment information) 
and signals archive. Simultaneously, resources like the 
UK Biobank and the Cancer Imaging Archive  [34, 35] 
include both medical images and textual data.

Numerous contributions focused on identifying medi-
cal Named Entities from article abstracts, primarily from 
PubMed. These approaches to Named Entity Recognition 
(NER) target various biomedical aspects, ranging from 
Part-of-Speech (PoS) tagging with the Extended GENIA 
dataset  [36], to more detailed entity annotations on full 
articles, as in the CRAFT corpus  [37]. The AnatEM 
corpus  [38] and some of the BioNLP Shared Tasks  [39, 
40] concentrate on entities and relations, while other 
approaches  [41–46] specifically address gene, protein, 
and species entities.

However, only a limited number of studies have 
focused on disease and medical findings annotation, e.g., 
the NCBI disease corpus [47] and the MEDQA-USMLE-
Symp dataset [11], which is annotated with UMLS symp-
toms and findings tags. Despite these two resources, the 
issue of matching medical findings to symptoms is still an 
open research question. This highlights the need for fur-
ther research in this area to improve the understanding 
and adoption of medical findings for more accurate and 
comprehensive diagnostic and explanatory tasks.

Information Extraction on medical text
Many robust off-the-shelf pipeline toolkits like Spacy [48], 
MedSpacy [49], and CLAMP [50], have been recently pro-
posed for text processing, and in particular, to process 
medical text. Notably, MedSpacy is a specialized exten-
sion of Spacy, custom-built for clinical language process-
ing. CLAMP stands out due to its capability for NER and 
its interactive interface for annotating clinical text. How-
ever, their rule-based approach for NER in the medical 
domain makes it complex to apply it to named entities not 
originally considered in the tool, and new rules need to be 
defined.1 https:// www. snomed. org/ value- of- snome dct.

https://www.snomed.org/value-of-snomedct
https://www.snomed.org/value-of-snomedct
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Recent approaches cast NER as a sequence labeling 
task, where transformer-based models have shown 
remarkable performance, especially when fine-tuned on 
specific domains. Naseem et  al.  [51] showed that pre-
training the ALBERT model on a large-scale biomedi-
cal corpus enhances the model’s ability to capture the 
context found in biomedical NER tasks. This special-
ized approach has resulted in these models outperform-
ing non-specialized counterparts and achieving top-tier 
results on several datasets. BioELECTRA  [52] exempli-
fies this trend by pre-training a biomedical language 
model using biomedical text and vocabulary with the 
ELECTRA architecture. Other BERT-based models, such 
as SciBERT [53], BioBERT [54], PubMedBERT [55], and 
BioMed-RoBERTa [56], which is based on RoBERTa, have 
also been designed for the biomedical domain.

Other approaches like UmlsBERT  [57] integrate 
domain knowledge from the Unified Medical Language 
System (UMLS) ontology into a contextual embedding 
model. The model’s strength lies in its ability to associ-
ate different clinical terms with similar meanings in 
the UMLS knowledge base, creating meaningful input 
embeddings by leveraging information from the semantic 
type of each word. Our study compares the representa-
tion of symptoms found in clinical cases with different 
contextual embeddings, seeking to identify a representa-
tion that aligns with the one provided in the Human Phe-
notype Ontology [24].

Finally, Raza et  al.  [58] propose the Bio-Epidemiol-
ogy-Ner (BioEN) pipeline, an approach inspired by [11], 
where they fine-tune a DistilBERT [59] model, a simpli-
fied and more computationally efficient version of BERT, 
for the task of biomedical NER. They adapt the last layer 
of the pre-trained DistilBERT model to their specific bio-
medical task and adjust the input and output dimensions 
accordingly. However, the labels they use are not derived 
from any certified ontology or medical source, mak-
ing this approach ad hoc to their NER labels and limit-
ing its reusability. Furthermore, their approach does not 
account for the broader scope of medical findings, which 
include vital signs and analysis results, essential elements 
to analyse clinical cases.

Medical term alignment
In our work, we not only aim to detect symptoms from 
clinical cases but also to align them with medical ontolo-
gies such as the Human Phenotype Ontology (HPO). 
Such alignment is required to elucidate the connections 
between symptoms, that can be expressed in layperson 
terms, and diseases. Manzini et  al.  [60], for instance, 
propose an automated system for translating layperson 
terminology to HPO. This system leverages a neural net-
work and a vector space to generate and compare vector 

representations of medical and layperson terms. The 
main limitation of this approach is that it translates lay-
person terms without considering the context, potentially 
missing relevant information that may change the seman-
tics of the term. In contrast, the approach we propose in 
this paper accounts for the context in which the layper-
son term is used, thus enabling a more accurate mapping 
to an HPO term.

In addition to symptoms, medical explanations often 
rely on the results of additional tests, such as blood tests 
and vital sign measurements. Consequently, it is crucial 
to take into account and interpret these data. Several 
recent studies focus on the automatic detection of vital 
signs in digitized patient records, such as Electronic 
Medical Records (EMR)[61] or Electronic Health Records 
(EHR) [62–64]. However, none of these studies, to the 
best of our knowledge, concentrate on training exams. 
These exams can be clinical cases that utilize a different 
structure from EMR or EHR and often show a more nar-
rative text, presenting symptoms, patient history, and lab 
results as part of a broader storyline.

Earlier contributions focusing on the extraction of 
medical findings and vital signs proposed rule-based 
approaches  [61, 63, 64]. Although they obtained good 
results, they still require specialists to create and refine 
the rules, limiting their generalisability to other medical 
tasks. In contrast, the approach proposed by Gavrilov 
and al.  [62] employs a deep learning strategy, training a 
model on Russian data using Bloom’s embedding meth-
ods implemented in SpaCy.

While these works showed good performance in 
detecting vital signs, their applicability range remains 
limited. First, they primarily focus on detecting the six 
fundamental vital signs, i.e., blood pressure, heart rate, 
respiratory rate, body temperature, height, and weight. 
Even if these vital signs are the most used in the lit-
erature  [61–64], some complementary analysis such as 
laboratory analysis are needed to confirm or discard a 
diagnosis. Since these findings are numerous and evolve 
with time, a rule-based system would require a large 
number of experts to create and maintain the rules. [64] 
offers a NER assigning also a quality score to each entity, 
computed according a set of rules for each vital signs.

Medical explanations generation
Natural language explanation generation has received 
a lot of attention in recent years, grounding on the pro-
gress of generative models to train specific explana-
tory systems. [65] generates explanations by justifying a 
relation (i.e., entailment, contradiction or neutral) for a 
premise-hypothesis pair by training a Bi-LSTM on their 
e-SNLI dataset, i.e., the Stanford Natural Language Infer-
ence [66] dataset augmented with an explanation layer 
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which explains the SLNI relations. [67] propose to gener-
ate short explanations with GPT-2 [68], learned together 
with the input by a classifier to improve the final label 
prediction, using e-SNLI  [65]. These solutions are not 
applicable to the medical domain given that explaining a 
medical diagnosis is a sensible task which can hardly be 
restrained to the above-mentioned three basic relations 
(considered in [65] and [67]). Narang et al. [69] propose 
an approach based on the T5 model [70] to generate an 
explanation after a prediction. The problem with these 
approaches based on neural models is that we do not 
master the internal knowledge of these models, which 
can generate errors on the veracity of the data. Again, 
this solution is not applicable to the medical scenario, 
since explanations are required to be structured follow-
ing precise argumentative structures  [71–73] and to be 
grounded on verified medical knowledge, like the one we 
inject through the HPO.

Other approaches use explanations via templates  [74, 
75]. For instance, Abujabal et al.  [76] use templates and 
inject the reasoning steps and query of their Q &A sys-
tem. To the best of our knowledge, no related work gen-
erates natural language post-hoc explanations under the 
form of arguments for the medical domain.

Resources
The availability of clinical data (both clinical cases and 
knowledge bases) is of crucial importance for our study. 
In the following, we describe one of the main contribu-
tions of this paper, i.e., the annotation of the MEDQA-
USMLE Clinical Cases with labels extracted from the 
UMLS medical meta-thesaurus and the ontology used 
to explain correct and incorrect diagnoses. Furthermore, 
this section details the creation and assessment of the 
proposed medical findings with respect to the medical 
term database, used to interpret findings and vital signs 
that are subsequently integrated in our explanations. 
These resources, while distinct, both play a roles in our 
pipeline. The dataset is utilized for training our Named 
Entity Recognition (NER) models and the database is 
employed to align findings with relevant medical con-
cepts in the Human Phenotype Ontology (HPO).

The MEDQA‑USMLE‑Symp dataset
To train and evaluate the proposed approach to build 
natural language explanatory arguments, we rely on the 
MEDQA dataset [9], which contains a set of clinical case 
descriptions together with a set of possible questions and 
answers on the correct diagnosis. The questions and their 
associated answers were collected from the National 
Medical Board Examination in the USA (USMLE),  
Mainland China (MCMLE), and Taiwan (TWMLE). In  

this work, we only focus on the clinical cases and the 
questions in English (i.e., USMLE). In total, the MEDQA-
USMLE dataset consists of 12,723 unique questions on 
different topics, ranging from questions like “Which of 
the following symptoms belongs to schizophrenia?” to 
questions about the most probable diagnosis, treatment 
or outcomes for a certain clinical case  [9]. To reach our 
goal, we extract the clinical cases belonging to the latter  
group, which are intended to test medical residents 
to make the correct diagnosis. We end up with 314 
unique clinical cases associated with the list of possible 
diagnoses.

Annotation of the MEDQA‑USMLE Clinical Cases
To annotate the clinical cases from the MEDQA-USMLE 
dataset, we rely on the labels from the Unified Medical 
Language System (UMLS)  [10] Semantic Types, mak-
ing it consistent with standard textual annotations in the 
medical domain  [77–79]. In particular, we annotate the 
following elements in the clinical case descriptions: Sign 
or Symptom, Finding, No Symptom Occurrence, Popula-
tion Group, Age Group, Location and Temporal Concept. 
Among the extensive variety of labels offered by the 
UMLS Semantic Types, we chose these specific ones to 
suit our data and question type: “Diagnosing a patient’s  
clinical case”. Our selection of these seven labels was 
informed by consultations with medical experts and deter-
mined by their explanatory power in our specific context.

In this paper, we mainly focus on the Sign or Symp-
tom and Findings labels as they offer critical insights 
for the diagnosing task. However, in anticipation to the 
development of a more fine-grained approach as future 
research, we have conducted a comprehensive annota-
tion across all seven labels, allowing for future reuse and 
exploration of these additional dimensions. Concerning 
the guidelines2, quantifiers defining a symptom have not 
been annotated (e.g., when we find “moderate pain”, we 
only annotate “pain”). The labels Sign or Symptom and No 
Symptom Occurrence are associated only to the text snip-
pet defining the symptom in a sentence. Findings consists 
of such information discovered by direct observation or 
measurement of an organism’s attribute or condition. 
For instance, components in “Her temperature is 39.3◦C 
(102.8◦F), pulse is 104/min, respirations are 24/min, and 
blood pressure is 135/88 mm Hg”. Location refers to the 
location of a symptom in the human body, and Temporal 
Concept is used to tag time-related information, includ-
ing duration and time intervals. Population Group and 
Age Group highlight information on the age and gender 
of the patient.

2 https:// github. com/ Wimmi cs/ MEDQA- USMLE- Symp

https://github.com/Wimmics/MEDQA-USMLE-Symp
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Example 1 Her temperature is 37.2◦C (98.9◦F), pulse 
is 90/min, and blood pressure is 122/70 mm Hg, test of 
the stool for occult blood is positive Her temperature 
is 39.3◦C (102.8◦F), pulse is 104/min, respirations are 
24/min, and blood pressure is 135/88 mm Hg.

In Example 1, the entities labeled as ‘findings’ are show-
cased. This annotation includes the term indicating the 
finding, the corresponding value, and the relevant unit. 
Notably, we also consider test results as a part of ‘find-
ings’. It is important to note that our annotation approach 
deliberately excludes quantifiers of symptoms and find-
ings, such as ‘few’, as well as descriptive adjectives, such 
as ‘scattered’ or ‘large’.

Example 2 A previously healthy 34-year-old woman is 
brought to the physician because of fever and headache 
for 1 week.

Example 3 Menses occur at regular 28-day intervals 
and last 5 to 6 days.

Examples  2 and  3 illustrate the annotation of tempo-
ral concepts, such as duration and time intervals. These 
examples highlight the necessity of annotating words like 
‘for’, which indicates a time period. They also highlight 
the importance of capturing non-specific temporal tags, 
such as ‘last 5 to 6 days’, as they provide crucial context 
for understanding the progression and duration of symp-
toms or medical conditions.

To address the annotation process of the MEDQA-
USMLE dataset, we first carried out a semi-automatic 
annotation relying on the UMLS database. We processed 
each clinical case through the UMLS database and obtained 
all the entities detected along their Concept Unique Identi-
fiers (CUI) and their semantic type. The semantic type is 
then used to disambiguate the entities and generate the 
pre-annotated files. After the definition of the detailed 
annotation guidelines3 in collaboration with clinical doc-
tors, three annotators with a background in computational 
linguistics carried out the annotation of the 314 clinical cases.

Given the complexity of determining which disease 
corresponds to a given case, a manual annotation was 
required. Identifying the appropriate disease requires 
deep medical knowledge, a perfect understanding of 
context, and familiarity with symptom synonyms since 
symptoms within a case can be recorded using either 
their medical terminology or their common jargon. 
Owing to the challenge of gathering a complete database 
of all pertinent information, we could not rely exclusively 
on automatic annotation.

To assist the annotators, we initiated the process with 
a pre-automatic annotation using the Brat visualization 
tool  [80] together with QuickUMLS4, a tool that lever-
ages UMLS data and pre-annotate them into the Brat 
visualization tool. This automatic annotation was then 
manually corrected and completed using the ontology of 
diseases and relevant symptoms HPO.

The annotation process involved various categories, 
each contributing to a comprehensive description of 
the data: Findings, Relevant Symptoms, Sign or Symp-
tom, Age Group, Population Group, Temporal Concept, 
Location, No Symptom Occurrence, and No Finding 
Occurrence. This annotation schema helps to capture 
the complexity of the clinical cases, enabling an accurate 
mapping to disease categories.

To ensure the reliability of the annotation task, the 
inter-annotator agreement (IAA) has been calculated on 
an unseen shared subset of 10 clinical cases annotated by 
four annotators, obtaining a Fleiss’ kappa [81] of 0.70 for 
all of the annotated labels, 0.61 for Sign or Symptom, 0.94 
for Location, 0.71 for Population Group, 0.66 for Find-
ing, 0.96 for Age Group and 0.96 for No Symptoms Occur-
rence. We can see a substantial agreement for Sign or 
Symptom, Finding and Population Group, and an almost 
perfect agreement for Location, Age Group and No Symp-
toms Occurrence.

Table  1 reports on the statistics of the final dataset, 
named MEDQA-USMLE-Symp5. The accuracy of the 
annotations provided by the three annotators has been 
validated by a clinical doctor. Of the seven entity labels, 
only three contain medical vocabulary (Sign or Symp-
tom, Finding, and No Symptom Occurrence) and they 
have been evaluated by this expert. More specifically, 
we randomly sampled 10% of the data (i.e., 30 cases) 
and we asked the clinician to verify whether the entity 
was correctly labeled and whether there were any miss-
ing or extra words. The results of the validation showed 
that 98% of the data was labeled correctly. Errors were 

Table 1 Statistics of the MEDQA-USMLE-Symp dataset

Label # Entities

Sign or Symptom 1579

Finding 1169

Temporal Concept 567

Location 498

Population Group 364

Age Group 304

No Symptom Occurrence 264

3 https:// github. com/ Wimmi cs/ MEDQA- USMLE- Symp

4 https:// ir. cs. georg etown. edu/ resou rces/ quick- umls. html
5 https:// github. com/ Wimmi cs/ MEDQA- USMLE- Symp

https://github.com/Wimmics/MEDQA-USMLE-Symp
https://ir.cs.georgetown.edu/resources/quick-umls.html
https://github.com/Wimmics/MEDQA-USMLE-Symp
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distributed randomly, being the majority of them anno-
tation errors with missing/extra letters from the labels 
(e.g., itchy rash annotated as tchy rash or generalized joint 
pain annotated as generalized joint pain). Less than 2% of 
the instances were evaluated as incorrectly labeled (e.g., 
a Finding that was labeled as a Sign or Symptom or vice 
versa). We also manually annotated, in our test set, the 
terms equivalent to the symptoms in the HPO ontology. 
Out of the 162 symptoms detected, 88 were aligned with 
the concepts in the ontology. These annotations are avail-
able within the project repository6.

Knowledge Base of Diseases and Relevant Symptoms
To collect the medical knowledge needed to define 
whether a detected symptom is relevant with respect to 
a given disease, we employ the HPO knowledge base to 
retrieve (i) the relevant information of each diagnosis 
which is proposed as an option to answer the question 
“Which of the following is the most likely diagnosis?”, 
and (ii) the symptoms (named terms in HPO) associ-
ated to each diagnosis. The Human Phenotype Ontol-
ogy (HPO) is a comprehensive, structured vocabulary 
for describing phenotypic abnormalities encountered 
in human diseases, which is often used in genetic and 
rare disease research. The use of HPO rather than other 
resources such as SNOMED CT is justified in particular 
by the fact that this knowledge base includes, in addition 
to other knowledge, information on the frequency7 of the 
occurrence of symptoms, defined in collaboration with 
ORPHA8 as follows: Excluded (0%); Very rare (1-4%); 
Occasional (5-29%); Frequent (30-79%); Very frequent 
(99-80%). Obligate (100%); This kind of information is 
particularly valuable in our application scenario to gen-
erate fine-grained explanations. HPO integrates different 
sources of symptoms, including ORPHA and OMIM9. 
This knowledge base is quite rich and contains also (hier-
archical) links between symptoms (i.e., Symptom S2 sub-
class of Symptom S1), genes or definitions.

Medical findings database
While annotating entities, we observed that “Findings” 
represent a particularly complex category. This is because 
their interpretation involves two steps: i) identifying the 
normal boundaries, and ii) linking them to the appropri-
ate medical term. This complexity drives us to build a 
specific database that encompasses the most frequently 
occurring medical findings within our clinical environ-
ment. These data will be used to automatically convert 
medical findings to medical terms.

The medical findings database is designed to facilitate 
the interpretation of medical test results, converting raw 
findings, such as “Platelet count is 100,000 platelets per 
microliter of blood”, into associated symptoms and medi-
cal terms, in this case, “Thrombocytopenia.” To this goal, 
it is necessary to determine whether a given value is clas-
sified as “high” or “low” in comparison to normal values, 
and subsequently associate it to a relevant medical term. In 
this study, we define “normal values” as those provided by 
known medical sources10 and from the MedQA-USMLE 
tests themselves  [9], bearing in mind that these values are 
simplifications and do not account for different ethnicity, 
gender-specific findings, or age-related variations. In order 
to ensure the comprehensiveness of the database, to foster 
future reuse of the resource and to maintain compatibility 
with existing systems, we have also associated each medi-
cal term with corresponding medical codes from the Inter-
national Classification of Diseases (ICD-10), the Human 
Phenotype Ontology (HPO), and the international health 
terminology standard  SNOMED  CT (July 2023 release). 
The International Classification of Diseases (ICD-10) is a 
globally recognized system for categorizing diseases and 
other health conditions, maintained by the World Health 
Organization (WHO). The  international health terminol-
ogy standard  SNOMED  CT is a comprehensive, multilin-
gual clinical terminology system that covers a wide range of 
medical concepts, including diseases, symptoms, and proce-
dures. A representative example of the final database can be 
found in Table 2 for low values, and Table 3 for high values.

Semi‑automatic database creation
Developing a new knowledge resource specifically tai-
lored for our requirements in the medical domain 

Table 2 Low vital sign values and their corresponding medical terms, HPO codes, ICD-10 codes, and SNOMED CT codes for glucose 
and platelet count

Finding Value Medical term HPO ICD‑10 SNOMED CT

Glucose (Glu) 70 mg/dL Hypoglycemia HP:0001943 E16. 2 271327008

Platelet count 150000 mcL Thrombocytopenia HP:0001873 D69. 6 74576004

6 https:// github. com/ Wimmi cs/ MEDQA- USMLE- Symp
7 https:// hpo. jax. org/ app/ browse/ term/ HP: 00402 79
8 https:// www. orpha. net/ consor/ cgi- bin/ index. php? lng= FR
9 https:// www. omim. org/ 10 Medscape: https:// emedi cine. medsc ape. com/ artic le/ 21723 16- overv iew

https://github.com/Wimmics/MEDQA-USMLE-Symp
https://hpo.jax.org/app/browse/term/HP:0040279
https://www.orpha.net/consor/cgi-bin/index.php?lng=FR
https://www.omim.org/
https://emedicine.medscape.com/article/2172316-overview
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presents a considerable challenge, particularly given the 
significant manual effort and human involvement neces-
sary to conceive, collect, align, and verify the data. More-
over, obtaining expert assistance in the medical field can 
be difficult due to the demanding nature of the work and 
the workload of medical professionals. Consequently, we 
propose a semi-automatic method for generating a data-
base by harnessing the capabilities of state-of-the-art gen-
erative large language models, such as ChatGPT [82, 83], 
which are pretrained on huge amounts of text, including 
medical documents. We constrain the language model to 
generate knowledge in a tabular format expressed as free 
text, such as Markdown. This free text is subsequently 
parsed using regular expressions, allowing for the extrac-
tion of structured data to be incorporated into the data-
base. This database is then refined and verified by domain 
experts as explained below. It is important to notice that 
applying a semi-automatic approach to fill in the first and 
basic version of the database already significantly reduces 
the manual effort.

To assess this semi-automatic approach we addressed 
both: i) an automated evaluation through comparison 
with an existing database, and ii) a human evaluation 
involving a medical expert for correction and validation 
of the database.

Automated evaluation
We first evaluate our semi-automatic approach on a simi-
lar database of laboratory reference ranges for healthy 
adults11, in order to see if such Large Language Model 
(LLM) would be useful for assisting the database crea-
tion. This selected database provides reference ranges 
for various categories such as Electrolytes, Hematology, 
Lipids, Acid base, Gastrointestinal function, Cardiac 
enzymes, Hormones, Vitamins, Tumor markers, and 
Miscellaneous, but does not specify the medical terms 
associated with these values. To evaluate our method, 
we used a generative language model several times on 
the Electrolytes category as the gold standard. Since all 
the values are numerical we compute the accuracy on 
the mean value of the multiples runs for each findings 
and compare with the gold. This gave us an understand-
ing of the efficacy of LLMs in generating factual data in 

the medical domain, particularly medical findings related 
values. This evaluation also assesses whether this method 
could be used “on the fly” to predict detected elements 
not present in the final database. Since the data are 
numerical only, we established a prediction threshold at 
20%. Predictions beyond this threshold were considered 
to have an accuracy score of 0, e.g., the “high” gold value 
for Zinc is 100 µmol/L so value above 120 or under 80 µ
mol/L are cosidered as 0. For example the high reference 
value for Zinc is 100 µmol/L, so accuracy will be 1 for a 
prediction of 100 µmol/L, 0.8 for a prediction of 80 or 
120 µmol/L and 0 if the prediction is above 120 or under 
80 µmol/L. Using the ChatGPT-3 language model, our 
method achieves a model accuracy of 78% and 80% for 
low and high values, respectively, with a mean based on 
five predictions for Electrolytes. This threshold was ini-
tially included to assess the potential of Large Language 
Models (LLMs) to generate the findings database. How-
ever, the final database was meticulously validated by an 
expert (medical doctor).

We experimented with both version 3.5 and 4 of the 
ChatGPT LLM for the semi-automatic database crea-
tion. Observing the results (Table 4), we found that both 
ChatGPT-3 and ChatGPT-4 showed good performance 
in generating boundaries values for medical findings, 
suggesting that these models can be reliably employed 
later in the proposed pipeline. It is worth noticing that 
the number of run predictions used to calculate the aver-
age has no impact on the result. To get some insights on 

Table 3 High vital sign values and their corresponding medical terms, HPO codes, ICD-10 codes, and SNOMED CT codes for glucose 
and platelet count

Finding Value Medical term HPO ICD‑10 SNOMED CT

Glucose (Glu) 99 mg/dL Hyperglycemia HP:0003074 R73. 9 -

Platelet count 450000 mcL Thrombocytosis HP:0001894 D75. 83 6631009

Table 4 Comparison of version 3.5 and 4 of ChatGPT language 
models with varying runs and threshold settings, illustrating the 
impact on low and high accuracy metrics

LM Run Threshold Low acc. High acc.

v‑3.5 3 20% 0.64 0.73

3 50% 0.79 0.82

5 20% 0.64 0.79
5 50% 0.78 0.84

v‑4 3 20% 0.63 0.72

3 50% 0.8 0.82

5 20% 0.63 0.73

5 50% 0.8 0.8111 https:// emedi cine. medsc ape. com/ artic le/ 21723 16- overv iew

https://emedicine.medscape.com/article/2172316-overview


Page 9 of 22Molinet et al. Journal of Biomedical Semantics            (2024) 15:8  

the generated data, as visualized in Fig. 1, a few findings 
account for the majority of appearances in clinical cases.

Human evaluation
In order to meet the medical requirements, we employed 
the expertise of a clinician to evaluate a subset of our 
medical findings database, i.e., the 25 most frequent find-
ings (as they appeared in our data) and 25 random find-
ings (that were not among the 25 most frequent). The 
goal of this evaluation was to validate the normal range 
boundaries and associated medical terms for both “high” 
and “low” values across these 50 findings. This process 
yielded a total of 100 unique medical terms for validation, 
following the structure depicted in Table  2. This subset 
represents a third of our entire findings database, which 
has been extracted from our clinical cases.

Additionally, we provided the medical expert with a 
form to assess the relevance of our approach to translate 
medical findings into medical terms. The form contained 
three key questions: i) Is it medically sound and feasible 

to translate a finding such as “Temperature is 39◦ C” into 
a medical term like “Fever,” and what are the limitations 
of such an approach from a medical standpoint?, ii) Are 
there always corresponding “high” and “low” values?, and 
iii) How precise should we be when defining boundary 
values and units? To summarize the results of the expert 
analysis, we concluded that i) this approach is considered 
to be medically accurate and relevant for the majority of 
the cases, except for some findings, and ii) some findings 
could not have both boundaries, i.e., “vision” could only 
be lower than normal. Finally the medical expert empha-
sized that iii) biological values are not strict and often 
associated to a shallow acceptable value. However, this is 
not the case in our clinical cases for student training data, 
in order to present clear cut cases which support the stu-
dents’ training.

Following the expert’s corrections, we discovered that 
our database creation using the ChatGPT-4 algorithm 
showed a good performance, achieving an accuracy rate 
of 78%. An analysis of the matched findings, ordered by 

Fig. 1 Overview of our matched findings, ordered by occurrence in our clinical cases
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finding occurrence, is visualized in Fig.  1. This figure 
shows that errors were predominantly associated with 
the less represented findings, thereby highlighting a limi-
tation of LLMs, i.e., their ineffectiveness to return knowl-
edge from underrepresented data even in a contextual 
setup.

Methods
In this paper, we aim to explain in natural language why a 
given diagnosis is correct or incorrect, based on a clinical 
case. This section presents the methods used to build our 
explanation pipeline12 based on i) Medical Named Entity 
Recognition, ii) Medical Finding Translation, iii) Medical 
Term Alignment with ontology, and iv) Natural Language 
Explanation Generation. The proposed architecture, 
called SYMEXP, is visualized in Fig. 2. This system takes 
a clinical case as input with the question and the correct 
answers to generate a natural language explanation as 
output. Entities are extracted from the clinical case and 
aligned with external knowledge to generate template-
based explanations.

Medical Named Entity Recognition: Symptoms 
and Findings
Entities detection
In order to accurately diagnose a patient’s condition, 
it is important to identify the symptoms that are most 
relevant to the possible diagnoses. This means search-
ing through the symptoms that have been detected and 
reported in the clinical case, and determining which ones 
are most likely to be related to the patient’s condition. 
This can be done by considering the individual symptoms 
and their potential relevance to the possible diagnoses. It 
is also important to consider any additional information 
that may be available, such as the patient medical find-
ings and other relevant factors, to be able to fully explain 
the diagnosis.

As introduced before, we rely on the USMLE data-
set described in Resources section. In the USMLE clini-
cal cases, layperson terms are often used, that are not 
detected by standard medical NER systems  [58]. In 
order to detect also these entities, we propose a neural 
approach based on pre-trained Transformer Language 
Models, fine-tuned on manually annotated entities 
from our proposed MEDQA-USMLE-Symp dataset 
(Resources section), so as to incorporate layperson terms 
and findings into our training set, which are then labeled 
as signs or symptoms. More specifically, we cast the 
symptom detection problem as a sequence tagging task. 
Following the BIO-tagging scheme, each token is labeled 
as either being at the Beginning, Inside or Outside of a 

Fig. 2 Overview of our full pipeline for symptom prediction and alignment, and NL explanation generation module. The steps are i) Medical 
Named Entity Recognition, ii) Medical Finding Translation, iii) Medical Term Alignment with ontology and iv) Natural Language Explanation 
Generation

12 In this paper, we do not report any experiment carried out on live ver-
tebrate (or higher invertebrates), humans or human samples. As we rely 
on standard benchmarks in the field of AI in medicine, it is not possible 
to identify patient/participant information as the clinical cases are not real 
cases but they are explicitly conceived for training medical residents. Our 
research does not concern either human transplantation research, nor it 
reports results of a clinical trial.
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component. This translates into a sequence tagging prob-
lem with three labels, i.e., B-Sign-or-Symptom, I-Sign-or-
Symptom and Outside.

Findings
While symptoms entities can be aligned with the con-
cepts in the ontology by matching the terms identifying 
the symptom, findings need to be firstly pre-processed. 
This is why we first need to detect them via the NER, and 
then, to convert them, as shown in Fig.  3. Finally, both 
the symptoms and the medical terms (converted from 
detected findings) are sent to the module (iii) for align-
ment with the HPO ontology, as described in the next 
section.

Medical findings, e.g., “Platelets count is 50000 mcL”, 
offer important elements to the doctor to provide a 
diagnosis, and we aim at making reference to them in 
the explanations about positive and negative diagnoses. 
Differently from existing systems (e.g., DASH  [60]), our 
fine-tuned NER is trained to identifying also such pieces 
of information. Moreover, we propose an approach to 
automatically convert these medical findings into medi-
cal terminology. More specifically, this module translates 
medical findings expressed in natural language, such as 
“Platelets count is 50000 mcL” into medical terms com-
monly found in physicians’ vocabulary or medical ontolo-
gies, for instance, “Thrombocytopenia”. To do so, we first 
rely on the previously created database (Resources  sec-
tion) and, if the term does not appear in there, we per-
form three key steps on the fly: (i) medical findings 
identification, (ii) findings boundary detection, and (iii) 
prediction of the associated medical term.

The first step involves accurately identifying the rel-
evant finding within the input sentence. In our example, 
the finding “Platelets count” is explicitly stated, whereas 
in some cases, like “respirations are 22/min,” the finding 
may be incomplete or represented by a synonym, such as 

“Respiration rate” or “Breathing rate,” rather than simply 
“Respiration.” This step enables the alignment of the find-
ing sentence with an entry in our database while filter-
ing out potential errors arising from sentences that either 
lack findings or contain multiple findings.

The second step determines whether the detected find-
ing value falls within normal ranges or should be clas-
sified as not applicable. If the value falls outside of the 
normal boundaries (from the database or predicted on 
the fly), we investigate whether there is an associated 
medical term. If the finding is not applicable, we do not 
proceed further.

Finally, in the third step, we predict which medical 
term, if any, is associated with the detected finding and 
boundary classification.

We proposed three methods to generate the findings 
knowledge by a) Input-Output (IO) Zero-Shot Prompt-
ing [84] that will serve us as a baseline, b) mimicking the 
doctors reasoning with a Chain of Thought (CoT)  [85], 
and c) using Self Consistency (SC) with IO and CoT [86].

The first method, Input-Output (IO) Zero-Shot 
Prompting, provides a basic approach where the medi-
cal term is directly predicted from the detected finding, 
without any intermediate steps. This method solely relies 
on the capabilities of the Large Language Model (LLM) 
for its predictions. The second method, Chain of Thought 
(CoT), seeks to emulate the process of medical profes-
sionals. It divides the prediction task into two phases: 
firstly, determining the boundaries (both low and high) 
associated with the detected finding, and secondly, cor-
relating this value range with the appropriate medical 
term. Lastly, the Self Consistency (SC) method enhances 
the decision-making process by repetitively applying the 
previous methods and employing a voting mechanism to 
select the most reliable outcome. For medical terms, this 
involves a count-based voting system where the most fre-
quently occurring term is chosen. For determining value 

Fig. 3 The “Findings to medical terms” module in the pipeline
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boundaries, we experimented with two approaches, i.e., 
an average on all predictions, and a count-based voting 
system.

The converted findings are then injected together with 
the detected symptoms into the medical term alignment 
algorithm. This will ensure the inclusion of findings inter-
pretation within the generated explanations in the last 
step of the pipeline (Fig. 2).

Medical term alignment
The medical term alignment module (Fig.  2) associates, 
whenever possible, the pertinent symptoms or translated 
findings mentioned in the clinical case description with 
a term of a diagnosis found in the HPO knowledge base. 
The proposed framework consists of two different steps, 
where: (a) we retrieve from HPO the required diagnosis 
information (i.e., the symptoms and how common they 
are), then the terms in the case are detected and extracted 
using the modules introduced in the previous section; 
(b) the relevancy of each symptom is assessed by match-
ing the detected medical term with the ones retrieved 
from HPO, e.g., “Platelets count is 50000 mcL” to 
HP:000187313 (Thrombocytopenia). The matched terms 
are then used to generate natural language argument-
based explanations for correct and incorrect diagnoses.

Regarding the matching module, we experimented 
with two different methods to align our detected enti-
ties with terms in HPO by (i) directly comparing the 
computed embeddings of the detected entities with the 
embeddings of the terms in HPO, and (ii) by taking into 
account the context in which the entities are detected 
and applying the same context to every term in HPO. 
The reasoning behind the latter is that the corresponding 
entities in HPO should not change the semantics of the 
sentence with respect to the other symptoms. To align 
our detected symptoms and converted findings with the 
equivalent HPO terms, we calculate the cosine distance 
of each embedding of the HPO terms with respect to the 
embedding of the detected symptom.

It is worth noticing that, for task (ii), it is necessary to 
calculate the context embeddings “on the fly” because 
each context is unique and depends on the clinical case 
in which it has been detected. However, to avoid rec-
omputing all HPO term embeddings on the fly for each 
new context (since the ontology contains 10,319 unique 
terms), we propose to generate all the HPO terms 
embedding at once and store them. Therefore, this mod-
ule takes as input the symptoms and translated findings 
detected by the previous module and looks for the con-
text14 of these symptoms in the clinical case.

The context C is embedded using sentence embed-
ding methods and saved separately from the symptoms 
S, and the two embeddings are merged together ( C + S ) 
to form the reference R. This same context embedding 
C is added in the same way to each HPO term embed-
ding T1,T2, . . . ,Ti to form the candidates C1,C2, . . . ,Ci . 
We compute and retrieve the five best cosine distances 
between C and R to address a fair comparison with the 
other systems.

Explanation generation
We propose a template-based explanation generation 
module based solely on the symptoms and findings that 
are relevant to explain the diagnosis. To do this we pro-
pose several templates that tackle different kinds of 
explanations, going from explaining why a patient was 
given a certain diagnosis, to explaining why the alterna-
tives cannot be considered as viable options. We support 
our explanations with statistical information obtained 
from HPO such as the frequency of each symptom inci-
dence, and we propose to look for possible symptoms 
that were not detected by the system but are frequent 
for a certain disease. These explanations are made from 
the aligned detected terms in the ontology, keeping the 
references with original words in the clinical cases (i.e., 
laypersons symptoms and patient tests or analysis). The 
detailed templates and examples are described in Gener-
ating Natural Language Explanations section.

Experiments
In this section, we report on the experimental setting, 
the obtained results and the error analysis for the named 
entities detection, the finding translation and the symp-
tom alignment methods. It is worth noticing that the 
presented model can be applied also to different kinds 
of clinical cases, ensuring the generalisability of the pro-
posed approach.

Experimental setting
Medical entity detection
For the entity detection task, we experiment with dif-
ferent transformer-based Language Models such as 
BERT  [87], SciBERT  [53], BioBERT  [54], PubMed-
BERT  [55] and UmlsBERT  [57] initialized with their 
respective pre-trained weights. All the models we employ 
are specialized in the biomedical domain, with the excep-
tion of BERT which will serve us as a baseline. To fine-
tune the LMs, we use the PyTorch implementation of 
Huggingface [88] (v4.18). For BERT, we use the uncased 
base model with 12 transformer blocks, a hidden size of 

13 https:// hpo. jax. org/ app/ browse/ term/ HP: 00018 73
14 The context consists of the sentence(s) containing the symptom and the 
entire clinical case.

https://hpo.jax.org/app/browse/term/HP:0001873
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768, 12 attention heads, and a learning rate of 2.5e-5 with 
Adam optimizer for 3 epochs. The same configuration 
was used to fine-tune SciBERT BioBERT, PubMedBERT 
and UmlsBERT. For SciBERT, we use both the cased and 
uncased versions, and for BioBERT we use version 1.2. 
Batch size was 8 with a maximum sequence length of 128 
subword tokens per input example. Both the dataset and 
the guidelines used to train our NER model are available 
in this project repository https:// github. com/ Wimmi cs/ 
MEDQA- USMLE- Symp.

Finding converter
In our experiments, we adopted the latest large genera-
tive language model from OpenAI, ChatGPT gpt-3.5-
turbo-0301 and gpt-4 [82, 83]. We employed the snapshot 
of gpt-3.5-turbo from March 1st, 2023. This model was 
used for both joint and combined baselines, employing 
classic handcrafted prompts available in Appendix 9.

For the CoT steps that mimics doctors’ reasoning, we 
used the FuzzyWuzzy15 Python package version 0.18.0 
for the task of medical finding identification. This pack-
age leverages the Levenshtein Distance to calculate the 
differences between sequences in a user-friendly pack-
age. Concerning the finding values detection using string 
matching, we employed a Python regular expression with 
the regex package version 2022.10.31 : 

We experiment as an alternative a NER approach, using 
med7  [89] with the “en_core_med7_lg” model, trained 
on MIMIC-III free-text electronic health records, and 
Spacy version 3.5.2. All experiments were conducted 
using Python 3.10.11 directly in a Google Co-Laboratory 
Pro notebook. The medical finding database, validated by 
medical expert is available in our project repository16.

Ontology alignment
Regarding the matching module, we experimented 
with two different methods to align the detected enti-
ties with the terms in HPO by (i) directly comparing the 
computed embeddings of the detected entities with the 
embeddings of the terms in HPO, and (ii) by taking into 
account the context in which the entities are detected 
and applying the same context to every term in HPO. In 
the experimental setting of both tasks (i) and (ii), we use 
the static pre-trained embeddings GloVe 6B as well as 
BERT, SciBERT, BioBERT and UmlsBERT with the same 
configurations as in the medical NER task. Each embed-
ding is calculated with Sentence Transformer Document 

Embeddings using the flair framework [90], using the 
same Python environment as the previous modules.

We defined a test set of 23 cases from the MEDQA-
USMLE-Symp dataset (Resources  section) where (i) we 
retrieved from HPO the symptoms related to the diagno-
ses for each case, and (ii) we manually aligned the anno-
tated symptoms in the case to the concepts from HPO. 
This resulted in 162 symptoms aligned to a specific term 
in HPO that serve us as a testing set for our matching 
module.

As mentioned in Background section, the system pro-
posed by [60] offers a similar approach to translating lay-
person terms to medical terms in HPO. However, their 
work does not take into account the context in which a 
symptom is mentioned in the text. To compare with this 
approach and due to the unavailability of their model, we 
rely on their online demo, which outputs only the top 5 
ranking of the HPO terms that are closest to the input 
symptom. To perform a comparison with our pipeline, 
we first compute the accuracy of the aligned symptoms 
using our symptom alignment module and then replaced 
it with Manzini et  al.  [60] proposed system (DASH). 
Results are shown in Table 9.

Since a symptom can be composed of several words 
(e.g., “shortness of breath”), we split the symptom into 
words that we encode by either using each word as an 
input on Glove [91], or extracting directly from the con-
textualized models the representation of the symptom 
by summarizing the hidden states of the last four lay-
ers in the model. We then sum the vectors of each word 
to get an n-gram representation of the symptom. We 
also explore sentence embeddings, by making use of 
Sentence-BERT [92], a new model that derives semanti-
cally meaningful sentence embeddings (i.e., semantically 
similar sentences are close in vector space) that can be 
compared using cosine similarity. Sentence-BERT can be 
used with different pre-trained models, in this work we 
focus on the models BERT  [87], SciBERT  [53], UMLS-
BERT  [57] and S-PubMedBert by  [93]. The first repre-
sents a competitive baseline in our experiments since it is 
the SOTA model for comparing sentences cross-domain, 
while the three latter models are pre-trained on scientific 
or medical data or both.

To tackle both tasks, we make use of our annotated 
dataset (Resources  section). The annotations are con-
verted into two datasets, one for each part of the pipe-
line. The first dataset is used for the symptom detection 
task, and it is in the CoNLL format for token-wise labels. 
The second dataset, for the symptom alignment task, is 
converted into a csv format, where each symptom in the 
clinical case description and available related knowledge 
(i.e., the list of symptoms and their frequencies for each 
possible diagnosis associated with the case) extracted 

15 https:// pypi. org/ proje ct/ fuzzy wuzzy/
16 https:// github. com/ Wimmi cs/ MEDQA- USMLE- Symp

https://github.com/Wimmics/MEDQA-USMLE-Symp
https://github.com/Wimmics/MEDQA-USMLE-Symp
https://pypi.org/project/fuzzywuzzy/
https://github.com/Wimmics/MEDQA-USMLE-Symp


Page 14 of 22Molinet et al. Journal of Biomedical Semantics            (2024) 15:8 

from HPO are paired. Finally, we rely on the HPO ontol-
ogy, utilizing the requests package version 2.27.1 and the 
public HPO endpoint https:// hpo. jax. org/ api/ hpo/ search.

Results
In the following section, we report on the results 
obtained for our pipeline presented in Fig.  2, as well as 
the error analysis.

Medical NER
As introduced before, the first task addressed in our pipe-
line is to detect the medical named entities. The results 
for the symptom detection task are shown in Table 5 in 
macro multi-class precision, recall, and F1 score. We can 
observe that all models perform similarly, with the best 
results from the specialized SciBERT  [53] model. The 
biggest difference in performance is given by comparing 
SciBERT uncased with PubMedBERT, with the SciBERT 
model performing better. Interestingly, BERT performs 
closely to the specialized models, and, in some cases, it 
outperforms them. This may be due to the fact that the 
clinical cases from our dataset are written for medi-
cal exams at the med school. They contain some tech-
nical specialized words, but overall the symptoms are 
described in layperson terms. It is also worth noticing 
that the majority of our labels do not pertain to medical 
terminology (e.g. Age and Population Group, Location 
and Temporal Concept). Sign or Symptom and Finding 
are the only labels that require specialized vocabulary.

Overall, SciBERT uncased is the best-performing 
model (in bold) with a macro F1-score of 0.86, outper-
forming the other approaches for each of the categories. 
In Table 6 and Table 7 we report on the performances for 
each entity with the best-performing models SciBERT 
and BERT. The Sign or Symptom detection task obtains 
a 0.82 F1 score. In the work of  [94], the authors also 
detect symptoms obtaining an F1 score of 0.61. How-
ever, these results can not be directly compared since the 

datasets on which both models were fine-tuned are dif-
ferent: we train on clinical cases, while they use dialogues 
between doctors and patients. Moreover, given that the 
dataset they use is not released, we can not evaluate our 
approach on their data to compare the results.

Raza et al. [58] proposed a transformer-based NER sys-
tem employing DistillBERT [59] that is able to recognize 
a wide range of clinical entity types, encompassing medi-
cal risk factors, vital signs, drugs, and biological func-
tions. Their approach, which primarily relies on the Case 
Report dataset MACROBAT  [95], focuses on doctors 
vocabulary. To make a fair comparison, we evaluated the 
output of their model, BioEN, at a token level using our 
own test set, specifically comparing the accuracy of the 
sign_or_symptoms labels. The results highlight a signifi-
cant gap between the two approaches in terms of perfor-
mance: out of 285 gold tokens, BioEN detected only 79, 
whereas our model identified 260. This disparity is pri-
marily due to our specific focus on the detection of data 
encoded in layperson vocabulary.

Table 5 Results for entity recognition in macro multi-class 
precision, recall, and F1-score

Model P R F1

BERT 0.85 0.84 0.84

BioBERT v1.2 0.84 0.85 0.84

UmlsBERT 0.85 0.85 0.85

PubMedBERTbase 0.83 0.84 0.83

SciBERT cased 0.85 0.85 0.85

SciBERT uncased 0.85 0.86 0.86

Table 6 Results for entity recognition using our best performing 
model (SciBERT uncased) in P, R, and F1-score

Entity P R F1

Other 0.93 0.91 0.92

Age Group 1.00 0.97 0.98

Finding 0.85 0.88 0.86

Location 0.74 0.80 0.77

No Symptom Occurrence 0.79 0.72 0.75

Population Group 0.88 0.95 0.91

Sign or Symptom 0.83 0.82 0.82

Temporal Concept 0.78 0.87 0.82

Weighted avg 0.89 0.89 0.89

Macro avg 0.85 0.86 0.86

Table 7 Results for entity recognition using BERT uncased in P, R, 
and F1-score

Entity P R F1

Other 0.92 0.91 0.92

Age Group 1.00 0.97 0.98

Finding 0.87 0.87 0.87

Location 0.74 0.80 0.77

No Symptom Occurrence 0.79 0.72 0.75

Population Group 0.88 0.95 0.91

Sign or Symptom 0.83 0.82 0.82

Temporal Concept 0.78 0.87 0.82

Weighted avg 0.89 0.89 0.89

Macro avg 0.85 0.86 0.86

https://hpo.jax.org/api/hpo/search
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Finding converter
Here we describe the results of the prediction task of 
the medical terms associated to the detected findings 
(Resources  section). The efficacy of our medical finding 
to medical term on-the-fly conversion module is detailed 
in Table 8. Table 8 presents the accuracy of our Finding 
Converter module in identifying boundaries, both in 
terms of values and associated terms. The mentioned 78% 
accuracy refers to the accuracy achieved in determining 
values, considering the previously discussed 20% thresh-
old. The accuracy figures are computed based on the final 
version of the generated database, which achieved an 
accuracy of 78% for “low” boundaries (88%) and “high” 
boundaries (68%), after the doctor validation. The pro-
ficiency of the model in predicting “low” boundaries 
could be attributed to their higher frequency and often 
singular appearance as the defining boundary for a medi-
cal finding. For instance, the “vision” finding exemplifies 
this trend, as it only has a “low” boundary, represented by 
“blindness”, with no corresponding “high” boundary. The 
context added by the intermediate steps seems to fine-
tune the language model’s knowledge and aids in gen-
erating more suitable responses. The Self-Consistency 
method does not improve the results.

The results of the symptom alignment module, that 
aim to associate the detected entities in the clinical case 
with the HPO ontology, are summarised in Table  9. As 
baseline models, we propose to use the same methods 
but without the context of the symptoms, similarly to 
DASH  [60]. In Table 9, we show only the best-perform-
ing baseline PubMedBERT no context obtaining similar 
results to DASH (0.41 and 0.37, respectively). Adding 
contextual representation to the embeddings results in 
a significant improvement (up to 0.70 in accuracy) sup-
porting the hypothesis that context plays an important 
role when translating layperson terms to formal medical 
terms.

Error Analysis
The main limitation of adopting HPO as medical knowl-
edge base concerns the number of symptoms associated 
with each diagnosis. For some diagnoses, we have mul-
tiple symptoms, while for others we can have only one 
or none. We notice that in those cases where the diag-
nosis is a mental disease, the model tends to make more 
mistakes. Inspecting HPO for this kind of diagnoses, 
we find that either the diagnosis does not appear in the 
HPO ontology or the symptoms tend to be more gen-
eral, including a lot of common symptoms like changes in 
appetite or low energy, that alone may not be relevant but 
all together indicate a precise diagnosis. Moreover, some 
relevant symptoms may not be described explicitly but 
encoded in the clinical cases as Findings. These findings, 
even translated into a medical term, do not appear in 
the symptoms list extracted from HPO since this ontol-
ogy focuses on pathological terms. The finding “Gravid-
ity” (i.e., number of pregnancies) exemplifies this insight 
because being “Multiparous” is not pathological but is 
the medical term associated to the “high” boundary of the 
finding. Therefore it would be useful for the explanation 
but it does not match in our system because of the HPO 
limitations. Moreover, a diagnostic can be supported by 
a less specific interpretation of a finding, e.g., the throm-
botic thrombocytopenic purpura can be explained by a 
patient arrhythmia defined as “A irregular heartbeat / A 
problem with the rate or rhythm of your heartbeat” but 
our system will detect either a Bradypnea or a Tachyp-
nea that are both kinds of Arrhythmia. A possible exten-
sion of this work consists in a deeper investigation of the 
ontologies to find a way to align with different granularity 
the detected finding.

Given that we rely on HPO only, some diseases or diag-
noses are not present in the knowledge base, preventing 
us to generate the associated explanations. Combining 
HPO with more specialized medical knowledge bases is a 

Table 8 Results for on-the-fly findings to medical terms 
prediction using the generative LLM ChatGPT

Prompting Method Accuracy

IO ChatGPT 4 0.64

IO ChatGPT 3 0.52

CoT ChatGPT 4 0.66
CoT ChatGPT 3 0.52

SC IO ChatGPT 4 0.64

SC IO ChatGPT 3 0.54

SC CoT ChatGPT 4 0.66
SC CoT ChatGPT 3 0.54

Table 9 Results for DASH and our symptom alignment method 
using different embeddings with and without context (accuracy 
score)

Model Accuracy

DASH 0.37

BERT + no context 0.39

SciBERT + no context 0.39

UMLSBERT + no context 0.44

S-PubMedBERT no context 0.53

BERT + context 0.53

SciBERT + context 0.57

UMLSBERT + context 0.59

S-PubMedBERT + context 0.70
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future direction for this work, both to complete the infor-
mation we have, and also to integrate new diagnoses.

Generating Natural Language Explanations
In the previous section, we described the first steps of 
our pipeline for automatically identifying the relevant 
symptoms and findings which occur in the clinical case 
description and then matching them with the terms 
associated with the diseases in the medical knowledge 
base HPO. We move now to the last step of the pipe-
line, i.e., the generation of natural language explana-
tory arguments, according to the identified relevant 
symptoms and findings for the correct and incor-
rect diagnoses. We denote a lot of different methods 
to tackle the argumentative explanation generation, 
mostly approached by generative neural architecture 
like Recurrent Neural Network, GPT or T5  [65, 67, 
69, 96, 97]. Given the specificity of the clinical data we 
are dealing with, and the limitations of such genera-
tive approaches (hallucinations, bias)  [98], we decided 
to address this task by generating explanations through 
the definition of explanatory patterns [71–73]. We have 
therefore defined different patterns which take into 
account the different requirements of our use case sce-
nario, where we aim at (i) explaining the correct answer 
by the detected symptoms/findings and their frequency, 
(ii) explaining why the incorrect options cannot hold, 
and (iii) highlighting the relevant symptoms not explic-
itly mentioned in the clinical case. Let us consider the 
following clinical case, where in bold we highlight the 
symptoms, in italic the findings and we underline the 
relevant symptoms and findings supporting the correct 
answer.

Clinical case
A previously healthy 34-year-old woman is brought to 
the physician because of fever and headache for 1 week. 
She has not been exposed to any disease. She takes no 
medications. Her temperature is 39.3°C (102.8°F), pulse 
is 104/min, respirations are 24/min, and blood pres-
sure is 135/88 mm Hg. She is confused and oriented 
only to person. Examination shows jaundice of the 
skin and conjunctivae. There are a few scattered pete-
chiae over the trunk and back. There is no lymphade-
nopathy. Physical and neurologic examinations show no 
other abnormalities. Test of the stool for occult blood is 
positive. Laboratory studies show: Hematocrit 32% with 
fragmented and nucleated erythrocytes Leukocyte count 
12,500/mm3 Platelet count 20,000/mm3 Prothrombin 
time 10 sec Partial thromboplastin time 30 sec Fibrin split 
products negative Serum Urea nitrogen 35 mg/dL Creati-
nine 3.0 mg/dL Bilirubin Total 3.0 mg/dL Direct 0.5 mg/
dL Lactate dehydrogenase 1000 U/L Blood and urine 

cultures are negative. A CT scan of the head shows no 
abnormalities. Which of the following is the most likely 
diagnosis?

This example is extracted from the MEDQA-USMLE-
Symp dataset and the (already known) correct diagnosis 
is Thrombotic thrombocytopenic purpura, whilst the 
other (incorrect) options are Disseminated intravascu-
lar coagulation, Immune thrombocytopenic purpura, 
Meningococcal meningitis, Sarcoidosis and Systemic 
lupus erythematosus.

Why Pattern
We focus here on the correct diagnosis explanation pat-
tern, which allows explaining why this is the correct diag-
nosis. We define the following template to generate our 
natural language explanations:

Definition 1 (Why for correct diagnosis) The patient 
is showing a [CORRECT DIAGNOSIS] as these follow-
ing symptoms [PERFECT MATCHED SYMPTOMS, 
MATCHED SYMPTOMS, MATCHED FINDINGS] are 
direct symptoms of [CORRECT DIAGNOSIS].

Moreover, [OBLIGATORY SYMPTOMS] are obliga-
tory symptoms (always present, i.e., in 100% of the cases) 
and [VERY FREQUENT SYMPTOMS] are very fre-
quent symptoms (holding on 80% to 99% of the cases) 
for [CORRECT DIAGNOSIS] and are present in the case 
description.17

In Template  1, the [CORRECT DIAGNOSIS] repre-
sents the correct answer to the question “Which of the 
following is the most likely diagnosis?” and therefore the 
correct diagnosis of the described disease. The [SYMP-
TOMS] / [FINDINGS] in bold represent the medical 
terms automatically detected through the first module 
of our pipeline, and they are also underlined when they 
are considered as relevant by our matching module, i.e., 
they are listed among the symptoms for the disease in 
the HPO knowledge base. Both [PERFECT MATCHED 
SYMPTOMS] and [MATCHED SYMPTOMS] in Tem-
plate 1 are considered relevant but they differ in the con-
fidence level the system assigns to the matched symp-
toms. This allows us to integrate a notion of granularity 
in our explanations and to rely on the symptoms or raw 
findings detected in the clinical case that strongly match 
with a symptom in HPO. If the system does not detect 
any relevant symptom, no explanation is generated for 
the correct answer. Furthermore, we employ the informa-
tion about the symptom frequencies (retrieved through 
HPO) in the [OBLIGATORY SYMPTOMS] and 
[VERY FREQUENT SYMPTOMS] to generate stronger 

17 Sources from HPO: https:// hpo. jax. org/ app/ browse/ term/ HP: 00402 79

https://hpo.jax.org/app/browse/term/HP:0040279
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evidence to support our natural language argumentative 
explanations. Sometimes the frequencies are not avail-
able in the HPO, in which case we do not display them in 
our final explanation.

We present now some examples of explanatory argu-
ments automatically generated by our system.

Example 4 The patient is showing a [Thrombotic 
thrombocytopenic purpura] as these following symptoms 
[Headache, Fever, Confusion (Oriented to persons), 
Thrombocytopenia (Platelet count 20,000/mm3), 
Reticulocytosis (Jaundice of the skin) and Decreased 
serum creatinine (Creatinine 3.0 mg/dL)] are direct 
symptoms of [Thrombotic thrombocytopenic purpura].

Moreover [Reticulocytosis (Jaundice of the skin) and 
Thrombocytopenia (Platelet count 20,000/mm3)] are 
very frequent symptoms (holding on 80% to 99% of the 
cases) for [Thrombotic thrombocytopenic purpura] and 
are present in the case description.

When filling the [SYMPTOMS and FINDINGS] span 
in Template  1, we inject only the terms matched in the 
HPO for the [PERFECT MATCHED SYMPTOMS], 
and we combine the HPO with the detected symptoms 
and findings in the case description for the [MATCHED 
SYMPTOMS and MATCHED FINDINGS] in this form: 
[matched term in HPO (detected term in the clinical 
case)] (e.g., in Example 4: Confusion (Oriented to persons) 
and Thrombocytopenia (Platelet count 20,000/mm3))

Why not Template
Explaining why a diagnosis is the correct one is impor-
tant, but it is also necessary to be able to say why the 
other options are not correct as possible diagnoses for 
the clinical case under investigation  [99]. We, therefore, 
propose to provide explanations based on the relevant 
symptoms for the incorrect options by contrasting them 
with the clinical case at hand.

Definition 2 (Why not for incorrect diagnosis) Con-
cerning the [INCORRECT DIAGNOSIS] diagnosis, 
it has to be discarded because the patient in the case 
description is not showing [INCORRECT DIAGNO-
SIS SYMPTOMS / FINDINGS FROM HPO (MINUS 
DETECTED SYMPTOMS IN CASE)] symptoms.

Despite [SHARED CORRECT SYMPTOMS / FINDINGS]  
symptoms shared with the [CORRECT DIAGNOSIS] cor-
rect diagnosis, the [INCORRECT DIAGNOSIS] diagnosis 
is based on [INCORRECT DIAGNOSIS SYMPTOMS].

Moreover, [OBLIGATORY SYMPTOMS] are obliga-
tory symptoms (always present, i.e., in 100% of the cases) 
and [VERY FREQUENT SYMPTOMS] are very fre-
quent symptoms (holding on 80% to 99% of the cases) for 
[INCORRECT DIAGNOSIS], and they are not present in 
the case description.

Template  2 can be applied to each incorrect possible 
answer of the case, individually. The incorrect answer 
corresponds to the [INCORRECT DIAGNOSIS] and 
[INCORRECT DIAGNOSIS SYMPTOMS / FIND-
INGS] are all relevant terms associated with this disease 
in the HPO knowledge base, without the terms in com-
mon with the correct answer. Again, in the template, we 
use the frequencies provided by HPO to provide further 
evidence to make our explanatory arguments more effec-
tive. The template includes therefore with [OBLIGA-
TORY SYMPTOMS] and [VERY FREQUENT SYMP-
TOMS] the mandatory and very frequent symptoms of 
the incorrect diagnosis, which are missing in the clinical 
case description. The following explanations are auto-
matically generated for (one of ) the incorrect diagnoses 
of the clinical case we introduced at the beginning of this 
section.

Example 5 Concerning the [Meningococcal men-
ingitis] diagnostic, it has to be discarded because the 
patient in the case description is not showing [Stiff neck, 
Nuchal rigidity or CSF pleocytosis, Increased CSF 
protein, Hypoglycorrhachia] symptoms.

Despite [Petechiae, Fever, Headache] symptoms 
shared with the [Thrombotic thrombocytopenic pur-
pura] correct diagnosis, the [Meningococcal menin-
gitis] diagnosis is based on [Stiff neck, Nuchal rigid-
ity or CSF pleocytosis, Increased CSF protein and 
Hypoglycorrhachia].

Moreover, [Stiff neck, Nuchal rigidity, CSF pleocyto-
sis, Increased CSF protein or Hypoglycorrhachia] are 
very frequent symptoms (holding on 80% to 99% of the 
cases) for [Meningococcal meningitis] and are not pre-
sent in the case description.

Example  5 shows the natural language explanation of 
why the possible answer [Meningococcal meningitis] is 
not the correct diagnosis given the symptoms discussed 
in the clinical case description. In case the disease is 
not found in HPO, we do not generate the associated 
explanation.
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Additional Explanatory Arguments
In order to enrich our explanations with additional 
explanatory arguments to improve critical thinking in 
the medical residents, we also generate another tem-
plate. Indeed, in some clinical cases, it is possible that the 
detected terms are not sufficient to explain the diagnosis 
or sometimes the informations are missed by the pro-
posed system.

In some situations, our system is not able to abstract 
some findings that are important for the diagnosis as for 
the Thrombotic thrombocytopenic purpura, a Very fre-
quent symptom is Arrhythmia, defined as “Any cardiac 
rhythm other than the normal sinus rhythm”. Our sys-
tem will detect a Tachycardia that, by definition is a kind 
of Arrhythmia. Template 3 aims at drawing the medical 
residents’ attention to (statistically) important symptoms 
that are missing or not explicitly mentioned in the clini-
cal case description:

Definition 3 Furthermore, [CORRECT DIAGNO-
SIS VERY FREQUENT TERMS (MINUS MATCHED 
TERMS)] are also frequent symptoms for [CORRECT 
DIAGNOSIS] and could be found in the findings of the 
clinical case.

Example 6 is generated by our system and brings atten-
tion to Arrhythmia. This additional explanatory argu-
ment complements the explanation we generate for the 
correct and incorrect diagnoses in the case presented at 
the beginning of this section.

Example 6 Furthermore, [Arrhythmia, Generalized 
muscle weakness, and Microangiopathic hemolytic 
anemia] are also frequent symptoms for [Thrombotic 
thrombocytopenic purpura] and could be found in the 
findings of the clinical case.

Discussion and concluding remarks
The pipeline presented in this paper aims to generate 
template-based natural language explanations to argu-
ment from a symptomatic point of view why a diagno-
sis is correct and why the remaining ones are incorrect. 
More precisely, based on two novel annotated linguis-
tic resources, our pipeline (i) automatically identifies in 
a clinical case description the relevant symptoms and 
matches them to the HPO medical knowledge base 
terms to associate symptoms to the correct and incor-
rect diagnoses proposed as potential answers to the 
test, (ii) automatically identifies in the case description 
the main findings and associate them to medical terms 
and biological boundaries in order to assess their role 
with respect to the correct and incorrect diagnoses, 

and (iii) automatically generates pattern-based natu-
ral language explanatory arguments highlighting why 
a certain answer is the correct diagnoses and why the 
others are not. Extensive experiments on a dataset of 
314 clinical cases in English on various diseases show 
good results (0.86 on symptom detection and, 0.56 and 
0.70 on relevant symptom matching for Top 1 and Top 
5 matches respectively, and 0.78 on findings), outper-
forming competitive baselines and SOTA approaches. 
Given the sensibility of the medical domain and the 
fact that this system is intended as an example of AI in 
education and training, our explanations have a didac-
tic goal which is exemplified through the enrichment of 
the data available in the clinical case description with 
further verified information from the knowledge base. 
In our work we have decided to adopt a method based 
on templates to generate explanations in order to avoid 
any hallucination problems associated with LLMs. 
Although this approach has its own limitations, such 
as being design-dependent, it provides a robust and 
verified strategy which is more suitable to the medical 
domain.

Several future work lines arise from this work. First, 
we plan to address a user evaluation with med residents. 
Even though clinical doctors have been involved in the 
definition of the annotation guidelines, a user evalua-
tion with med residents is required to get their feedback 
on our explanatory arguments. Second, we plan to focus 
on user-specific explanations, adapting the language 
and level of detail depending on whether the user is a 
doctor, a resident, or a potential generic user. Another 
relevant future research line consists in the adoption of 
further medical ontologies to reduce the HPO limita-
tions and enhance the performances. It would also be 
interesting to explore the relationships between ontol-
ogy entities to improve the detection of symptoms, and 
therefore the generated explanations. For instance, one 
of the frequent errors in our experiments concerns car-
diac arrhythmia, often a symptom linked to a diagnosis 
in ontologies but difficult to detect because it is often 
expressed “too” precisely via the symptoms “tachycardia”  
or “bradycardia”, which are both forms of cardiac  
arrhythmia (low or high rhythm). Moreover, given the 
difference on our performances to predict low and 
high boundaries (88% and 68%, respectively), it may be 
interesting to address further experiments, comparing 
our proposed automated methods and re-submit our 
results to undergo another expert evaluation. Finally, 
we plan to make these explanations interactive to 
address a rule-based dialogue with the student in order 
to focus on precise aspects of the clinical case and go 
into more precise or generic explanations if required by 
the student.
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Findings converter experiments prompts
This appendice shows the prompts used in our findings 
converter experiments. The label [FINDING] is replaced 
on the fly by the current finding name.

Prompt system
 

IO configuration
 

CoT and SC configurations
Prompt 1:  

Prompt 2:  
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