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Abstract

Background: The large-scale effort in developing, maintaining and making
biomedical ontologies available motivates the application of similarity measures to
compare ontology concepts or, by extension, the entities described therein. A
common approach, known as semantic similarity, compares ontology concepts
through the information content they share in the ontology. However, different
disjunctive ancestors in the ontology are frequently neglected, or not properly
explored, by semantic similarity measures.

Results: This paper proposes a novel method, dubbed DiShIn, that effectively
exploits the multiple inheritance relationships present in many biomedical
ontologies. DiShIn calculates the shared information content of two ontology
concepts, based on the information content of the disjunctive common ancestors of
the concepts being compared. DiShIn identifies these disjunctive ancestors through
the number of distinct paths from the concepts to their common ancestors.

Conclusions: DiShIn was applied to Gene Ontology and its performance was
evaluated against state-of-the-art measures using CESSM, a publicly available
evaluation platform of protein similarity measures. By modifying the way traditional
semantic similarity measures calculate the shared information content, DiShIn was
able to obtain a statistically significant higher correlation between semantic and
sequence similarity. Moreover, the incorporation of DiShIn in existing applications
that exploit multiple inheritance would reduce their execution time.

Background
Comparison techniques have always been essential tools for managing knowledge. For

example, the study and analysis of a given protein often starts by comparing it with

related proteins, and that characterization can be helpful to better understand it. How-

ever, the number of possible proteins that can be compared is huge and does not stop

growing, due to contemporary high-throughput technologies. Thus, the quest for effi-

cient advanced computational sequence comparison techniques to search for similar

proteins is omnipresent in many fields of proteomics.

The most straightforward comparison methods are sequence-based. They only

require information on their internal structure (the sequence itself), but limit the ana-

lysis to proteins sharing a similar structure, independently of their biological role. This

ignores ontological knowledge about the properties and relationships among proteins.

For example, when looking for proteins with an oxidoreductase activity, we may be not

only interested in proteins annotated with this activity, but also other similar activities,
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such as monooxygenase activity, independently on how structurally similar the proteins

are. Thus, in opposition or as a complement to structural similarity, we should also

attempt to compare proteins based on the relationships between them [1].

This has motivated the development of ontology-based similarity measures in the

past [2], defining similarity between concepts as a combination of the measures of

their common and distinctive relationships, inspired on Tversky’s contrast model [3].

Ontology-based similarity has become a prominent approach to compare biomedical

entities based on their biomedical activity. Many similarity measures have been applied

to biomedical ontologies, and compared against traditional structural similarity mea-

sures [4-8]. In the biomedical field, ontology-based similarity measures are normally

referred to as semantic similarity measures, contrasting with structural similarity mea-

sures, and thus this paper also adopts that nomenclature.

Measures based on the information content that two concepts share were the first to

identify a correlation between protein sequence similarity and semantic similarity [9].

More recently, the notion of shared information content has been applied to semanti-

cally compare diseases, phenotypes and chemical compounds [10-12]. Most ontologies

represent relationships between their concepts as Directed Acyclic Graphs (DAG).

Thus, the shared information between two concepts is normally proportional to the

information content of the Most Informative Common Ancestor (MICA) in the DAG,

and the Information Content (IC) of a concept is inversely proportional to its fre-

quency in a given corpus. The frequency of a concept is also propagated to its ances-

tors, making the IC of a concept related to its depth in the DAG. When entity

mappings are available, frequency is normally defined as the number of entities

mapped to each concept, normally referred to as annotations.

For example, considering the DAG represented in Figure 1 and assuming a non-zero

frequency for each concept, the IC of copper will always be higher than the IC of coinage,

metal

precious coinage

palladiumpalatium silvergold copper

Figure 1 Classification of metals. This DAG represents an example of a classification of metals with
multiple inheritance, since gold and silver are considered both precious and coinage metals.
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which in turn will be higher than the IC of metal. Therefore, a semantic similarity between

copper and gold is proportional to the IC of coinage, their MICA, and the similarity

between copper and palatium is proportional to the IC of metal, their MICA. As expected,

this means that, independently of the frequency calculation, the similarity between copper

and gold will be higher than the similarity between copper and palatium.

Using only the MICA to define similarity equates to considering the DAG as a tree, i.e.

neglecting the multiple inheritance nature of the DAG. This problem was identified by

Resnik, who decided to use only one of the possibilities for each concept [13]. The deci-

sion is consistent with previous treatments of disjunctive concepts [14], where they

define the distance between two disjunctive sets of concepts as the minimum path

length from any element of the first set to any element of the second. Despite the value

of this approach in natural language processing applications, in other domains, such as

the Life Sciences, similarity measures are expected to account for the multi-faceted nat-

ure of their concepts and entities. The exploitation of multiple inheritance was pre-

viously addressed by GraSM, where the shared information content between two

concepts is re-defined as the average of all their disjunctive ancestors [15]. GraSM

assumes that two common ancestors are disjunctive if there are independent paths from

both ancestors to each concept. The implementation of GraSM is rather complex, and it

lowers the similarity of concepts that share parallel interpretations instead of raising it,

as this represents a stronger relation between concepts sharing more independent infor-

mation. Taking the example in Figure 1, GraSM considers platinum and palladium

more similar than platinum and gold, since gold can have a different interpretation

(coinage). However, we could also expect that silver and gold to be more similar than

platinum and gold or platinum and palladium, since silver and gold share two parallel

interpretations, precious and coinage. GraSM considers the opposite, since silver and

gold have two interpretations, it reduces their similarity, which is counterintuitive.

To overcome the problems described above, this paper proposes a novel method for

calculating the shared information content between two concepts, dubbed Disjunctive

Shared Information (DiShIn), based on the number of distinct paths between the con-

cepts and their common ancestors. Like GraSM, DiShIn re-defines the shared informa-

tion content between two concepts as the average of all their disjunctive ancestors.

However, DiShIn assumes that an ancestor is disjunctive if the difference between the

number of distinct paths from the concepts to it is different from that of any other

more informative ancestor. In other words, a disjunctive ancestor is the most informa-

tive ancestor representing a given set of parallel interpretations. Like GraSM, DiShIn

can be directly integrated into any semantic similarity measure based on the MICA.

Taking again the example of Figure 1, DiShIn still considers platinum and palladium

more similar than platinum and gold. This happens because the number of distinct

paths from both platinum and palladium to precious and metal is one. Therefore, only

precious is considered to be a disjunctive ancestor. On the other hand, the number of

distinct paths from both platinum and gold to precious is one but from gold to metal

is two. Therefore, both precious and metal are considered to be disjunctive ancestors.

Since the shared information is defined as the average of the disjunctive ancestors and

the IC of metal is smaller than precious, then the similarity between platinum and pal-

ladium is higher than platinum and gold. However, unlike GraSM, DiShIn does not

consider silver and gold less similar than platinum and gold or platinum and
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palladium. This happens because the number of distinct paths from both silver and

gold to precious and coinage is one and to metal is two. All ancestors have the same

number of distinct paths from each concept, thus only precious or coinage will be con-

sidered a disjunctive ancestor, depending of which has the highest IC. This means that

the similarity between silver and gold will be higher than platinum and gold and at

least equal to platinum and palladium.

We applied DiShIn to one of most popular ontologies in the biomedical domain, the

Gene Ontology. The performance of DiShIn was evaluated using CESSM, an existing

platform for collaborative and automated evaluation of protein similarity measures [16].

For a pre-defined list of pairs of proteins, CESSM calculates the correlation coefficients

between semantic and sequence similarity. Sequence similarity is considered here the

golden standard, following the common assumption that entities that are globally similar

in structure tend to have similar biological activity [9]. DiShIn was able to obtain statisti-

cally significant higher correlation coefficients than GraSM and MICA alone.

Thus, the main contributions of this paper are:

• formalization of a novel method, DiShIn, to calculate shared information content

using multiple inheritance (Methods Section);

• application of DiShIn to Gene Ontology (Gene Ontology Application Section);

• evaluation of DiShIn performance against state-of-the-art methods (Results and

Discussion Section).

Methods
This section presents the current approaches to define similarity between ontology

concepts as a combination of their common and distinctive relationships in the

ontology.

Semantic similarity

Resnik defined the similarity between two concepts c1 and c2, represented as nodes in a

DAG, as the amount of information content they share. Given the frequency freq(c) for

each concept c in a corpus, the information content of a concept is inversely propor-

tional to the frequency of that concept and its descendants [13]:

IC(c) = − log(
freq(c)
maxFreq

)

where maxFreq represents the maximum frequency of all concepts, i.e. the frequency

of the root concept when it exists. Then, Resnik defined the amount of information

content they share as:

Sharemica(c1, c2) = max{IC(a) : a ∈ CA(c1, c2)}

where CA represents the common ancestors of c1 and c2:

CA(c1, c2) = Anc(c1) ∩ Anc(c2)

and Anc(c) represents the set of ancestors of a concept c. Resnik’s similarity measure

only uses the IC of a single common ancestor, the most informative one, the MICA.

Simresnik(c1, c2) = Sharemica(c1, c2)
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Jiang and Conrath defined distance between concepts as the difference between the

ICs of both concepts and the IC of their MICA [17]:

Distjc(c1, c2) =

IC(c1) + IC(c2) − 2 × Sharemica(c1, c2)

Lin defined similarity as the IC of their MICA over the IC of both concepts [18]:

Simlin(c1, c2) =
2 × Sharemica(c1, c2)

IC(c1) + IC(c2)

All of these measures defined similarity or distance based on the same Resnik defini-

tion of shared information that uses a single common ancestor. To deal with multiple

inheritance, Couto et al. proposed GraSM, a new definition of shared information [15].

GraSM defines it as the average of the information content of the disjunctive common

ancestors of both concepts:

Sharegrasm(c1, c2) =

{IC(a) : a ∈ DCAgrasm(c1, c2)}

where DCAgrasm represents the disjunctive common ancestors of both concepts:

DCAgrasm(c1, c2) = {a1|
a1 ∈ CA(c1, c2) ∧ ∀a2 :

(a2 ∈ CA(c1, c2) ∧ IC(a1) ≤ IC(a2) ∧ a1 �= a2)

⇒ ((a1, a2) ∈ DAgrasm(c1) ∪ DAgrasm(c2))}

where DAgrasm represents the disjunctive ancestors of a concept:

DAgrasm(c) = {(a1, a2)|
(∃p : p ∈ Paths(a1, c) ∧ a2 �∈ p)∧
(∃p : p ∈ Paths(a2, c) ∧ a1 �∈ p)}

where Paths(a, c) gives the set of distinct paths from c to a in the DAG.

For GraSM, a disjunctive common ancestor is an ancestor for which there is a path

from one of the concepts to that ancestor, distinct of any other path from that same

concept to the other disjunctive common ancestors. This recursive definition makes

the computational complexity of its implementation non-linear, which strongly limits

its potential for integration in large-scale studies. Moreover, GraSM decreases the

shared information even when two disjunctive common ancestors represent two paral-

lel interpretations shared by both concepts, such as the case of silver and gold of Figure

1, where GraSM defines the disjunctive common ancestors as:

DCAgrasm (platinum, palladium) = {precious}
DCAgrasm (silver, gold) = {precious, coinage}

since there are distinct paths both from silver and gold to precious and coinage.

Then, GraSM defines their shared information as:

Sharegrasm (platinum, gold) = IC(precious)

Sharegrasm (silver, gold) =

IC(precious) + IC(coinage)
2
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Thus, in the case where IC(precious) > IC(coinage) we will have

Sharegrasm (silver, gold) <

Sharegrasm (platinum, palladium)

In the case where IC(precious) < IC(coinage) we will have the opposite, but Share-

grasm(silver, gold) will still be penalized against any other pair of concepts that only

share coinage.

Proposed approach

To overcome the limitations of GraSM, this paper proposes DiShIn, a new definition of

shared information that re-defines the disjunctive common ancestors as:

DCADiShIn(c1, c2) = {a :

a ∈ CA(c1, c2)∧
∀ax∈CA(c1,c2 )PD(c1, c2, a) = PD(c1, c2, ax)

⇒ IC(a) > IC(ax)}

where CA represents the common ancestors and PD the difference between the

number of paths from the two concepts to their ancestor:

PD(c1, c2, a) = |Paths(c1, a) − Paths(c2, a)|

where Paths gives the number of distinct paths from c to a in the DAG.

Therefore, the shared information between two concepts can be defined as:

Sharedishin(c1, c2) =

{IC(a) : a ∈ DCAdishin(cl, c2)}

As in GraSM, DiShIn can be integrated in any other semantic similarity measure

based on shared information content:

Simresnik:dishin (c1, c2) = Sharedishin(c1, c2)

Distjc:dishin (c1, c2) =

IC(c1) + IC(c2) − 2 × ShareDiShIn(c1, c2)

Simlin:dishin (c1, c2) =
2 × Sharedishin(c1, c2)

IC(c1) + IC(c2)

Example

To illustrate how DiShIn handles parallel interpretations differently from GraSM, this

section presents the application of DiShIn to the case of multiple inheritance of Figure 1.

DiShIn starts by calculating the path difference for all the common ancestors of the

pairs (platinum, palladium), (platinum, gold) and (silver, gold):

PD (platinum, palladium, precious) = |1 − 1| = 0
PD (platinum, palladium, metal) = |1 − 1| = 0
PD (platinum, gold, precious) = |1 − 1| = 0
PD (platinum, gold, metal) = |1 − 2| = 1
PD (silver, gold, precious) = |1 − 1| = 0
PD (silver, gold, coinage) = |1 − 1| = 0
PD (silver, gold, metal) = |2 − 2| = 0
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This means that there is only a non-zero number of paths from platinum and gold to

metal representing the multiple inheritance of gold as coinage and as precious, in oppo-

sition to the single inheritance of platinum. Note that the difference on the number of

paths from silver and gold to metal remains zero, since their multiple inheritance is

parallel. Given that IC(precious) > IC(metal) and IC(coinage) > IC(metal), DiShIn

defines the common disjunctive ancestors of the above pairs of concepts as:

DCAdishin (platinum, palladium) = {precious}
DCAdishin (platinum, gold) = {precious, metal}

DCAdishin (silver, gold) ={ {coinage} if IC (precious) < IC (coinage)
{precious} otherwise

Only (platinum, gold) has two common disjunctive ancestors given their different

number of paths to metal. The shared information content is then calculated by aver-

aging the IC of their common disjunctive ancestors:

Sharedishin (platinum, palladium) = IC (precious)

Sharedishin (platinum, gold) =

IC(precious) + IC(metal)
2

Sharedishin (silver, gold) =

max{ IC (precious), IC (coinage)}

Unlike in GraSM, we can verify that (silver, gold) is not penalized by an average, on

the contrary, it gets the maximum IC of their parallel interpretations. This means that

we have, as expected:

Sharedishin (silver, gold) ≥
Sharedishin (platinum, palladium) >

Sharedishin (platinum, gold)

This shows that, unlike GraSM, DiShIn does not penalize pairs of concepts with par-

allel interpretations, and, like GraSM, it penalizes pairs of concepts with distinct paths

for the same interpretation.

Computation

Before using DiShIn, we need to estimate the IC for each concept, and calculate the

number of distinct paths from one concept to another, Paths(c1, c2). These preliminary

calculations depend on the used ontology and on the available annotations. In the

worst-case scenario, we need to use an all-pairs shortest paths algorithm to calculate

Paths(c1, c2) and propagate the frequency of concepts to obtain their IC, so we can

estimate a computational complexity of O(n3) for these preliminary calculations, where

n is the number of ontology concepts [19]. However, the calculations only need to be

performed once, and updated as new versions of the ontology become available. Thus,

the time spent on these calculations has no impact on the performance of DiShIn.

After calculating the IC(c) and Paths(c1, c2), let’s assume that we store their informa-

tion in a relational database as two tables, IC and Paths, respectively. The table IC is

composed of two columns, holding the concept identifier and a value representing the

information content of the concept. The table Paths is composed of three columns,
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holding a concept identifier, another concept identifier representing an ancestor of the

former concept, and a value representing the number of paths between the two con-

cepts. Thus, with these two tables DiShIn could be implemented as a single SQL

query:

SELECT AVG(DCA. value)

FROM

(SELECT MAX(IC. value) as value

FROM IC,

(SELECT p1. ancestor as ancestor,

ABS (p1. value - p2. value)

as value

FROM Paths p1, Paths p2

WHERE p1. concept = c1

AND p2. concept = c2

AND p1. ancestor = p2. ancestor

AND p1. value>0 AND p2. value>0

) as PD

WHERE IC. concept = PD. ancestor

GROUP BY PD. value

) as DCA;

The SQL query contains a subquery that calculates the value of P D(c1, c2, a) accord-

ing to the values of P aths(c1, a) and P aths(c2, a) for each a Î CA(c1, c2). Note that

the constraint a Î CA(a1, a2) is implemented by checking that Paths(c1, a) >0 and

Paths(c2, a) >0. Next, another subquery groups the results of the previous query by the

PD(c1, c2, a) values, and selects the most informative ancestor of each group, which

represents the common disjunctive ancestors: DCAdishin(c1, c2). Finally, the query calcu-

lates the average of the information content values, i.e. the shared information: Share-

dishin(a1, a2)

The first subquery returns one row for each common ancestor, so the number of

rows returned is limited to n. The usage of indexes on table Paths enables the compu-

tation of this subquery in constant time. Since the other subqueries only perform

group and average operations over the rows returned by the first subquery, the compu-

tational complexity of the SQL query that implements DiShIn is O(n). Note that the

SQL query is universal to any ontology structured as a DAG, only the preliminary cal-

culation of IC and Paths are dependent on the ontology used.

Gene Ontology application
Semantic similarity measures have been applied to Gene Ontology (GO), a popular

biomedical ontology [20], mainly to compare genes or proteins based on the similarity

of their activities (modelled as GO concepts).

GO organizes its concepts in three distinct DAGs representing the following sub-

ontologies: molecular function, biological process and cellular component. The relations

between the concepts have the following types: is-a, part-of and regulates. Semantic

similarity measures are normally restricted to is-a and/or part-of relations, which are

required to define the ancestors and descendants of any concept. These relations fit

our method requirements. Figure 2 shows an example of the GO hierarchy.
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Preliminary calculations

The IC was estimated using the same approach used by most measures applied to GO

[7], where the frequency of a given concept is calculated by counting the number of

proteins annotated with it or with any of its descendants in the DAG. Together with

the ontology, the GO consortium also provides publicly available releases of these GO

annotations.

GO also provides the transitive closure of each DAG, which was used for calculating

the number of distinct paths between any pair of concepts. The calculation was per-

formed for all pairs of concepts connected through the transitive closure. Every pair of

concepts directly connected in the DAG was considered to have only one distinct path

between them. And for every pair of concepts not directly connected, it was identified

an intermediate concept directly connected to one of the concepts and whose number

of paths to the other concept was already calculated.

GO:0016705
oxidoreductase

activity, acting on
paired donors, with

incorporation or
reduction of

molecular oxygen

GO:0008387
steroid

7-alpha-hydroxylase
activity

GO:0008396
oxysterol

7-alpha-hydroxylase
activity

GO:0008395
steroid hydroxylase

activity

GO:0016491
oxidoreductase

activity

GO:0004497
monooxygenase

activity

Figure 2 Example of multiple inheritance in GO. Subgraph of the molecular function subontology of GO
containing the common ancestors of the concepts steroid 7-alpha-hydroxylase activity, and oxysterol 7-
alpha-hydroxylase activity.
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Evaluation platform

A commonly used approach for evaluating semantic similarity measures in biomedical

ontologies is based on comparing their correlation with structural similarity. This cor-

relation may not be always accurate, but this approach represents a comprehensive

analysis, since structural similarity is present everywhere in Molecular Biology. For

example, even functional classifications, like PFAM, rely mostly on structural similarity

methods [21]. Therefore, this evaluation assumes that on average the results obtained

from a large number of examples should be close to their real value, even if some

exceptions exist. A systematic difference between semantic and structural similarity

would undermine this assumption, but this is not expected to exist under the assumed

correlation between protein function and its structure [22].

Recent studies on GO similarity have used CESSM, a platform that supports the col-

laborative and automated evaluation of similarity measures based on GO [16]. CESSM

provides an unbiased comparison of novel similarity measures against several existing

ones by testing them on the same task and data, and then calculating the same perfor-

mance indicators. The data are composed of a list of protein pairs, a specific release of

GO and protein annotations; the task is comparing proteins; and the performance indi-

cators are the correlation coefficients between semantic and sequence similarity.

CESSM provides a list of UniProt protein pairs which have been selected based on

their quality of GO annotations, and indicates a specific release of GO and UniProt

[23] in which the similarity should be based on. In January of 2011, CESSM was using

the August of 2008 release of GO and GO-UniProt datasets and provided a list of

13,430 proteins pairs. For these proteins, we have an average of 5.9 GO annotations

per protein in the Biological Process, 2.9 in the Cellular Component, and 3.7 in the

Molecular Function. Thus, the DiShIn’s pre-processing described above was performed

over these datasets, using all protein annotations they contained (manual and

electronic).

Semantic similarity measures enable a quantitative comparison between ontology

concepts, but not directly between the entities annotated with them, such as proteins.

To calculate protein similarity some specialized graph matching measures have been

proposed, such as simGIC [7], but, by extension, semantic similarity measures can also

be adapted to compare the entities mapped to the concepts. This adaptation has to

result from combining the similarity of the concepts that the entities are mapped to.

Note that an entity, such as a protein, may be mapped to multiple concepts, since pro-

teins are usually involved in multiple biological activities. The most effective adaptation

approach is composite (best-match) averages, where each concept of the first protein is

paired only with the most similar concept of the second one and vice-versa [24-26].

Thus, for this study, DiShIn adopted this approach to work as a protein similarity

measure.

After uploading the similarity values for each measure, CESSM provides the Pear-

son’s linear correlation with sequence similarity [27], a popular approach for compar-

ing proteins and for evaluating GO similarity measures [9]. Therefore, this study used

CESSM to obtain the correlation coefficients for the measures: Simresnik, Simlin, Distjc,

Simresnik:dishin and Simresnik:grasm, all adapted as protein similarity measures by using the

best-match approach.
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Results and discussion
Pearson’s linear correlation

Table 1 presents the values returned by CESSM representing the Pearson’s linear cor-

relation between sequence similarity and the similarity obtained by the GO-based mea-

sures. Since GO is composed of three distinct subontologies, CESSM calculates the

correlation for each one of them separately. Note that all the correlation coefficients

were calculated using 13,430 protein similarity values, one for each protein pair in the

CESSM dataset.

In Figure 3, for each subontology of GO, Simresnik:dishin provides the highest correla-

tion coefficients and Simlin and Distjc provide the lowest correlation coefficients. These

results show that in this study a more accurate calculation of the shared information

content is more relevant than including the IC of the concepts being compared.

Using Fisher’s transformation and a one-sample z test, Table 1 presents the p-values

for the correlation coefficients of Simresnik:grasm and Simresnik:dishin, considering the null

hypothesis as that these coefficients being equal to the coefficients of Simresnik and

Simresnik:grasm, respectively [[28], eq. 11.22]. Fisher’s parametric statistics has been used

by many GO applications to measure the significance of obtained results [29], includ-

ing previous semantic similarity studies [30].

For each subontology of GO, Simresnik:dishin presents a statistically significant increase

of the correlation coefficients (p-value <0.01), as opposed to the low statistical signifi-

cance of the increase obtained by Simresnik:grasm (p-value >0.6). Using also Fisher’s

transformation, Table 2 presents the confidence levels for the correlation coefficients

of Simresnik:dishin [[28], eq. 11.23]. For example, in the Biological Process subontology, at

the confidence level of 98%, the lower limit of the confidence interval of the correla-

tion coefficients of Simresnik:dishin is larger than the higher limit of the confidence inter-

val of the correlation coefficients of Simresnik and Simresnik :grasm. The different

confidence levels of Simresnik:dishin between the three subontologies can be explained by

the edge density of each DAG: 1.95 in the Biological Process, 1.85 in the Cellular Com-

ponent, and 1.16 in the Molecular Function. More edges per node means a higher pre-

sence of multiple inheritance, and therefore a higher possibility of the application of

DiShIn affecting more similarity calculations.

Simresnik:dishin was able to improve correlation because it managed to calculate the

shared information in a more effective manner than Simresnik:grasm and Simresnik. The

increase is even more relevant if we take into account that multiple inheritance only

affects about 10% of the GO similarity calculations. For example, we only had 5,530

out of 513,850 similarity calculations performed in the Molecular Function subontol-

ogy, with Simresnik , Simresnik:dishin. However, the best-match approach averages the GO

similarity values obtained by combining the GO concepts annotated with both

Table 1 Pearson’s correlation coefficients

Resnik GraSM p-value DiShIn p-value

Molecular Function 0.6683 0.6690 0.8923 0.6812 0.0091

Biological Process 0.7397 0.7417 0.6133 0.7589 0.00001

Cellular Component 0.7113 0.7129 0.7061 0.7268 0.0008

Pearson’s linear correlation between semantic and sequence similarity for the 13,430 protein pairs. The p-values
represent the probability of obtaining the correlation coefficients for GraSM assuming the correlation coefficients of
Resnik, and for DiShIn assuming the correlation coefficients of GraSM.
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proteins, where a single GO similarity change may affect the final protein similarity

value. Since the proteins in the CESSM dataset are all well annotated, multiple inheri-

tance affected most of similarity values of the 13,430 protein pairs; more specifically

this happened in 95% of the proteins pairs in the Biological Process, 93% in the Cellu-

lar Component, and 75% in the Molecular Function. Note that these percentages are

also coherent with the edge density of each subontology, as described above. For exam-

ple, in the Molecular Function subontology using only the 75% of the proteins pairs

that were affected by multiple inheritance drops the correlation coefficients of Simresnik,

Simresnik:dishin and Simresnik:dishin to 0.4008, 0.4024 and 0.4149, respectively. Simresnik:

dishin still presents a significant improvement, but the lower coefficients indicate that

proteins with multiple inheritance tend to have a complex biological role that is not so

well correlated with sequence similarity. Nonetheless, in 10% of the cases where multi-

ple inheritance exists, Simresnik:dishin managed it in a much more effective way than

Simresnik:grasm in order to have achieved the overall improvement of correlation pre-

sented above. This also corroborates the hypothesis that multiple inheritance, even if

scarce, can have an important overall impact, as previously proposed for GraSM.

Hence, when multiple inheritance exists, it should not be neglected, as in the Resnik

approach based only on the most informative common ancestor.

Example

To exemplify how DiShIn differs from GraSM, this section discusses their values when

comparing the leaf concepts of Figure 2, steroid and oxysterol 7-alpha-hydroxylase

activity.

According to GraSM, these concepts have two disjunctive common ancestors: oxi-

doreductase with oxygen and steroid hydroxylase, whose IC in this study was 0.3846

0.4

0.6

0.8

1.0

Resnik

JC

Lin

GraSM

0.0

0.2

Molecular�Function Biological�Process Cellular�Component

DiShIn

Figure 3 Pearson’s linear correlation. Pearson’s linear correlation between sequence similarity and GO-
based measures. In the y-axis we have the correlation values and in the x-axis the GO-based measures in
each subontology of GO. The error bars represent the 99% confidence interval.

Table 2 Confidence level on Pearson’s correlation coefficients

GraSM/Resnik DiShIn/Resnik DiShIn/GraSM

Molecular Function 5% 83% 81%

Biological Process 20% 99% 98%

Cellular Component 15% 94% 90%

The maximum confidence levels that result in non-overlapped confidence intervals for the correlation coefficients of
GraSM when compared to Resnik, and for the correlation coefficients of DiShIn when compared to GraSM and Resnik.
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and 0.6671, respectively. Thus, GraSM returns the average of their IC,

Simresnik:grasm = 0.6671+0.3846
2 = 0.5259

On the other hand, for each common ancestor, the number of paths from steroid to

that ancestor is always equal to the number of paths from oxysterol to that same

ancestor. For example, the top oxidoreductase has two distinct paths to each concept

and steroid has one distinct path to each concept. Therefore, according to DiShIn

there is only one disjunctive common ancestor, the MICA, and thus we have: Simresnik:

dishin = 0.6671. Therefore, unlike GraSM, DiShIn does not penalize steroid and oxy-

sterol for sharing parallel interpretations. Note that we cannot apply simGIC to this

example, since simGIC calculates similarity between proteins (entities), not between

the concepts themselves.

Execution time

One of the disadvantages of using GraSM was its non-linear computational complexity.

GraSM improves correlation but its execution times are about 3 times higher than

using Resnik, a strong limitation due to the large size of biomedical ontologies and the

vast amount of entities annotated with them.

Figure 4 presents the execution times, on a Quad-Core CPU at 2 GHz, of the calcu-

lation of the similarity values of all the 13,430 proteins pairs using Simresnik, Simresnik:

grasm and Simresnik:dishin. The Figure allows a clear performance comparison of these

measures. The performance of Simresnik:dishin is significantly closer to the performance

of Simresnik than to the performance of Simresnik:grasm, demonstrating the superior effec-

tiveness of DiShIn over GraSM. This was expected, given that DiShIn has an algorith-

mic complexity of O(n), whereas GraSM has a non-linear complexity. Thus, DiShIn

improves the feasibility of the exploitation of multiple inheritance on intensive similar-

ity calculations.

40

80

120

Resnik

DiShIn

GraSM

0

40

80

120

Molecular�Function Biological�Process Cellular�Component

Resnik

DiShIn

GraSM

Figure 4 Execution times. Execution times for calculating the similarities of the 13,430 proteins pairs.
In the y-axis we have time in minutes and in the x-axis the GO similarity measures in each subontology
of GO.
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Limitations

DiShIn is not a new semantic similarity measure. In fact, it can be considered as an

add-on that efficiently incorporates multiple inheritance in the calculation of the infor-

mation content that two concepts share in an ontology represented as a DAG.

DiShIn was not specifically designed to measure protein similarity either. In fact, it

was adapted to do so, since protein semantic and structural similarity correlation has

been a generally accepted way to assess semantic similarity approaches in the biomedi-

cal field. However, semantic and structural correlation may not be the best way to

assess semantic similarity, and better gold standards, not biased by structural features,

are much required, especially in the case of DiShIn, where multiple inheritance is often

associated with complex entities.

DiShIn does not take advantage of the higher expressivity of more advanced ontology

features than the straightforward subsumption relationships present in DAGs [31]. For

semantic similarity, subsumption relationships may be enough, but as we evolve to

semantic relatedness, other relationships have to be considered and additional levels of

distinction between asserted and inferred hierarchies may be required.

Conclusions
This paper presents DiShIn, a novel method for effectively exploiting multiple inheri-

tance when calculating the shared information content between two ontology concepts.

DiShIn can be easily integrated in any semantic similarity measure dependent on the

information content shared by two concepts.

DiShIn was applied to GO similarity measures, and its performance was evaluated

against state-of-the-art measures using an existing platform for evaluation of protein

similarity measures. In this setting, DiShIn was able to improve the correlation coeffi-

cients between semantic and sequence similarity, and also reduce the computational

time of the common disjunctive ancestors identification, as previously proposed by

GraSM. These results represent an important contribution towards effective manage-

ment of multiple inheritance in large-scale comparative studies.

As ontologies grow and interoperability between ontologies is required [32], multiple

inheritance will become a prominent issue for semantic similarity measures. For exam-

ple, the comparison of complex biomedical entities, such as disease and epidemiologi-

cal models, is a non-trivial task due to their multiple domain features and complexity.

Moreover, even the single comparison of anatomical locations remains a challenge due

to the lack of a common coordinate space [33]. Thus, methods like DiShIn will cer-

tainly represent a valuable contribution for the development of multi-domain similarity

measures based on an effective exploitation of multiple inheritance.

Availability of supporting data
The data sets supporting the results of this article are available in the CESSM reposi-

tory, http://xldb.di.fc.ul.pt/tools/cessm/.
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