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Abstract

Background: There have been a number of recent efforts (e.g. BioCatalogue,
BioMoby) to systematically catalogue bioinformatics tools, services and datasets.
These efforts rely on manual curation, making it difficult to cope with the huge influx
of various electronic resources that have been provided by the bioinformatics
community. We present a text mining approach that utilises the literature to
automatically extract descriptions and semantically profile bioinformatics resources to
make them available for resource discovery and exploration through semantic
networks that contain related resources.

Results: The method identifies the mentions of resources in the literature and
assigns a set of co-occurring terminological entities (descriptors) to represent them.
We have processed 2,691 full-text bioinformatics articles and extracted profiles of
12,452 resources containing associated descriptors with binary and tf*idf weights.
Since such representations are typically sparse (on average 13.77 features per
resource), we used lexical kernel metrics to identify semantically related resources via
descriptor smoothing. Resources are then clustered or linked into semantic networks,
providing the users (bioinformaticians, curators and service/tool crawlers) with a
possibility to explore algorithms, tools, services and datasets based on their
relatedness. Manual exploration of links between a set of 18 well-known
bioinformatics resources suggests that the method was able to identify and group
semantically related entities.

Conclusions: The results have shown that the method can reconstruct interesting
functional links between resources (e.g. linking data types and algorithms), in
particular when tf*idf-like weights are used for profiling. This demonstrates the
potential of combining literature mining and simple lexical kernel methods to model
relatedness between resource descriptors in particular when there are few features,
thus potentially improving the resource description, discovery and exploration
process. The resource profiles are available at http://gnode1.mib.man.ac.uk/bioinf/
semnets.html.
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Background
The rapid increase in the amount of bioinformatics data produced in recent years has

resulted in the huge influx of bioinformatics electronic resources (e-resources), such as

online-databases [1], data-analysis tools [2], Web services [3] etc. Still, many users rely

on a limited set of tools that have been used and developed locally in their groups or

by their collaborators, since discovering and using new resources became one of the

major issues and bottlenecks in bioinformatics. Therefore, a number of community-

wide efforts such as BioCatalogue [4] and BioMoby [5] have been initiated to systema-

tically catalogue the “bioinformatics resourceome”. By collecting and annotating

resources using keywords and ontological concepts, such catalogues facilitate access to

both bioinformaticians and Semantic Web crawlers and agents that can orchestrate

their use. However, the annotation process depends on a typically slow manual cura-

tion process that hinders the growth of such curated resources to keep pace with the

very field they attempt to catalogue. For instance, the number of registered services in

BioCatalogue (there were more than 1,600 of them as of March 2010) is lagging behind

the total number of Web services available online: it is estimated that there are ~3500

life science Web services in Taverna alone [6]. This fact calls for the development of

semi-automatic methods for resource annotation and their cataloguing in order to

maximise the utility of e-resources by making them widely available to the community.

One of the key aims of providing bioinformatics resources with semantic descriptions

is to improve resource discovery. Semantically-described resources can not only be

searched, browsed and discovered by using keyword-based queries (for instance, via

their names or task descriptions), but also on the basis of the semantic relatedness of

their functionalities or their input/output parameters. For example, a user can search

for a Web service that corresponds to a particular input, output or operation per-

formed. If, however, the retrieved services do not fulfill the exact requirement or are

not available, the user may explore similar services (for example, with more generic/

specific input/output, but still with a related functionality). This process has been

facilitated by concept-based annotations using domain ontologies that have been used

to annotate the resources (as in myGrid [7] and BioCatalogue). Descriptions of services

may also have “pre-computed” similar services (see Figure 1) so that the users can

identify them without additional searches.

When manually assigned annotation tags and/or related resources are not available,

we hypothesise that automated approaches could be used to improve the discovery

process by generating semantic networks and clusters of similar bioinformatics

resources. In this paper we propose a methodology to automatically build such net-

works from the literature. In our previous work, we have shown that the vast amounts

of scientific literature related to bioinformatics resources can be tapped in order to

automatically extract their key semantic functional features [8]. Here we do not aim to

fully characterise resources (e.g. as presented in BioCatalogue), but rather to extract

their descriptors that can be used to semantically link related instances. Traditionally,

similar or related instances have been identified by using lexical comparisons of their

names and names of their parameters (input/output) and operations. Such approaches

rely on authors using similar vocabularies to name operations, parameters and mes-

sages. In order to measure semantic relatedness, in this paper we present a kernel-

based similarity approach that uses lexical and semantic properties of resource
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mentions as extracted from the literature. Finally, we do not aim to characterise the

quality or provenance of resources: the aim is to provide an exploration space for the

users to discover related resources.

Methods
The methodology is based on three concepts: mentions of bioinformatics resources,

semantic resource descriptors, and similarity functions. Bioinformatics resources repre-

sent e-resources that are used by bioinformaticians while performing in-silico experi-

ments [9]. Mentions of bioinformatics resources are identified in the literature using

term identification [8]; their semantic profiles comprising semantic descriptors are also

generated from the literature [8,10]; finally, the resources are inter-connected with

each other on the basis of similarity between their semantic profiles that is measured

using various similarity metrics.

Identification of bioinformatics resources in text

We have focused on the four major classes of resources: Algorithms, Applications,

Data and Data Resources. These have been engineered from the myGrid ontology [11].

Table 1 shows example resource instances belonging to these classes.

In our previous work, we have described a set of text mining tools that can be used

to identify, classify and extract mentions of e-resources in the literature [8]. The

method is based on identification of key terminological heads assigned to each of the

semantic classes (e.g. alignment and method are “linked” to Algorithms, while sequence

and record point to a Data entity) and specific lexico-syntactic patterns (enumerations,

coordination, etc.) in which such instances occur.

Figure 1 A snapshot of a Web service description taken from BioCatalogue.
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Harvesting semantic descriptors

Semantic resource descriptors are the key terminological phrases used in the existing

textual descriptions of bioinformatics resources to refer to concepts and specific roles

(e.g. input/output parameters, etc). These have been used in the existing resource

descriptions (BioCatalogue, BioMoby, EBI web services [12], etc.) to denote functional-

ities, dependencies, input/output constraints, etc. For example, frequent descriptors are

gene expression, phylogenetic tree, microarray experiment, hierarchical clustering, amino

acid sequence, motif, etc. We use such descriptors to profile a given resource (see

below). Two sources were combined to build a dictionary of bioinformatics resource

descriptors. The first source is the list of terms collected from the bioinformatics

ontology used in the myGrid project. This list contains 443 terms describing concepts

in informatics (the key concepts of data, data structures, databases and metadata);

bioinformatics (domain-specific data sources e.g. model organism sequencing databases,

and domain-specific algorithms for searching and analysing data e.g. a sequence align-

ment algorithm); molecular biology (higher level concepts used to describe bioinfor-

matics data types, used as inputs and outputs in services e.g. protein sequence, nucleic

acid sequence); and tasks (generic tasks a service operation can perform e.g. retrieving,

displaying, aligning). The second source includes automatically extracted terms (recog-

nised by the TerMine service [13]) and frequent noun phrases obtained from existing

descriptions of bioinformatics Web resources available from BioCatalogue.

Semantic profiling of resources

For each bioinformatics resource that is identified in the literature, we build its semantic

profile by harvesting all descriptors that co-occur with the resource in the same sentence

in a given corpus (see Figure 2 for an example). These profiles are used to establish

semantic similarities between resources by comparing the descriptors (used as features)

that have been assigned to them. We note that descriptors do not represent a comprehen-

sive description of a resource, but rather an approximation extracted from the literature.

Some of these descriptors may be generic (e.g. gene) and some very specific (e.g. DDBJ).

Linking semantically related resources

We explored three methods to link semantically related resources. The first approach

is based on lexical similarity between resource names (Method 1). The second

approach takes into account the number of shared descriptors between resources

(Method 2). However, resource representations using descriptors can be sparse

(an average number of descriptors per resource is 13.77, see Table 2 in Results),

in particular given a high number of potential descriptors (see Results). This suggests

Table 1 Examples of semantic classes and their instances

Semantic
class

Example instances

Algorithm SigCalc algorithm, CHAOS local alignment, SNP analysis, KEGG Genome-based approach,
GeneMark method, K-fold cross validation procedure

Application PreBIND Searcher program, Apollo2Go Web Service, FLIP application, Apollo Genome Annotation
curation tool, GenePix software, Pegasys system

Data GeneBank record, Genome Microbial CoDing sequences, Drug Data report

Data
resource

PIR Protein Information Resource, BIND database, TIGR dataset, BioMOBY Public Code repository
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that it is not likely that many resources will share exactly the same descriptors. We

therefore use a third approach that introduces lexical smoothing of descriptors

(Method 3).

Method 1: lexical comparison of resource names

This method relies on lexical word-based similarity between resource names. We use

the concept of lexical profiles to estimate similarity. The lexical profile of a term com-

prises all possible linear combinations of word-level substrings present in that term

[14]. For example, the lexical profile of term ‘protein sequence alignment’ comprises

the following terms protein, sequence, alignment, protein sequence,sequence alignment,

protein sequence alignment. The similarity between two resources is then calculated as

a similarity between lexical profiles of their names. Formally, let LP(s1) and LP(s2) be

lexical profiles (represented as vectors) of names of resources s1 and s2. Then the simi-

larity function is defined as a cosine [15,16] between vectors LP(s1) and LP(s2):

Sim ( ,  )  
LP( )  LP

 LP( )  LP1 s s
s s

s s1 2
1 2

1 2

= < >
⋅

, ( )
( )

(1)

where < x, y> is the inner product between vectors x and y , and |x| is the norm of x.

We note that resources that share longer substrings will have a higher similarity value.

  

Kyoto Encyclopaedia of Genes and Genomes (KEGG) 

Semantic Descriptors 

data | database | DDBJ | EBI | enzyme | GenBank |  

Gene Ontology | gene | genome | Kyoto Encyclopedia | microarray data | 

pathway | protein | transcription factor | protein-protein interaction | 

UniProt 

Figure 2 Sample of semantic resource descriptors for the Kyoto Encyclopaedia of Genes and Genomes
(KEGG).

Table 2 The statistics of bioinformatics e-resources found in the BMC Bioinformatics
corpus

Semantic Class Total number of instances Average number of descriptors

Algorithm 5,722 11.47

Application 2,076 10.38

Data 2,662 18.77

Data Resource 1,992 12.94
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Method 2: shared descriptors

Here we use the standard bag-of-descriptors approach, where each resource is repre-

sented as a bag of its descriptors and the similarity is based on exact matches between

them. This method compares the resources using the inner product that measures the

degree of descriptor sharing [14,15]:

Sim ( ,  )  
 
 |2 s s

s s

s s1 2
1 2

1 2

= < >
⋅
,

| | |
(2)

where s1 and s2 are binary profile vectors that represent the semantic descriptors

assigned to the resources being compared. Instead of binary weights (descriptors is/is

not present in a resource’s profile), we can use a variant of term frequency – inverse

document frequency (tf-*idf) weights. tf*idf is a statistical measure that is used to mea-

sure the importance of a term (or word) in a document as compared to whole collec-

tion of documents [15,16]. Here we use it to estimate how important and

discriminative a given descriptor is for a given resource. We combine the relative fre-

quency of co-occurrence of the descriptor and resource, and the inverse frequency of

the descriptor with regard to all resources:

tf*idf( , )
( , )

( , )
log

_ _ _
d s

freq d s

freq d s

total number of resour

i

= ⋅
∑

cces

number of resources that have d_ _ _ _ _ (3)

where d is a descriptor and s is a resource. Although the frequency of a common

descriptor may be high, its tf*idf would be counter-balanced if it appears with a num-

ber of different resources. Each resource vector in this case comprises the tf*idf

weights for all the descriptors that appear with the resource.

Method 2 relies on resources sharing exactly the same descriptors. However, in many

cases descriptors may not be exactly the same, but may be related and this should be

reflected in the similarity of the associated resources. This is particularly important as

the number of descriptors assigned to some resources is low, reducing the probability

that other resources will have those descriptors. Therefore, we introduce an approach

that takes into account the similarity between descriptors.

Method 3: lexical similarity of shared descriptors

In this method, we have used kernel functions to enhance the comparison process

between bioinformatics resources retrieved from the literature by incorporating lexical

profiles of their features. This approach is inherent to our method of employing the

descriptors, as descriptors (used as features to describe resources) have been retrieved

from the contextual sentences that are related to resources. Various similarity kernels

can be used for comparisons (e.g. bag-of-words kernels [17,18], string kernels [19],

etc.). Here we introduce a kernel function that uses lexical relatedness between

descriptors to measure the similarity between the resources. The main motivation

behind this approach is that resources can share related but not exactly the same

descriptors. We therefore use a kernel that takes into account descriptor smoothing by

incorporating a similarity measure between descriptors themselves in the function that

calculates similarity between resources. Formally, let S = {s1, …, sk} be the set of

e-resources whose descriptions have been collected from the literature. Let D = {d1, …,

dm} be the set of all descriptors, where m is the total number of descriptors. In order
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to measure similarity between resources, we first build a descriptor similarity matrix

A(m x m), where each element aij corresponds to the similarity between descriptors di
and dj. This similarity is calculated as the cosine between the lexical profiles of the

descriptors. More precisely,

a   ( ,  )  
LP( )  LP

 LP( )  LP
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< >
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Then, the similarity between two resources s1 and s2 is calculated as:
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Note that vectors s1 and s2 are normalised and can contain either binary or tf*idf fea-

ture weights.

Figure 3 shows an example of two resources and their similarities calculated using

the three methods. It demonstrates the utility of using semantic descriptors of

resources, and employing the kernel-based similarity functions to measure the seman-

tic relatedness between bioinformatics resources.

Results
Here we demonstrate the development of networks of related resources by using each

of the three methods introduced above. The networks are visualised as weighted,

undirected graphs where nodes are resources and edges represent relatedness between

them. This relatedness is estimated using the three similarity functions (as explained in

Methods), where the weight of an edge represents the strength of the relationship

between the two connected nodes. We also investigate different methods of exploring

and visualising our similarity matrices. Specifically, we use hierarchical clustering den-

drograms, heatmap visualisations and semantic networks.

Data

Table 2 gives the number of bioinformatics resources that were identified in a corpus

of 2,691 full-text articles published by the journal BMC Bioinformatics. The details of

the extraction process are given in [8].

We extracted a total of 12,452 e-resources and 1,518 descriptors. Table 3 presents

the most frequent single word, two- and three-word descriptors. Each of the

e-resources has been assigned a set of associated descriptors (13.77 descriptors on

average; see Table 2 for details for the specific classes).

Exploration of Semantic Networks of Bioinformatics Resources

Here we assess the utility of resource descriptors for semantic profiling and linking of

bioinformatics resources. We do this by exploring our hypothesis that bioinformatics

resources can be semantically linked via resource descriptions. We do not aim to
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evaluate individual semantic profiles and the quality of extracted descriptors, but rather

the usefulness of links based on them. For this we have manually identified an evalua-

tion sample of 18 resources that are commonly used in bioinformatics (see Table 4)

and that we have extensive experience with. The sample contains resources from all

four resource classes, and each of these has occurred in more than 120 sentences in

Figure 3 Example of measuring similarities between two bioinformatics resources (Kalign Algorithm and
ClustalW program) using the three methods of similarities: lexical similarity between the resource names, shared
descriptors between the resources, and shared descriptors between resources after their lexical smoothing.

Table 3 The most frequent single-word, two-word and three-word descriptors, along
with their total frequency in the corpus

Single word descriptors Two-word descriptors Three-word descriptors

gene: 13,585 gene expression: 1,147 protein-protein interaction: 308

method: 8,203 secondary structure: 887 multiple sequence alignment: 295

protein: 6,417 protein sequence: 780 gene expression data: 262

sequence: 5,991 protein structure: 574 amino acid sequence: 257

analysis: 4,287 microarray experiment: 488 Smith-Waterman algorithm: 48
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our corpus. The aim of the evaluation was to establish whether the literature-extracted

links correspond to semantic relatedness between the resources, i.e. if groupings of the

18 resources reflect their roles and functions. The limited size of the evaluation set

allowed us to comprehensively analyse and examine all links and learn lessons on a set

of familiar resources through thorough link and cluster analyses that were performed

by a domain expert (JE).

The data has been generated using the three methods for deriving semantic related-

ness between resources as described above. However, the results and similarities pre-

sented here are restricted to the selected 18 resources.

Method 1: lexical comparison of resource names. As expected, this method did

not yield useful results as very little similarity was found between resource names, in

particular in smaller sets of resources. Non-zero similarity was only obtained between

Protein data bank and ChIp-chip data (similarity of 0.28) and Basic local alignment

search tool and Pairwise alignment (0.18).

Method 2: shared descriptors. We derived mutual similarity scores for the 18

resources based on shared semantic descriptors. Two experiments were performed:

one with binary-valued features and one with tf*idf weights. In both cases, this method

identified significant relatedness between many resources (see Figure 4 for heat-maps).

Clearly, the addition of descriptors improved our ability to derive a measure of seman-

tic similarity between related resources whose names are lexically disparate. However,

while the binary-weighted scores brought many similarities between a number of

resources (making it difficult to define any clear semantic relationships from these

data), the tf*idf scores were significantly more discriminative (see Figure 4B), clearly

highlighting related resources.

To further highlight the subtle differences and similarities between the resources in

the sample, we applied a hierarchical clustering algorithm [21] to the two matrices of

Table 4 A sample of resources used for exploration

Resource name Resource
class

Number of
Sentences

Number of
descriptors

Gene ontology (GO) Data resource 6757 289

Support vector machine (SVM) Algorithm 2456 134

Protein data bank (PDB) Data resource 904 102

Hidden Markov model (HMM) Algorithm 602 94

Principal components analysis (PCA) Algorithm 599 18

Position-specific scoring matrix (PSSM) Algorithm 457 24

Self organising map (SOM) Algorithm 305 137

Medical subject headings (MeSH) Data resource 261 138

Neural network Algorithm 256 158

Markov chain Monte Carlo (MCMC) Algorithm 252 132

Expression profile Data 252 136

Basic local alignment search tool (BLAST) Application 238 160

Phylogenetic tree Data 233 175

Structural classification of proteins (SCOP) Data resource 216 114

Kyoto encyclopaedia of genes and genomes
(KEGG)

Data resource 187 143

Clusters of orthologous groups (COG) Data resource 163 94

ChIp-chip data Data 126 66

Pairwise alignment Data 123 80
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scores. The tree in Figure 5A highlights some interesting clusters of the examined

resources when only binary indication of descriptors’ presence was used. Binary

weights provided a spread of similarity scores, which better suited hierarchical cluster-

ing. In the resulting dendrogram, many resources have been grouped together based

on their class (e.g. PCA and MCMC are algorithms; COG and PDB are data resources

as well as KEGG and MeSH). However, the cluster of pairwise alignment and HMM

highlights the semantic theme of sequence analysis. It is interesting that BLAST was

not linked to these, while it makes a protein-related cluster with COG, SCOP and

Figure 4 Heatmap representations of the matrix of shared descriptor similarity scores between resources
(method 2). (A) The scores based on binary weights. (B) The scores based on tf*idf. Heatmaps generated
by R function ‘heatmap’ [20]. Note that the heatmap diagonals (self-similarity) are intentionally left white to
make them easier to interpret, and that the heatmaps are different scales.

Figure 5 Hierarchical clustering of e-resources using the shared descriptors similarity matrix (method 2).
(A) The scores based on binary weights. (B) The scores based on tf*idf. Distances were calculated as (1 –
Sim2). Ward’s minimum variance clustering method [21] was used to cluster the data. The tree was
generated using R function ‘hclust’ [20].
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PDB. Furthermore, KEGG, BLAST, COG, SCOP, PDB and MeSH form their own

group, which does not highlight any obvious semantic relationships; a likely reason is

that these resources represent very common and fundamental resources in bioinfor-

matics, so share quite a large group of generic descriptors.

While providing a flatter structure, Figure 5B highlights more reliable associations,

typically between data resources and algorithms. For example, BLAST and PDB are

closely related, as are pairwise alignment and PSSM, highlighting the semantic theme

of sequence analysis. Together, pairwisealignment, PSSM, BLAST and PDB make a

group that share a theme of being related to sequence analysis. Phylogenetic tree and

COG form their cluster (COG is an attempt to phylogenetically group proteins [22]). It

is also interesting that HMM, SVM and neural networks are all grouped together,

representing a machine learning theme (classifiers), while GO and MeSH make their

own cluster as the only semantic hierarchical resources in the set, which are typically

used for annotations.

Even though similarity data alone can identify important semantic links, we further

explored the importance of the number and strength of links between resources. In

Figure 6 we present the similarity data as edges in a network connecting each node

(representing individual resources) with those that have some similarity to it. Each

edge is weighted by the similarity between the resources it connects, so that edges that

appear thick represent strong relationships and weak relationships are represented by

Figure 6 Semantic network of bioinformatics resources (using method 2 and values shown in Figure 4).
Node size represents frequency in the corpus; edge thickness represents how similar the two connected
nodes are. Node colour is determined by the semantic class of the node: red for Data, green for Data
resource, blue for Algorithm and yellow for Application. (A) The scores based on binary weights. (B) The scores
based on tf*idf. The image was generated using Cytoscape [23], the network was laid out using the
Cytoscape layout algorithm ‘Edge-Weighted Spring Embedded’, using the edge weight data in the network.
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thin edges. We have removed all edges that have a weight below the median edge

weight for the network, or below the median weight for a given node. Nodes that are

left with no edges are not presented in the resulting networks. Our intention with this

was to remove edges that exist due to chance alone and to better highlight the stron-

gest relationships in the network.

The strongest links in Figure 6A are between HMM, SVM and neural network, iden-

tifying the machine learning theme. There is also a strong link between Gene Ontology

and PDB, reflecting the fact that PDB identifiers are mapped to the GO terms. Gene

Ontology and SVM are also strongly linked, most probably because SVM methods have

been widely used for protein annotations using GO (see, for example, [24]). Figure 6B

(based on tf*idf) brings all algorithm instances into a sub-network. There is also a sub-

network related to sequence analysis.

Method 3: lexical similarity of shared descriptors. The results of calculations for

linking the resources considering the lexical similarities between their descriptors are

summarised in figures 7, 8 and 9.

Figure 7 has many similarities with Figure 4. As before, the tf*idf scores were more

selective in linking resources than binary features. However, as expected, descriptor

smoothing has introduced more similarities than Method 2 in tf*idf-based similarities

(compare figures 4B and 7B).

Figure 8A shows an informative cluster made of PCA, Expression profile and ChIp-

chip (PCA is a commonly used method to analyse both protein expression data

(expression profiles) and ChIp-chip data). Data resources phylogenetic tree and pairwise

alignment have been clustered together, both of which are common data forms in

sequence analysis. GO-PDB and SVM-neural network also made their own groupings.

Links in Figure 8B bring together another cluster related to sequence analysis group

(BLAST, pairwise alignment and PSSM). There is again a clear sub-tree with machine

learning classifiers.

The networks given in Figure 9 present the strongest grouping of resources based on

their class. Data nodes (represented in red) and Algorithm nodes (blue) are strongly

linked to each other. The strongest edge weights again occur between resources that

Figure 7 Heatmap representation of the matrix of lexically smoothed descriptor similarity scores between
resources (method 3). (A) The scores based on binary weights. (B) The scores based on tf*idf. Heatmaps
generated by R function ‘heatmap’ [20]. Note that the heatmaps are represented using different scales.
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Figure 8 Hierarchical clustering of e-resources using the lexically smoothed descriptor similarity matrix
(method 3). (A) The scores based on binary weights. (B) The scores based on tf*idf. Distances were
calculated as (1 – Sim3). Ward’s minimum variance clustering method [21] was used to cluster the data.
The tree generated using R function ‘hclust’ [20].

Figure 9 Semantic network of bioinformatics resources (using method 3 and values shown in Figure 7).
Node size represents frequency in the corpus; edge thickness represents how similar the two connected
nodes are. Node colour is determined by the semantic class of the node: red for Data, green for Data
resource, blue for Algorithm and yellow for Application. (A) The scores based on binary weights. (B) The
scores based on tf*idf. The image was generated using Cytoscape (see Figure 6 for further details).
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appear most frequently in the corpus, suggesting that frequency normalisation may be

needed to reduce this impact. Gene Ontology, in particular, is linked to all other

resources, and that is primarily a product of its ubiquity in the literature and therefore

the tendency for many descriptors and resources to be linked to it. A very strong link

between pairwise alignment and BLAST was only highlighted using the tf*idf weights

(Figure 9B).

Discussion
In order to establish similarity between resources, their literature-based profiles are

compared using three levels of representations: the lexical similarity between resource

names (method 1); the similarity calculated on the basis of shared semantic descriptors

(method 2), and the same similarity smoothed by considering lexically similar descrip-

tors (method 3). As expected, the first method failed to capture any implicit links

between resources as it relied solely on the surface level clues originating from the

names of resources. Of course, in a larger set it is likely that some resources will be

lexically linked, but many non-lexical links would be missed. The second approach

performed better in that sense, and was able to identify interesting clustering patterns

between the resources that did not have any lexical resemblance. At the third level, in

contrast to considering the exact match between resource descriptors, we devised a

descriptor-based kernel matrix that incorporated the approximate lexical similarities

between the descriptors (using their lexical profiles). The approximate similarities

helped in linking the resources that shared the descriptors that were not exactly the

same, but were related (see Figure 3). By further analysing the associated semantic pro-

files, we can see that significant relatedness between resources typically originates from

sharing a number of generic descriptors, in particular single-word ones (see Table 3).

Many of these have a generic nature (e.g. method, analysis, gene, etc.) and are not dis-

criminatory enough for establishing semantic relatedness at non-generic levels. This

problem was addressed through using tf*idf-based scoring weights assigned to descrip-

tors (considering the frequency of descriptors appearing in profiles of different

resources), which resulted in more informative and semantically-relevant groupings of

resources. Previous results in annotation of texts (and entities modelled by text fea-

tures) with various categories (including ontological structures) have shown that tf*idf

was typically a measure of choice and outperformed other measures by discriminating

features that have been over-represented [15,16]; for example, it was widely used to

annotate protein function with concepts from the Gene Ontology [25-28].

Semantic networks generated from the literature can be useful for both bioinformati-

cians that are exploring resources corresponding to their needs, and resource curators,

who could accelerate their work by discovering and annotating sets of related

resources. For example, an interesting pattern emerged whilst experimenting with

Method 3, whereby resources would cluster together based on their class (i.e. the

resources that belonged to the same class (such as Algorithm, Data Resource, etc.)

tended to appear closer in the network). On the other hand, Method 2 revealed some

interesting functional links (linking data types and algorithms). It remains an open

question as to which of these clustering patterns is most useful for semantic resource

discovery and/ or curation. Selecting and varying the threshold for the edge weight in

our network representations can also discard weaker links – we have experimented
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with discarding all edges that are below the global or local median value. We plan to

further explore improving the querying of resource profiles by organising them in an

RDF-store that would facilitate retrieval of related resources, and then to test these in

curation and service discovery tasks. Of course, this would include developing resource

identification, normalisation and disambiguation techniques, as some resources may

appear under different names/acronyms. We also note that better coverage would be

possible if anaphoric expressions in sentences are resolved.

Related work

The domain of life sciences has witnessed many efforts in the direction of utilizing

Semantic Web technologies, where particular focus has been on data annotation (e.g. a

number of protein function databases), using both manual and automated approaches.

These efforts have recently been extended to semantic description of resources (e.g.

services and tools) that are used to analyse, explore and visualise such data. These

approaches include assigning meta-data about functionalities, inputs and outputs. The

majority of automatic approaches to service annotation rely on the data available in

Web Service Description Language (WSDL) files associated with Web services. Such

files describe programmatic interfaces to services, including data types, input and out-

put message formats and the operations provided. For example, Lerman and colleagues

[29] presented work on automatic labelling of input and output of Web services using

meta-data based classification relying on terms extracted from the associated WSDL

files. The underlying heuristic behind the meta-data based classification is that similar

data types tend to be named by similar names and/or belong to operations or messages

that are similarly named. Similarly, Hess and Kushmerick [30] used machine learning

to classify Web services using information given in WSDL files of the services that

include port types, operations and parameters along with any documentation available

about the Web service. Information in a WSDL file is treated as normal text, and the

problem of Web service and its metadata classification is addressed as a text classifica-

tion problem. Liu and Wong [31] used clustering to identify homogenous service

“communities”, where features were also extracted from associated WSDL files. They

also use simple text processing and statistics to identify content-describing terms, and

argue that clustering services in functional groups can facilitate more effective service

discovery.

Carman and Knoblock, on the other hand, reported on invoking new/unknown ser-

vices and comparing the data they produce with that of known services, and then use

the meta-data associated with the known services to add annotations to the unknown

resources [32]. Belhajjame and colleagues [33] used known annotations of parameters

belonging to components in a workflow to infer the unknown annotations of other

parameters (in other components). Here, semantic information of operation parameters

is inferred based on their connections to other (annotated) components within existing

tried-and-tested workflows. Apart from deriving new annotations, this method can

inspect the parameter compatibility in workflows and can also highlight conflicting

parameter annotations. Similarly, Dong et al. [34] used clustering-based approach in

which parameters of service operations were used to find similar services.

To the best of our knowledge, the work reported here is the first attempt to extract

semantic networks of bioinformatics resources from the literature. Since the number of
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features in our approach for many instances was small, we have used kernels to

“expand” the feature space by taking into account feature similarities. This is similar to

latent semantic kernels (LSK, [35]) and semantic smoothing [36]. These methods also

try to bypass the problem of exact matching by deriving “conceptual” indices using

either statistical analysis of word co-occurrence across documents (LSK) or informa-

tion from a static, external semantic network (semantic smoothing). Our method, on

the other hand, relies on dynamic lexical similarities between features. We note that

matrix A in formula (5) can be generated in different ways (as long as it is positive

semi-definite i.e. represents a kernel [35]). Future work, therefore, will explore combin-

ing various kernels to build this similarity matrix, including combination of LSK and

similarities based on the myGrid ontology.

Conclusions
In this paper we proposed and explored a literature-based methodology for building clus-

ters and semantic networks of functionally related e-resources in bioinformatics. The

main motivation is to facilitate the resource discovery approaches that would improve the

availability and utility of these resources to the community. The methodology revolves

around semantic descriptors that are frequently used by bioinformatics resource providers

to semantically describe the resources. The semantic descriptors have been automatically

compiled and each e-resource has been assigned a set of descriptors co-occurring with the

given e-resource in a full-text article corpus. As a proof-of-concept, the approach was

evaluated on a subset of manually selected resources that the authors were familiar with.

The results suggest that the method was able to group and link semantically related

entities. Semantic networks that were based on tf*idf-weights in particular were more

informative in “recovering” semantic relatedness between the resources. We envisage that

such semantic networks will be useful to both bioinformaticians who are exploring and

discovering new resources, and resource curators (e.g. in the BioCatalogue project).

Furthermore, by providing an RDF-store of extracted profiles, tools and services can be

integrated and queried together with the rest of the “bioinformatics resourceome”, in

particular as part of service/data search engines and crawlers.

One of the major issues with the literature-based approach to resource profiling is

that many resources do not appear frequently and are represented by small descriptor

sets. Therefore, we explored expanding the feature space by using the “kernel trick”

[35], where (lexical) similarity between features is taken into account when calculating

similarity between instances. The results demonstrate the potential of even simple

kernel methods (using lexical profiles) to model relatedness between resource descrip-

tors. We anticipate that further work will be required to explore the most relevant

weights for semantic descriptors to counter-balance the impact of frequent (and less

informative) features. Other kernels (such as contextual and distributional similarities,

ontology-based similarities, string kernels etc.) need to be explored and could provide

better resolution of the complex interrelationships between features (descriptors) and

consequently between bioinformatics resources. Finally, further studies would be

needed to establish which methods would be most suited in supporting resource cura-

tion and discovery tasks.

Afzal et al. Journal of Biomedical Semantics 2011, 2(Suppl 1):S4
http://www.jbiomedsem.com/content/2/S1/S4

Page 16 of 18



Acknowledgements
This work was partially supported by the UK Biotechnology and Biological Science Research Council (BBSRC) via the
BioCatalogue project and by the Science Foundation Ireland under Grant No. SFI/08/CE/I1380 (Lion-2) awarded to HA.
JE is funded by the e-LICO project (EU Grant agreement number 231519). GN was partially supported by grant
144013 (Representations of Logical Structures and their Application in Computer Science, Ministry of Science, Serbia).
This article has been published as part of Journal of Biomedical Semantics Volume 2 Supplement 1, 2011: Semantic
Web Applications and Tools for Life Sciences (SWAT4LS), 2009. The full contents of the supplement are available
online at http://www.jbiomedsem.com/supplements/2/S1.

Author details
1School of Computer Science, University of Manchester, Oxford Road, Manchester, M13 9PL, UK. 2College of
Telecommunication Engineering, National University of Sciences and Technology, Islamabad, Pakistan. 3Digital
Enterprise Research Institute, National University of Ireland, Galway, Ireland.

Authors’ contributions
HA implemented the literature mining modules; HA and JE developed and applied kernel metrics; JE performed data
analysis and evaluation; RDS and GN conceived and supervised the study. The manuscript was initially drafted by HA
and JE. All authors read and approved the manuscript.

Competing interests
The authors declare no competing interests.

Published: 7 March 2011

References
1. Nucleic Acids Research. 2009, 37(DB), (January).
2. Toolbox at the EBI. [http://www.ebi.ac.uk/Tools//].
3. Nucleic Acids Research. 2009, 37(Web Server), (July).
4. Goble CA, Belhajjame K, Tanoh F, Bhagat J, Wolstencroft K, Stevens R, Nzuobontane E, McWilliam H, Laurent T, Lopez R:

BioCatalogue: A Curated Web Service Registry for The Life Science Community. In 3rd International Biocuration
Conference 2009, Berlin Germany.

5. Wilkinson MD, Links M: BioMOBY: an open source biological web services proposal. Briefings in Bioinformatics 2002,
3:331-41.

6. Oinn T, Greenwood M, Addis M, Alpdemir N, Wroe C, et al: Taverna: lessons in creating a workflow environment for
the life sciences. Research Articles. Concurr. Comput. : Pract. Exper 2006, 18(10):1067-1100.

7. Stevens R, Robinson A, Goble C: myGrid: personalised bioinformatics on the information grid. In Bioinformatics (ISMB
Supplement) 2003, 302-304.

8. Afzal H, Stevens R, Nenadic G: Mining Semantic Descriptions of Bioinformatics Web Resources from the Literature.
Proceedings of the 6th European Semantic Web Conference on The Semantic Web: Research and Applications Heraklion,
Crete, Greece, Springer-Verlag; 2009, 535-549.

9. Eales JM, Pinney JW, Stevens RD, Robertson DL: Methodology capture: discriminating between the “best” and the
rest of community practice. BMC Bioinformatics 2008, 9:359.

10. Afzal H, Stevens R, Nenadic G: Towards Semantic Annotation of Bioinformatics Services: Building a Controlled
Vocabulary. In Proc. of the Third International Symposium on Semantic Mining in Biomedicine 2008, 5-12, Turku, Finland.

11. Wolstencroft K, Alper P, Hull D, Wroe C, Lord PW, Stevens RD, Goble CA: The myGrid Ontology: Bioinformatics Service
Discovery. International Journal of Bioinformatics Research and Applications 2007, 3:326-340.

12. Web Services at the EBI. [http://www.ebi.ac.uk/Tools/webservices/].
13. Termine Web Service. [http://www.nactem.ac.uk/software/termine/].
14. Nenadic G, Ananiadou S: Mining Semantically Related Terms from Biomedical Literature. ACM Transactions on Asian

Language Information Processing 2006, 22-43.
15. Salton G, Buckley C: Term-weighting approaches in automatic text retrieval. Information Processing and Management

1998, 513-523.
16. Shatkay H: Hairpins in bookstacks: information retrieval from biomedical text. Brief Bioinform 6:222-238.
17. Teytaud O, Jalam R: Kernel-based text categorization. In International Joint Conference on Neural Networks ,

(IJCNN’2001), Washington DC (2001).
18. Pahikkala T, Pyysalo S, Ginter F, Boberg J, Jarvinen J, et al: Kernels incorporating word positional information in

natural language disambiguation tasks. Proc. of the Eighteenth International Florida Artificial Intelligence Research Society
Conference AAAI Press; 2005.

19. Lodhi H, Saunders C, Shawe-Taylor J, Cristianini N, Watkins C: Text classification using string kernels. J. Mach. Learn
2002, 2:419-444.

20. R Development Core Team: R, a language and environment for statistical computing. R Foundation for Statistical
Computing 2009, Vienna, Austria.

21. Romesburg HC: Cluster analysis for researchers. Lulu Press, North Carolina 2004.
22. Koonin E: The Clusters of Orthologous Groups (COGs) Database: Phylogenetic Classification of Proteins from

Complete Genomes., The NCBI Handbook, Chapter 22 (NLM).
23. Cytoscape. [http://www.cytoscape.org/].
24. Vinayagam A, König R, Moormann J, Schubert F, Eils R, Glatting KH, Suhai S: Applying Support Vector Machines for

Gene ontology based gene function prediction. BMC Bioinformatics 2004, 5:116.
25. Rice S, Nenadic G, Stapley B: Mining Protein Function from Text Using Term-based Support Vector Machines. BMC

Bioinformatics 2005, 6(Suppl 1):S22.

Afzal et al. Journal of Biomedical Semantics 2011, 2(Suppl 1):S4
http://www.jbiomedsem.com/content/2/S1/S4

Page 17 of 18

http://www.jbiomedsem.com/supplements/2/S1
http://www.ebi.ac.uk/Tools//
http://www.ncbi.nlm.nih.gov/pubmed/12511062?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18761740?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18761740?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18048195?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18048195?dopt=Abstract
http://www.ebi.ac.uk/Tools/webservices/
http://www.nactem.ac.uk/software/termine/
http://www.ncbi.nlm.nih.gov/pubmed/16212771?dopt=Abstract
http://www.cytoscape.org/
http://www.ncbi.nlm.nih.gov/pubmed/15333146?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15333146?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15960835?dopt=Abstract


26. Verspoor K, Cohn J, Joslyn C, Mniszewski S, Rechtsteiner A, Rocha LM, Simas T: Protein annotation as term
categorization in the gene ontology using word proximity networks. BMC Bioinformatics 2005, 6(Suppl 1):S20.

27. Lin KHY, Hou WJ, Chen HH: Gene Ontology Annotation Using Word Proximity Relationship. In Proc. Second Int. Symp.
Semantic Mining 2006.

28. Malone BM, Perkins AD, Bridges SM: Integrating phenotype and gene expression data for predicting gene function.
BMC Bioinformatics 2009, 10(Suppl 11):S20, doi:10.1186/1471-2105-10-S11-S20.

29. Lerman K, Plangrasopchok A, Knoblock C: Automatically Labelling the Inputs and Outputs of Web Services. In
Proceedings of AAAI-2006 2006, 149-181, Boston, MA, USA.

30. Hess A, Kushmerick N: Learning to Attach Semantic Metadata to Web Services. In Proc. 2nd International Semantic
Web Conference (ISWC2003). Volume 2870/2003. Sanibel Island, Florida, USA, Springer Berlin / Heidelberg; 2003:258-273.

31. Liu W, Wong W: Discovering homogenous service communities through web service clustering. Proceedings of the
2008 AAMAS international conference on Service-oriented computing: agents, semantics, and engineering LNCS 5006,
Springer-Verlag;69-82.

32. Carman MJ, Knoblock CA: Learning Semantic Descriptions of Web Information Sources. Twentieth International Joint
conference on Artificial Intelligence 2007, 1474-1480, Hyderabad India.

33. Belhajjame K, Embury SM, Paton NW, Stevens R: Automatic annotation of Web services based on workflow
definitions. ACM Trans 2007, 2(2):1-34, Web.

34. Dong X, Halevy A, Madhavan J, Nemes E, Zhang J: Similarity search for Web services. In Proceedings of the Thirtieth
international conference on Very large data bases 2004, 30:372-383, Toronto, Canada, VLDB Endowment.

35. Shawe-Taylor J, Cristianini N: Kernel Methods for Pattern Analysis. Cambridge University Press; 2004.
36. Siolas G, d’Alche Buc F: Support Vector Machines based on a Semantic Kernel for Text Categorization. In Proceedings

of the International Joint Conference on Neural Networks. Volume 5. IEEE Press; 2000:205-209.

doi:10.1186/2041-1480-2-S1-S4
Cite this article as: Afzal et al.: Mining semantic networks of bioinformatics e-resources from the literature.
Journal of Biomedical Semantics 2011 2(Suppl 1):S4.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Afzal et al. Journal of Biomedical Semantics 2011, 2(Suppl 1):S4
http://www.jbiomedsem.com/content/2/S1/S4

Page 18 of 18

http://www.ncbi.nlm.nih.gov/pubmed/15960833?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15960833?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19811686?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15516276?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Identification of bioinformatics resources in text
	Harvesting semantic descriptors
	Semantic profiling of resources
	Linking semantically related resources
	Method 1: lexical comparison of resource names
	Method 2: shared descriptors
	Method 3: lexical similarity of shared descriptors


	Results
	Data
	Exploration of Semantic Networks of Bioinformatics Resources

	Discussion
	Related work

	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

