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Abstract

Background: Key to the success of e-Science is the ability to computationally
evaluate expert-composed hypotheses for validity against experimental data.
Researchers face the challenge of collecting, evaluating and integrating large
amounts of diverse information to compose and evaluate a hypothesis. Confronted
with rapidly accumulating data, researchers currently do not have the software tools
to undertake the required information integration tasks.

Results: We present HyQue, a Semantic Web tool for querying scientific knowledge
bases with the purpose of evaluating user submitted hypotheses. HyQue features a
knowledge model to accommodate diverse hypotheses structured as events and
represented using Semantic Web languages (RDF/OWL). Hypothesis validity is
evaluated against experimental and literature-sourced evidence through a
combination of SPARQL queries and evaluation rules. Inference over OWL ontologies
(for type specifications, subclass assertions and parthood relations) and retrieval of
facts stored as Bio2RDF linked data provide support for a given hypothesis. We
evaluate hypotheses of varying levels of detail about the genetic network controlling
galactose metabolism in Saccharomyces cerevisiae to demonstrate the feasibility of
deploying such semantic computing tools over a growing body of structured
knowledge in Bio2RDF.

Conclusions: HyQue is a query-based hypothesis evaluation system that can
currently evaluate hypotheses about the galactose metabolism in S. cerevisiae.
Hypotheses as well as the supporting or refuting data are represented in RDF and
directly linked to one another allowing scientists to browse from data to hypothesis
and vice versa. HyQue hypotheses and data are available at http://semanticscience.
org/projects/hyque.

Background
With the advent of high-throughput technologies, there is an abundance of indepen-

dent data such as gene and protein sequences, gene expression data, protein structures,

protein interactions and annotations. At the same time, there is a shortage of tools and

methods that can handle the task of integrating this information and allow a scientist

to draw meaningful inferences. A significant amount of time and energy is spent in

merely locating and retrieving information, rather than thinking about what that infor-

mation means. There is an acute need to create tools for thought, which enable
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scientists to ask “what if” questions about a system, form explanations, and make and

evaluate predictions [1]. It is clear that biomedical computing must evolve to address

the growing disparity between the massive production of data and the small amounts

of knowledge being extracted from this data.

Advancing knowledge in the biological sciences involves experimentally testing

hypotheses and interpreting the results based on prior scientific work; as a result,

research biologists must carry out the intensive tasks of collecting, evaluating and inte-

grating large amounts of different kinds of information about organisms, cells, genes

and proteins to generate a hypothesis about relationships that exist in the biological

system under study. Once a hypothesis is generated, the next challenge is to evaluate

the hypothesis with respect to what is already known and to design related experi-

ments to test the hypothesis. Researchers face the challenge of seeking out new, rele-

vant information online along with managing and interpreting volumes of

experimental data.

The current methods in biomedical informatics that attempt to tackle the informa-

tion integration task can be grouped into two coarse categories: 1) data-centric meth-

ods, where quantitative methods are used to spot trends and patterns in large datasets;

and 2) knowledge-centric methods, where formal knowledge management methods are

used to reason about a biological system to guide further exploration. Semantic Web

technologies are emerging as the key enabling technology to bridge these two cate-

gories and begin to address the data-knowledge gap [2-4].

The Semantic Web facilitates knowledge representation, information sharing and

data integration in a distributed, decentralized manner, through a standard set of lan-

guages and protocols. The Resource Description Framework (RDF) offers a simple but

powerful representation mechanism for the Semantic Web, where facts are represented

as collections of subject-predicate-object triples which can be typed by taxonomically

organized vocabularies. Just as databases can be queried using SQL, RDF can be quer-

ied through the SPARQL Protocol and RDF Query Language (SPARQL) in a manner

that allows access to distributed resources on the Web at query time. As a major

linked data initiative, the Bio2RDF project exemplifies this approach by providing

nearly 30 billion triples of life science data through a globally redundant and distribu-

ted set of SPARQL endpoints [5][6]. RDF specifies a highly flexible, but limited voca-

bulary in comparison to the Web Ontology Language (OWL2) which provides

expressive elements such as existential and universal quantifiers, qualified cardinality

restrictions, class constructors (union, disjunction), and object properties. Expressive

OWL ontologies have been used to form the basis for developing reasoning-capable

knowledge bases [7], including genomic knowledge found in the Saccharomyces Gen-

ome Database (SGD) [8] and the pharmacogenomics of depression as found in curated

articles highlighted by the Pharmacogenomics Knowledge Base [9].

Our previous research towards bridging the data-knowledge gap led to the develop-

ment of the HyBrow hypothesis browser [10], which is a prototype system for formaliz-

ing and testing working hypotheses about gene regulation pathways. To demonstrate

the proof-of-concept of these methods, we used the yeast galactose metabolic and reg-

ulatory network (GAL) [11]. HyBrow allows a user to express hypotheses about galac-

tose metabolic regulation in yeast and to test their hypotheses against a small
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knowledge base about the GAL system, including knowledge derived from the litera-

ture as well as promoter binding site and gene expression data [10].

Related research efforts include work in generating and formally representing biolo-

gical hypotheses and in formally evaluating hypotheses using experimental data. Tran

et al.[12,13] developed a formal representation for hypotheses about cellular signalling,

and demonstrated the use of abductive reasoning to formulate hypotheses about p53

regulation of tumour suppression. An important contribution of this work is the use of

a representation language that facilitates non-monotonic reasoning, which was not pos-

sible with previous research in biological hypothesis representation such as HYPGENE

[14][15], HinCyc [16] and GenePath [17]. Adam the Robot Scientist [18], a combina-

tion system for carrying out automated wet lab experiments and reasoning over

hypothesis spaces, uses abductive reasoning to develop hypotheses and deductive rea-

soning to test them. The Robot Scientist also uses a formal representation of hypoth-

eses [19]. Tari et al.[20] developed a system that combines natural language processing

of Medline abstracts with a formal representation for drug-drug interactions (DDIs) in

order to identify potentially undiscovered DDIs. Their system allows for the formula-

tion of hypothetical drug interactions and subsequent evaluation using drug interaction

statements extracted from Medline abstracts and DrugBank. Riboweb [21][22] is a

similar system that allowed the representation of scientific data about ribosomes in a

formal machine understandable manner, and allowed users to evaluate models of ribo-

somes. A more general system for evaluating hypotheses was developed by Gershman

et al. [23], using Bayesian reasoning to evaluate hypotheses in the context of known,

but incomplete data. Motivated by the HyBrow prototype system and the application

of knowledge representation and Semantic Web technologies to life science problems,

we present HyQue—a Semantic Web tool for querying scientific knowledge bases for

the purpose of evaluating user submitted hypotheses. HyQue features a flexible knowl-

edge model to accommodate diverse hypotheses structured as events and represented

using Semantic Web languages (RDF/OWL). Hypothesis validity is evaluated according

to experimental and literature-sourced evidence through a unique combination of

automatically generated SPARQL queries and domain specific evaluation rules. Infer-

ence over OWL ontologies (for type specifications, subclass assertions and parthood

relations) and retrieval of facts stored as Bio2RDF linked data provide support for a

given hypothesis. Unlike HyBrow, this system is capable of executing queries where

participating entities or event types are underspecified or completely unspecified, thus

opening the door to a significantly wider range of hypothesis evaluation. In addition,

hypotheses as well as the supporting or refuting data are represented in RDF and thus

directly linked to one another allowing browsing from data to hypothesis and vice

versa.

The work presented here is intended to demonstrate a framework for automatically

performing information integration for the purpose of hypothesis evaluation. HyQue is

applied to the GAL gene network domain as an exemplar, to describe the kinds of

hypotheses and questions that can be posed over knowledge about such as system.

This example application is relevant because it demonstrates a formal and computa-

tional evaluation of the kinds of hypotheses and queries that are typically of interest to

molecular biologists and which often require significant manual effort to answer. The

application of HyQue to the GAL network in Saccharomyces cerevisiae is further
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relevant because the galactose network is a pathway that has been the focus of inten-

sive research to fully elucidate its genetic and molecular regulation. Focusing our effort

on representing the results of this well-studied research area in a consistent and

machine understandable manner and performing question answering as well as

hypotheses evaluation allows us to demonstrate the capabilities of the HyQue infra-

structure in a data-rich environment.

Methods
PHP scripts were developed for converting S. cerevisiae GAL gene network knowledge

to a linked data format and also for performing hypothesis evaluation, using ARC2 for

RDF processing and SPARQL result processing. Information about the HyQue project,

including data and SPARQL endpoint(s) is available at the HyQue site, http://seman-

ticscience.org/projects/hyque.

Knowledge Base Design and Creation

A key component of the HyQue system is the HyQue Knowledge Base (HKB) over

which hypothesis-evaluating queries can be posed. The HKB was constructed from two

main sources:

1. The manually curated S. cerevisiae galactose gene network data from [10] which

includes data about the following seven event types:

1. protein-protein binding

2. protein-nucleic acid binding

3. molecular activation

4. molecular inhibition

5. gene induction

6. gene repression

7. transport

These event types describe the majority of cellular events and interactions in the

Gene Ontology (except catalysis). This data was converted to RDF (N3 serialization)

using Bio2RDF identifiers and typed with the following public biomedical ontologies:

- Gene Ontology (GO): cellular components, events (e.g. ‘nucleus’, ‘positive regula-

tion of gene expression’)

- Evidence Codes Ontology (ECO): the type of evidence supporting an event (e.g.

‘electronic annotation’, ‘direct assay’)

- Sequence Ontology (SO): event participants (e.g. ‘gene’)

- Chemical Entities of Biological Interest (CHEBI)Ontology: event participants (e.

g. ‘protein’, ‘galactose’)

2. S. cerevisiae gene and gene product information from the Saccharomyces Genome

Database (SGD). We extended the yOWL knowledge base [8] to provide more granular

information about S. cerevisiae genes and gene products. In particular, yOWL now

assigns Sequence Ontology (SO) terms to chromosomal features and distinguishes

gene products from genes, unlike the SGD. Gene products now have identifiers created

by appending ”gp” to the SGD identifier (e.g. sgd:S000002430 ® sgd:S000002430gp)

and are typed as ‘protein’ (CHEBI:36080) or ‘RNA’ (CHEBI:33697) as appropriate.

Gene products are then associated with function, localization, processes, complexes,

and physical interactions. If the gene product corresponds to a protein, then we make
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the gene product identifier equivalent (using owl:sameAs) with the derivative preferred

and standard names (e.g. YDR023W ® Ydr023wp; SES1 ® Ses1p), along with protein

identifiers from other databases. Thus, genes are associated only with information

about the gene products they encode, chromosomal location, genetic interactions, phe-

notypic experiments, and corresponding/identical genes described in other databases.

Querying the HKB to evaluate hypotheses

Representing hypotheses in HyQue

Hypotheses are first formulated using the HyQue Hypothesis Ontology. A hypothesis

consists of one or more events in which the participating entities (and, optionally, the

physical location and genetic perturbation context) are specified. Complex hypotheses

can be specified by logically combining the events using the AND, OR and XOR

operators, potentially leading to nested events e.g. A AND (B OR C). The AND opera-

tor indicates that multiple events must be satisfied for the hypothesis to be satisfied. In

contrast, the OR operator simply indicates that if any of the specified events are true,

they will satisfy the hypothesis. This may be appropriate when multiple mechanisms

are possible, such as a phenotype resulting from the activation of more than one path-

way. Finally, XOR operator stipulates that only one of the events must be true, else

they are both false. For instance, one might hypothesize that a protein is either

involved in gene regulation either as a nuclear-bound transcription factor or as a mem-

brane-bound signal receptor, and clearly both cannot be true.

Evaluating hypotheses using HyQue

Hypotheses are evaluated by identifying relevant experimental data from the HyQue

Knowledge Base. First, a SPARQL construct query is automatically generated from the

input hypothesis using a query template that corresponds to one of the 7 defined event

types. Second, the SPARQL query is executed against the HKB (currently a Virtuoso

triple store) and the results are captured as an RDF graph. Finally, the RDF graph is

analyzed by executing the scoring rules to calculate a set of scores for each part of the

hypothesis, followed by determining the overall score for the entire hypothesis.

Execution of the SPARQL queries results in a set of triples that are processed to

identify experimental evidence that best supports the hypothesis. Each hypothesized

event is independently evaluated in order to quantify the degree of support it lends to

the hypothesis. HyQue combines the individual event scores based on the operators

between events (AND – add scores; OR – select maximum score; XOR – use single

event score). Since events may be nested e.g. A AND (B OR C), nested event operators

are evaluated first, followed by outermost operators, from which the final score is

obtained. In cases where there is no or insufficient information to either support or

refute a hypothesized event or set of events, the system declares these as ‘undecidable’,

thereby rendering a conjunctive clause with an undecidable event as undecidable.

Event scores are determined from scoring rules. A scoring rule assesses deviations

from the ‘ideal’ event that would provide maximum experimental support to the

hypothesized event; they are based on expert knowledge. Deviations reduce the score

assigned to the hypothesized event. Explicit contradictions, such as data indicating that

a hypothesized event does not occur, receive a higher penalty than other deviations,

such as data indicating that an event occurs in a different cellular location than that

specified in the hypothesis. The rules used by HyQue for evaluating experimental GAL
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system data are primarily based on those developed for HyBrow, but modified to use

knowledge represented in relevant bio-ontologies (GO, CHEBI etc.). The score for each

event is represented as a fraction of the maximum score possible in order to normalize

the score across event types with differing amounts of information available in the

HKB. In the case of multiple data supporting an event, the data which contributes the

maximum score is selected and linked to the hypothesized event.

To illustrate the nature of rule sets, consider the ‘induce’ rule set, based on [10].

Matching annotations for molecule type, functionality and localization increase the

score while non-matching annotations decrease the score:

1. If actor is of type ‘protein’ (CHEBI: 36080) or ‘RNA’ (CHEBI:33697) add 1 to

score; else subtract 1

2. If target is of type ‘gene’ (SO:0000236) add 1 to score; else subtract 1

3. If actor has function ‘transcription factor activity’ (GO:0003702) add 1 to score

4. If event location is ‘nucleus’ (GO:0005634) add 1 to score; else subtract 1

5. If the relationship between the actors is ‘induce’ add 1 to score; else subtract 1

6. If the hypothesized event is negated in the HKB, subtract 2 from score

While we have not done so for the ‘induce’ rule set (because the data does not sup-

port this annotation), the source of experimental evidence may also be specified in the

scoring rule using the evidence code ontology (ECO). For example, data collected from

a wet-lab experiment may be considered to have more weight than a database annota-

tion whose source cannot be verified, and this can be incorporated into the hypoth-

esis-evaluation process. Evidence types with greater validity contribute more to a score

than weaker evidence types.

Representing hypothesis evaluations

Hypothesis evaluations are also specified using the HyQue Hypothesis Ontology. Each

instance of HyQue evaluation data is about a hypothesis, and has part an overall

hypothesis score. The overall hypothesis score has as its parts combined event scores

and/or maximum event scores. These scores are typed depending on how they are cal-

culated, e.g. a maximum event score is a score calculated by selecting the highest value

of a set of possible event scoresabout events that are related by the OR operator, while

a combined event score is a score calculated by combining the event scores of several

events related by the AND operator. Combined or maximum event scores have indivi-

dual event scores as their parts. Event scores are derived from rule scores, which have as

their parts other rule scores that correspond to individual rules. Finally, rule scores are

about the data upon which the rule was executed. In this way, hypotheses are linked

to both the rules used to evaluate them and the data upon which their evaluation

score is based. The HyQue namespace is used for all type declarations relevant to eva-

luations such as score types and hypotheses. The HyQue Data namespace is used for

all data resulting from and contributing to evaluation – actual score values, evaluation

instances and experimental data.

Results
Hypothesis evaluation

HyQue is currently implemented over a prototype knowledge base (HKB) consisting of

information about the galactose metabolism gene network. Using this prototype knowl-

edge base, HyQue can evaluate seven common biochemical events (protein-protein
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interactions, protein-nucleic acid interactions, activation, inhibition, gene induction,

gene repression and transport) under specific conditions and in specific cellular envir-

onments. We have formulated a series of hypotheses about these types of events. We

present two of these hypotheses with their evaluations here, and have made the

remainder available at the HyQue website, http://semanticscience.org/projects/hyque.

The first hypothesis considers the induction of gene expression by the proteins

Gal3p, Gal4p and Gal80p, which are known to play a regulatory role with respect to

the genes that control the conversion of galactose to glucose-6-phosphate [11]. The

hypothesis is composed of three parts of increasing complexity, all connected by the

‘OR’ relation, which indicates that they can be evaluated independently. The hypothesis

is expressed in natural language (with event numbers en for reference) and then step-

wise evaluated, with the evaluation rationale explained.

Hypothesis

e1 (Gal4p induces expression of GAL1)

OR

e2 (Gal3p induces expression of GAL2

e3AND Gal4p induces expression of GAL7)

OR

e4 (Gal4p induces expression of GAL7

e5AND Gal80p inhibits production of Gal4p

when GAL3 is over-expressed

e6 AND Gal80p induces expression of GAL7)

The first event, e1, describes the induction of GAL1 gene expression by Gal4p and is

therefore an event of type ‘induce’. The event is evaluated as follows, using the ‘induce’

rule set (specified in the Methods) over the data obtained from a ‘induce’ specific

SPARQL query to the HKB.

1. Actor of type ‘protein’: yes -> +1

2. Target of type ‘gene’: yes -> +1

3. Actor has function ‘transcription factor activity’: no -> 0

4. Event location is ‘nucleus’: yes -> +1

5. Logical operator is ‘induce’: yes -> +1

6. Event negated in published literature: no -> 0

Thus, the e1 event obtains 4 out of a maximum of 5 points, and receives a score of

0.8. Events e2, e3, and e4 are also ‘induce’ events and are evaluated using the ‘induce’

rule set, each obtaining a score of 0.8. However, e5 is ‘undecidable’ because the HKB

does not contain data that states that Gal80p inhibits Gal4p when GAL3 is over-

expressed. Since e5 is undecidable and e4, e5 and e6 are related by the ‘AND’ operator,

this third entire event set is deemed undecidable. Thus, the overall hypothesis score is

based on the scores for the event set consisting only of e1, and the event set consisting

of e2 + e3. Since the event set composed of e2 + e3 receives the highest score of 1.6

(0.8+0.8), the final hypothesis score is 1.6. This score also indicates that the hypothe-

sized events e2 + e3 have the strongest experimental support.

Another common biological phenomenon that can be evaluated by HyQue is the

intracellular transport of molecules. The accepted model of the GAL system indicates

that protein products of the GAL2 gene are responsible for transporting galactose into

cells. This can be represented as a HyQue hypothesis (Table 1) for evaluation.
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Evidence for this transport event is obtained from HKB using the ‘transport’ SPARQL

query template and subsequently evaluated using the ‘transport’ rule set.

Partial results (represented as RDF by HyQue) of the HyQue evaluation are illustrated

in Figure 1. The hypothesized transport of galactose by GAL2 protein product has

strong experimental support [24], resulting in a hypothesis score of 1. Further explora-

tion of the data used to evaluate the hypothesis may be accessed at its corresponding

Bio2RDF URI: http://bio2rdf.org/hybrow:4730296b268ba03421d4a23ae449c8d9.

This example demonstrates that the methodology developed for hypothesis evalua-

tions in HyQue correctly interprets experimental data and generates evaluations that

are consistent with the current understanding of the GAL system as published in the

literature. Four additional GAL system hypotheses representative of other commonly

investigated cellular events and their evaluations are also described at the project web

site.

Table 1 RDF representation of a hypothesis about galactose transport

@prefix : <http://bio2rdf.org/hyqueData:transport_example_>> .

@prefix hyque: <http://semanticscience.org/ontology/hyqque.owl#> .

@prefix hybrow: <http://semanticscience.org/onttology/hybrow#> .

@prefix xsd: <http://www.w3.org/2001/XMLSSchema#> .

:h a hyque:HYPOTHESIS_0000009 ;

        a hyque:HHYPOTHESIS_0000007 ;

        hyque:HYPOTHESIS_0000022 :p1 ..

:p1 a hyque:HYPOTHESIS_0000007 ;

        hyque:HYPOTHESIS__0000022 :e1 .  

:e1 a <http://bio2rdf.org/go:0006810> ;

         a hyque:HYPOTHESIS_0000000 ;

        hybrow:HYBROW_00000000 <http://bio2rdf.org/sgd:Gal2p> ;

        hybrow:HYBRROW_0000001 <http://bio2rdf.org/chebi:28260> ;

        hybrrow:HYBROW 0000003 0 xsd:boolean ._  " "^^

HyQue ontology classes / relations

hybrow:HYBROW_0000000 = a‘ cctor

hybrow:HYBROW_0000001 = target

hybrow:HYBROW_000000

’

‘ ’

33 = is negated

hyque:HYPOTHESIS_0000000 = event

hyque:H

‘ ’

‘ ’

YYPOTHESIS_0000007 = XOR

hyque:HYPOTHESIS_0000009 = hypo

‘ ’

‘ tthesis

hyque:HYPOTHESIS_0000022 = has part

’

‘ ’

External bio ontology terms-

go:0006810 = transport

sgd:Gal

‘ ’

22p = GAL2 protein

chebi:28260 = galactose

‘

‘

’

’
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Hypothesis evaluation results

Figure 1 shows details of how the evaluation results for the galactose transport hypoth-

esis are linked to experimental data from the HyQue Knowledge Base. The overall eva-

luation result for the hypothesis (in white) is linked to the scoring of the hypothesis (in

blue) by the ‘has part’ relation. The score is further broken down into the partial

scores, which are composed of individual event scores. Scores are related to experi-

mental data (in grey) using the relation ‘is about’. Experimental data is composed of

results from the literature which describe interactions and have actors and targets that

are typed, in this example, using the CHEBI ontology. It can be seen that a user can

browse from the hypothesis instance to the GAL data and vice versa.

Question answering using HyQue

In addition to evaluating hypotheses as described above, it is also possible to pose

queries to the HKB that represent questions about single events or entities that meet a

set of specified criteria. For example, consider the query for retrieving all proteins that

bind to the promoter region of the GAL1 gene. In this case the protein entities are

unknown in advance and are instead specified in the corresponding SPARQL query as

an unbound variable (see Table 2). Similarly, the context in which the promoter bind-

ing events occur is unknown, but can be retrieved by assigning it to an unbound vari-

able. The result for such a query is shown in Table 3. It can be seen that three entities

are known to bind to the promoter of the GAL1 gene in wild-type yeast. As can also

be seen in Table 3, for certain event types such as “promoter binding”, the type of the

Figure 1 A representation of the RDF output describing the evaluation of the galactose transport
hypothesis. The figure shows how evaluation results are linked to the experimental data used to support
the hypothesis. Rounded rectangles with solid lines are class instances; rounded rectangles with dotted
lines are ontology classes; rectangles are literals. The grey section shows the experimental GAL system data
(from the HKB) used to evaluate the hypothesis, including source literature. The blue section shows the
scores resulting from evaluating the galactose transport hypothesis. The white section shows the
summarized evaluation results (decidable, with the overall score). ‘hq:’ is the HyQue namespace; ‘hqD:’ is
the HyQue Data namespace; ‘sgd:’ is the Saccharomyces Gene Database namespace; ‘chebi:’ is the CHEBI
namespace.
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evidence that supports a hypothesized event differs. For example, some data in the

HKB is evidenced by the results of experimental assays while other data is evidenced

by annotations in other databases. As described in the Methods, these two types of evi-

dence have different ‘strengths’ in the context of determining the likelihood of a

hypothesized event.

HyQue Hypothesis Generation Interface

While Semantic Web technologies such as RDF, OWL and SPARQL enable program-

matic methods to create or query data, the manual composition of hypotheses in RDF

is challenging. In order to facilitate the composition of hypotheses by biologists and

biochemists, we have developed a prototype tool for generating hypotheses, available at

Table 2 SPARQL query for proteins that bind to the GAL1 promoter region

define input:same-as "yes" 

PREFIX rdf: <http://www.w3.org/11999/02/22-rdf-syntax-ns#> 

PREFIX hybrow: <http://bio2rdf..org/hybrow:> 

select DISTINCT *

where { 

?event rdfs:label ??label . 

?event rdf:type <http://bio2rdf.org/go:0010843> ..

?event hybrow:is_negated "0" . 

?event hybrow:agent_a ?acttor . 

?actor rdf:type <http://bio2rdf.org/chebi:36080> . 

??event hybrow:agent_b <http://bio2rdf.org/sgd:GAL1> . 

?eveent hybrow:agent_b ?target . 

FILTER regex(str(?target), "GGAL1$") . 

?event hybrow:perturbation_context ?pert_contextt . 

}

External bio - ontology terms

go : 00010843 ’promoter binding’

c

=
hhebi : 36080 ’protein’

sgd : GAL1  ’GAL1’

=
=

Table 3 Results of a SPARQL query for proteins that bind to the GAL1 promoter region

Actor Target Perturbation Context Evidence Type

http://bio2rdf.org/sgd:Mig1p http://bio2rdf.org/sgd:GAL1 wt

http://bio2rdf.org/sgd:Spt15p http://bio2rdf.org/sgd:GAL1 wt eco:0000008

http://bio2rdf.org/sgd:Gal4p http://bio2rdf.org/sgd:GAL1 wt
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http://semanticscience.org/projects/hyque/build.html. The interface makes it possible

to define individual events and combine them to express a more sophisticated hypoth-

esis. The resulting RDF can then be used as input to HyQue.

Discussion
From HyBrow to HyQue: Steps forward

A central aspect of HyQue is that the input (hypothesis), background knowledge

(ontologies), data (conditional events, genes, proteins, etc.), queries, and outputs

(scores) may be specified using Semantic Web technologies (OWL, RDF, SPARQL).

Thus, it becomes possible to seamlessly navigate these heterogeneous different data

sources when they are identified by unique dereferenceable URIs. Moreover, with

hypotheses and their evaluations as Linked Data, it becomes possible to not only

explore which data serve as the basis for hypothesis scores, but also which data serve

as evidence for evaluated hypotheses. Users can explore the underlying evidence for

their submitted hypotheses or identify which hypotheses are supported by some given

data of interest, which was not possible in the HyBrow prototype.

SPARQL is a powerful graph-based language that enables the querying of specific

individuals or a collection of individuals by reasoning about their type or by a set of

relations or attributes that the members must hold. Hence, individual entities may be,

but need not be explicitly specified in the query, and this feature alone differentiates

the approach from that of the hard-coded rules in HyBrow [10]. Moreover, simple rea-

soning may be invoked to identify individuals that are sub-sets of the specified types.

For example, one can ask for all proteins that bind to the promoter region of the

GAL1 gene, with an optional clause for some associated conditions, such as the pre-

sence of galactose. In this case, the query is specified as a restriction on the type of

entity participating in an event, rather than on the specific instance. Even more

broadly, a query to identify ‘RNA’ will not only identify those molecules that are anno-

tated as RNA, but will also identify those individuals that belong to more specific types

such as ‘messenger RNA’, provided that sub-types are correctly specified in the type

hierarchy of some ontology (e.g. the Sequence Ontology).

Lastly, and perhaps most importantly, the hypotheses presented here would require

significant manual effort by a scientist to evaluate using existing experimental data,

because of the complex coordination of data required. As the number of clauses in a

hypothesis increases, the number of ways in which they can be combined and evalu-

ated also quickly increases. A scientist undertaking the task of manual hypothesis eva-

luation would have to evaluate each combination in isolation and determine which

represented the best support for the hypothesis. HyQue is able to automatically com-

bine user-specified clauses with an event-specific template SPARQL query and then

evaluate the query results in light of the type(s) of events contained in the hypothesis,

where the event types are derived from shared bio-ontologies such as the Gene Ontol-

ogy. The scientist may then explore how experimental data was used by HyQue to pro-

vide support/non-support for the submitted hypothesis by browsing the linked data

(Figure 1), a high-level task more appropriately left to investigators.
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HyQue and related systems

In the HyQue system we specify the biologist’s notion of a hypothesis about a biologi-

cal system using a formal language that represents the entities participating in a biolo-

gical system (such as a pathway) and the relationships among them, in a manner

similar to that adopted by HyBrow [25,26]. By using a formal language comprised of

biological entities and explicit relationships among them, we can create an interpreta-

tion—a hypothesis that instantiates certain relationships between entities—that depicts

a given biological system in a manner that satisfies the data at hand. This interpreta-

tion may then be evaluated by reasoning about its parts, as described in the Methods.

In contrast, the formalized hypothesis representation [19] used by Adam the Robot

Scientist [18] is minimal in terms of semantics, and does not play a key role in the rea-

soning carried out by the system. It is used to express subclass relationships between

different levels of hypotheses, but not to evaluate the hypotheses themselves. Instead,

the Robot Scientist uses abductive reasoning to identify hypothesis spaces and to

develop hypotheses as explanations for observed results from the experiments it carries

out. Indeed, the primary difference between the Robot Scientist and HyQue is that the

Robot Scientist abductively generates hypotheses based on its knowledge base while

HyQue uses experimental results to evaluate user-generated hypotheses and identify

statements of support or contradiction for them.

While other approaches [12,13] to hypothesis formulation and evaluation enable

complex reasoning, they do not support easy access by scientists or publication on the

Web as is possible with HyQue through its implementation of Semantic Web technol-

ogies. Indeed, the potential offered by the Semantic Web is particularly promising for

applications such as HyQue, which emphasize re-use of data, explicit descriptions of

assertions and knowledge, and online availability.

Linked data, nanopublications and the future of HyQue

Using linked open data creates new opportunities for knowledge discovery in terms of

ease of access, de-centralized publication of data, and new inferences from the integra-

tion of distributed data. The Semantic Web provides a set of standards for knowledge

management and reduces the high barrier in normalizing heterogeneous data to a

common and machine interpretable syntax and semantics. Perhaps more significant is

that because linked data can be independently curated and published, it provides a

scalable framework to vastly increase the knowledge space for evaluating hypotheses.

Moreover, due to the continuous expansion of Bio2RDF (now serving over 40 billion

triples) through user contributed content, the total amount of information available is

expected to increase considerably in the coming years; which will increase the scope of

hypothesis testing to new domains, such as pharmacogenomics or drug discovery.

Using event specific SPARQL construct statements for retrieving hypothesis evalua-

tion results makes hypothesis evaluation more efficient than that originally described

in [27] in that any information retrieved by a SPARQL query that is not required for

evaluating the hypothesis is not passed to the evaluation engine. In addition, the use of

construct statements to generate evaluation results as RDF means that the underlying

data and scores of hypothesis evaluations can be directly linked to the user-generated

hypotheses and the Bio2RDF linked data used as the basis for the evaluation. This

approach for representing experimental and literature-derived knowledge as linked
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data provides functionality for exploring hypotheses and the data that supports them.

Because linked data provides a reciprocal relationship so that one can explore incom-

ing and outgoing links, scientists browsing the raw linked data may become aware of

theories submitted by others that are supported by the experimental data of interest to

them. HyQue’s hypothesis-based queries can also be used to track the types of data

scientists are using to support their hypotheses. This could lead to a system in which

‘well-used’ but not exhaustively validated data is flagged for further experimental eva-

luation to increase its credibility for providing hypothesis support. Conversely, hypoth-

eses posed to HyQue that have no candidate supporting data can act as a seed for

novel biological studies. We outline such a system in Figure 2.

As scientists use and contribute to HyQue, individual facts in the HyQue Knowledge

Base also have the potential to become cardinal assertions, based on their usage in sup-

porting or refuting hypotheses. Cardinal assertions and nanopublications [28] are

related concepts that have been developed by the Concept Web Alliance to envision a

future where individual statements can be published (nanopublications) and gain sup-

port based on the usage of those statements by the community, thus becoming cardi-

nal assertions [29]. Such assertions would be expressed in RDF, potentially as named

graphs. Key to the credibility of cardinal assertions and nanopublications is the related

expression of their context, something that HyQue achieves in its event-based

Figure 2 A schematic of the future HyQue platform. A user formulates a hypothesis using terms from
the hypothesis ontology (top left), which is converted to a corresponding SPARQL query (upper center).
Evaluation rules are applied the data retrieved by the SPARQL query (lower center) to generate scores of
support and contradiction. The user is presented with an overview of the data used to evaluate the
hypothesis along with support/contradict scores (bottom left). Hypotheses, data and evaluations are
contributed to the HyQue archive.
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framework that describes interacting entities and also the conditions under which they

interact (or do not interact).

Scoring and its effect on hypothesis evaluation in HyQue

The rule sets currently used by HyQue are empirical, and based on previously existing

rules in the HyBrow system. In translating these rules for HyQue and using them to

score hypotheses, a number of discussion points about the HyQue scoring system have

come to light. The current HyQue scoring system favours hypotheses that are com-

posed of multiple events, because if those events are partially supported by existing

experimental data in the HKB, the hypothesis will receive a higher score than if a

hypothesis consisting of a single event was fully supported. On the other hand, hypoth-

eses that are composed of multiple events such as the final part of the hypothesis

described in the Hypothesis evaluation section, are more likely to be ‘undecidable’ or

to have less support because they require more experimental data to be evaluated. An

alternative scoring system based on determining the mean of event scores as opposed

to their sum would have the opposite effect, where simpler hypotheses would be

favoured. In a scenario where scientists pose competing hypotheses and where the

score assigned to the hypothesis by HyQue plays a role in deciding whether the

hypothesis is experimentally tested and/or accepted by the community, decisions about

the scoring system will become increasingly important. Currently we are far from that

state and intend to explore the effect of alternative scoring schemes on hypothesis eva-

luation in future work. It may also be the case that one rule set and scoring system

used to evaluate hypotheses by one scientist may not be deemed appropriate by

another scientist, thus requiring additional rule sets to take into account multiple

research contexts.

Representing negation in HyQue

In HyQue, events that are known not to occur are captured by asserting FALSE for the

boolean “is negated” datatype property. While languages such as OWL2 have built-in

expressions for negation that can be used in automated reasoning, the problem is that

OWL is a monotonic language and the knowledge base cannot have both a statement

that is asserted to be true and false at the same time. To reason over an OWL knowl-

edge base containing contradicting statements would require that the contradictions be

removed or the corresponding ontology be repaired. Thus, the approach taken here

allows statements about the existence or lack of existence of an event having identical

conditions to be represented and subsequently queried.

Scalability

Using RDF and related Semantic Web technologies facilitates constant updating of the

HyQue Knowledge Base. New data and facts can always be added to the existing sys-

tem, without having to change how previously contributed information is represented

or stored. This has been identified as a key property of systems for knowledge repre-

sentation and question answering in this domain [2,13]. The current version of HyQue

uses a knowledge base that includes the entirety of the SGD data from Bio2RDF, the

Gene Ontology, ChEBI, ECO and SO, in addition to data specific to the GAL system.

The HKB is hosted using the OpenLink Virtuoso triple store platform. As the
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underlying knowledge bases increase in size as well as complexity, as the evaluation

approaches become more customizable, and as the system becomes applicable to mul-

tiple domains (see Future Work), HyQue’s performance will largely depend on the per-

formance of triple store software employed. In addition to simply addressing size

requirements as Bio2RDF continues to grow, the reasoning capabilities of triple store

platforms will also present a significant performance factor as HyQue must be able to

execute SPARQL queries with potentially complex reasoning corresponding to the type

hierarchies and axiomatic restrictions of complex ontologies.

Future Work

We intend to expand the domains to which HyQue is applicable beyond that of the

yeast galactose gene network. To achieve this goal, several developments will be

required, some of which are currently underway. Successful application to other

domains will require scientists to curate their own experimental data and contribute

domain specific knowledge bases. Bio2RDF currently contains knowledge from

approximately 1600 datasets, and is growing steadily. There are also a number of other

online resources that provide data usable by HyQue, including the NCBI and NCBO’s

BioPortal. Computational approaches for extracting statements from scientific articles

and contributing them to knowledge bases must be developed. There already exists a

significant amount of research activity in biological/biomedical text processing and

information extraction. There are existing tools such as BANNER [30], BioInfer [31],

GeneWays [32], and Textpresso [33], which can be leveraged in developing approaches

for extracting knowledge from scientific text and contributing it to HyQue. However,

we realize that adapting a text-mining tool developed for one domain area (e.g. Text-

presso for C. elegans) to another scientific domain is a non-trivial and time consuming

task. Finally, knowledge about the provenance of biological data is currently missing

from Bio2RDF and the HKB. Provenance in this case refers to both the source of data

contributed to Bio2RDF (such as who contributed it and when) and the experimental

conditions under which experimental data was generated. For example, a yeast two-

hybrid assay indicating that two proteins bind is not completely reliable because it

does not indicate the stoichiometry of the binding interaction. Provenance is accounted

for to some extent by using the Evidence Codes Ontology (ECO), but the granularity

of ECO is limited. The Ontology for Biomedical Investigations (OBI) [34] addresses

this issue to a greater extent, with classes down to the level of specific assays, types of

measurement values, and the relationships between these entities. The addition of such

information both retroactively where possible and with future data contributions to

Bio2RDF will allow a more sensitive evaluation of hypotheses that can include the

quality of the chain of evidence leading to the evaluation.

As the domains HyQue can be applied to increases, so too must the rule sets and

scoring approaches that are used to evaluate hypotheses in the context of data and

knowledge. Not only will new rule sets need to be created for new domains, but users

should also be able to design and contribute their own rule sets for evaluating hypoth-

eses. We intend to develop such a system for HyQue, where rule sets can be provided

by users and also contributed to the HyQue archive.
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Conclusions
We have described HyQue, a Semantic Web tool for querying scientific knowledge

bases and evaluating biological hypotheses. Currently our system uses a knowledge

base that includes background knowledge about the yeast galactose gene network, the

proteins and genes that make up this network and the types of biological events these

entities are known to participate in. The knowledge base is queried using SPARQL,

and queries may include reference to instances or types. Query results are evaluated in

reference to the logical structure of a hypothesis to calculate a score indicating the

level of support the data lends to the hypothesis. The event-based queries that evaluate

hypotheses make use of bio-ontologies (GO, CHEBI, ECO, SO) to retrieve results at

varying levels of specificity via subsumption reasoning and entity type checking.

Hypotheses as well as the supporting or refuting data are represented in RDF and

directly linked to one another allowing scientists to browse from data to hypothesis

and vice versa. Further information about HyQue and the hypotheses and data used in

HyQue are available at http://semanticscience.org/projects/hyque.
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