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Abstract

Background: Interferon-gamma (IFN-g) is vital in vaccine-induced immune defense
against bacterial and viral infections and tumor. Our recent study demonstrated the
power of a literature-based discovery method in extraction and comparison of the
IFN-g and vaccine-mediated gene interaction networks. The Vaccine Ontology (VO)
contains a hierarchy of vaccine names. It is hypothesized that the application of VO
will enhance the prediction of IFN-g and vaccine-mediated gene interaction network.

Results: In this study, 186 specific vaccine names listed in the Vaccine Ontology (VO)
and their semantic relations were used for possible improved retrieval of the IFN-g
and vaccine associated gene interactions. The application of VO allows discovery of
38 more genes and 60 more interactions. Comparison of different layers of IFN-g
networks and the example BCG vaccine-induced subnetwork led to generation of
new hypotheses. By analyzing all discovered genes using centrality metrics, 32 genes
were ranked high in the VO-based IFN-g vaccine network using four centrality scores.
Furthermore, 28 specific vaccines were found to be associated with these top 32
genes. These specific vaccine-gene associations were further used to generate a
network of vaccine-vaccine associations. The BCG and LVS vaccines are found to be
the most central vaccines in the vaccine-vaccine association network.

Conclusion: Our results demonstrate that the combined usages of biomedical
ontologies and centrality-based literature mining are able to significantly facilitate
discovery of gene interaction networks and gene-concept associations.

Availability: VO is available at: http://www.violinet.org/vaccineontology; and the SVM
edit kernel for gene interaction extraction is available at: http://www.violinet.org/
ifngvonet/int_ext_svm.zip

Introduction
Interferon-gamma (IFN-g) is one of the most important endogenous regulators of

immune responses [1]. IFN-g is vital in immune defense against infectious diseases,

inflammatory conditions, tumor, and autoimmune diseases. For example, mice lacking

either IFN-g or its receptor have increased susceptibility to the infections of bacterial

and viral pathogens [2]. It also regulates various immune responses that are often criti-

cal for induction of protective immunity generated by vaccines [1-3].
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In our recent study, a novel literature-based discovery (LBD) approach based on

Natural Language Processing (NLP) and network centrality analysis was applied to

identify genes related to human IFN-g (Gene symbol: IFNG) and potentially important

for vaccine development [3]. Initially, a generic IFNG gene interaction network was

built by automatically extracting the interactions of IFNG and other genes using

abstracts from all articles in PubMed. A subnetwork was also generated by including

the interactions extracted from vaccine-related sentences. Four network centrality

metrics (i.e., degree, eigenvector, closeness, and betweenness) were further calculated

to rank the genes in the constructed networks. By comparing the resulting generic

IFNG network and the vaccine-specific subnetwork, many new observations and

hypotheses were generated [3].

It is possible to further improve the literature-based network discovery by applying

biomedical ontologies. A biomedical ontology represents the consensus-based con-

trolled vocabularies of terms and relations which are logically formulated to promote

intelligent information retrieval and modeling. The Vaccine Ontology (VO; http://

www.violinet.org/vaccineontology) is a community-based ontology in the domain of

vaccine and vaccination [4]. VO has classified a large number of existing vaccines in

licensed use, on trial, or in research. Each subclass in VO has an “is_a” relationship

with its parent class. This ensures that all vaccine subclasses (e.g., the Bacillus

Calmette-Guérin vaccine strain or BCG) can be included when a parent class (e.g.,

“Mycobacterium tuberculosis vaccine” or “vaccine”) is searched in literature mining. In

addition, VO includes many machine-readable annotations of various vaccines using

the Web Ontology Language (OWL). For example, a vaccine’s quality (e.g., live vs.

inactivated) and components (e.g., antigen and adjuvant) are defined in VO. These

annotations can be processed by an ontology reasoner for automated reasoning.

Currently, VO contains more than 500 vaccine names.

In this study, we incorporated the VO support to our LBD method. We hypothesized

that the application of VO will increase our centrality-based literature retrieval of

IFN-g and vaccine-mediated gene interaction networks. Our results indicate VO signifi-

cantly increases the retrieval of the IFNG-vaccine network and provides new insights

and hypotheses for future investigations.

Methods
The detailed literature-based network discovery methods were described in our recent

publication [3]. Here we summarize the basis of the method with a focus on emphasiz-

ing the new application of VO in this approach.

Literature corpus

All article abstracts and their titles available in PubMed (http://www.ncbi.nlm.nih.gov/

pubmed/) were used. The sentences of the titles and abstracts were obtained from the

BioNLP database in the National Center for Integrative Biomedical Informatics

(NCIBI; http://ncibi.org/).

Gene name identification and normalization

The machine learning-based software Genia Tagger (http://www-tsujii.is.s.u-tokyo.ac.

jp/GENIA/tagger/) was used to identify the gene names in the sentences [5].
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A dictionary-based approach was also used to normalize the gene names tagged by

Genia Tagger so that each gene is represented by a single node in the interaction net-

work. Only human genes were studied in this research. The HUGO Gene Nomencla-

ture Committee (HGNC) database (http://www.genenames.org/) was used as the

dictionary for human gene names and their synonyms. Each tagged human gene name

was unified with its corresponding approved gene symbol.

Literature mining

Sentences with at least two gene names and an interaction keyword(s) (e.g., interacts,

binds, activates, and etc.) were selected. In total more than 800 interaction keywords

were manually collected and used in this study (the interaction keywords are available

at: http://www.violinet.org/ifngvonet/interaction_keywords.txt). To extract the gene

pairs that are stated as interacting in the sentences, we used a method based on

machine learning and dependency parsing. Unlike a syntactic parse (which describes

the syntactic constituent structure of a sentence), the dependency parse of a sentence

captures the semantic predicate-argument relationships among its words. The nodes of

a dependency parse tree represent the words of a sentence and the edges represent the

types of the dependencies among the words such as subject, object and modifier. We

obtained the dependency parse trees of the sentences using the Stanford Parser [6] and

extracted the shortest dependency path between each pair of genes in a sentence. Our

motivating assumption is that the shortest path between two gene names in a depen-

dency tree is a good description of the semantic relation between them in the corre-

sponding sentence.

Figure 1 shows the dependency parse tree that we obtained for the sentence “In

addition, IFN-alpha up-regulated BCG-induced IL-12 and TNF-alpha and down-

regulated BCG-induced IL-10” from [7]. The interaction keywords in the sentence are

“up-regulated”, “induced”, and “down-regulated”. This sentence contains four genes

(IFN-alpha, IL-12, TNF-alpha, and IL-10), which means there are six different gene

pairs. The sentence describes an interaction between the following three gene pairs in

the context of the BCG vaccine (the dependency paths connecting the gene pairs are

also provided).

• IFN-alpha & IL-12: nominal-subject up-regulated direct-object

• IFN-alpha & TNF-alpha: nominal-subject up-regulated direct-object IL-12 conjunct-

and

• IFN-alpha & IL-10: nominal-subject up-regulated conjunct-and down-regulated

direct-object

On the other hand, the sentence does not state direct interactions between the other

three gene pairs: IL-12 & TNF-alpha, IL-12 & IL-10, and TNF-alpha & IL-10.

We defined an edit distance-based kernel function among these dependency paths

and used support vector machines (SVM) to classify each path as describing an inter-

action between the gene pair or not. Edit distance between two dependency paths is

defined as the number of term insertion, deletion, and substitution operations needed

to transform the first path to the second. For example, to transform the path between

IFN-alpha & IL-12 to the path between IFN-alpha & TNF-alpha, we need to perform

two insertion operations (i.e., insert “IL-12” and insert “conjunct-and” to the first path).

Özgür et al. Journal of Biomedical Semantics 2011, 2(Suppl 2):S8
http://www.jbiomedsem.com/content/2/S2/S8

Page 3 of 16

http://www.genenames.org/
http://www.violinet.org/ifngvonet/interaction_keywords.txt


The edit distance measure between two dependency paths pi and pj is converted to a

similarity function as follows.

edit sim p p ei j
edit dis ce p pi j_ ( , ) ( _ tan ( , ))= −

This dependency path similarity measure was integrated as a kernel function to SVM

by plugging it in the SVMlight package (http://svmlight.joachims.org/) [8].

This interaction extraction approach was introduced in [9] and was shown that it

achieves the state-of-the-art results (55.61% F-score performance for the AIMED data

set (ftp://ftp.cs.utexas.edu/pub/mooney/bio-data/) and 84.96% F-score performance for

the CB data set).

Extraction of vaccine terms from VO

Specific vaccine terms were extracted from VO. Those vaccine terms that contain the

name “vaccine” are not used in this study, since the term “vaccine” and its variants are

explicitly included in the query for selecting the vaccine-related sentences. In total 186

up-regulated

IFN-alpha IL-12 down-regulated addition

TNF-alpha BCG-induced IL-10

nominal-subject

BCG-induced

direct-object   conjunct-and   prepositional-modifier-in

conjunct-and  direct-object adjectival-modifier

 adjectival-modifier

Figure 1 The dependency parse tree of the sentence “In addition, IFN-alpha up-regulated BCG-
induced IL-12 and TNF-alpha and down-regulated BCG-induced IL-10”.
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vaccines were obtained from VO for this analysis (Additional file 1). These terms are

the bottom-level terms of the ontology hierarchy under the term “vaccine”. The

remaining vaccine terms in VO contain the word “vaccine” or its variants in their vac-

cine names. The inclusion of these terms does not help the identification of additional

genes that interact with vaccines. Therefore, these terms were not used in this study.

To maximize the searching capability, all synonyms of selected vaccine names shown

in VO are included.

VO is used in two steps in this research. First, the list of 186 commercially used vac-

cines was directly extracted from VO, allowing our VO-based improvement on the

extraction of IFNG and vaccine network. Secondly, the rich semantic constructs in the

VO OWL format (e.g., necessary and sufficient conditions) provide an effective

approach for us to infer the subclasses of additional parent terms (e.g., “inactivated

vaccines”). These parent terms were then further explored in the content of IFNG and

vaccine network.

Centrality and ontology-based analysis of literature mined networks

Our centrality method calculates four different types of centralities: degree centrality

(the number of neighbors of a node), eigenvector centrality (function of the central-

ities of a node’s neighbors), closeness centrality (inverse sum of the distances from

the node to the other nodes in the network), betweenness centrality (the proportion

of the shortest paths between all the pairs of nodes that pass through the node in

interest) [10]. Different centralities measure different levels of importance. In degree

centrality a node is considered important if it is connected to many other nodes in

the network. In contrast to degree centrality, in eigenvector centrality each neighbor

does not contribute equally to the centrality of a node. A node is considered more

important if it is connected to many “central” nodes. In other words, besides the

quantity of the connections of a node, their quality is also taken into account. In clo-

seness centrality, a node is more important if its total distance to the other nodes in

the network is smaller, whereas in betweenness centrality the importance of a node

is higher if it occurs on many shortest paths between other nodes. Each of the four

centrality measures is important to identify a specific role of a node in a specific

network.

In this study the IFNG interaction network was analyzed from graph centrality

perspective. IFNG and its neighbors are represented as nodes and there is an edge

between two genes if an interaction between them has been extracted from the litera-

ture. The IFNG-vaccine subgraph of this network contains only the interactions that

have been extracted from sentences that contain the term “vaccine” (or its variants like

“vaccines”, “vaccination”, and “vaccinated”). There are many vaccine-related sentences

in the literature where the term “vaccine” or its variants do not occur. Consider our

example sentence (Figure 1) “In addition, IFN-alpha up-regulated BCG-induced IL-12

and TNF-alpha and down-regulated BCG-induced IL-10.” from [7]. The term “vaccine”

or its variants occur neither in the sentence nor in the abstract. However, this sentence

is vaccine-related, since “BCG” (Bacillus Calmette-Guerin) is a licensed tuberculosis

vaccine. The “BCG” vaccine is included in the VO.

The VO specific IFNG network (IFNG-vaccine-VO), was created by extending the

IFNG-vaccine network through including the interactions extracted from sentences
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that contain one of the specific vaccine names from the VO. Therefore, the edges in

this subgraph are all vaccine specific. Comparative analysis of these IFNG and vac-

cine associated networks with or without the VO support helps us to understand

the genes and interactions that play important roles in the IFNG and various vac-

cines. Since IFNG is one of the most important immune factors and critical for vac-

cine development, we hypothesized that genes central in the generic IFNG, IFNG-

vaccine, and IFNG-vaccine-VO networks might be important for vaccine

development.

To identify the associations of the most central genes with the specific vaccines

in VO, a gene-vaccine co-occurrence analysis using all the abstracts in PubMed

was performed. A gene is considered to be associated with a specific vaccine in

VO if they have occurred in the same abstract. Furthermore, using the gene-

vaccine association data, a vaccine-vaccine association network was generated.

The nodes of this network are specific vaccines in VO. Two vaccines are con-

nected with an edge if they share at least one central gene (i.e., co-occur with at

least one central gene in an abstract). Once the vaccine-vaccine association net-

work was generated, the same centrality method was used to compute the four

centrality scores.

In many networks, nodes appear to form communities. While there are many

edges between nodes within a community, there are fewer edges between commu-

nities. We applied the modularity-based community detection algorithm proposed in

[11] to identify the communities among different vaccines in the vaccine-vaccine

association network. Modularity is the difference between the fraction of all edges

within communities and the expected value of the same quantity in a random graph

of the same size. It is assumed that the higher the modularity value, the better the

community divisions are. The algorithm in [11] tries to optimize the modularity of

the network using a greedy approach. It starts with each node in a separate commu-

nity. In each step, the two communities that produce the highest modularity are

merged.

Results
This study is an extension of previous IFNG and IFNG-vaccine network analyses [3].

The primary focus of this extended study is on the potential enhanced network retrie-

val based on the VO.

Discovery of three different IFNG networks

Three layers of IFNG networks were identified (Figure 2). The largest general IFNG

network includes 1060 nodes (genes including IFNG and its neighbors) linked by

26313 edges (interactions). The smallest network is the IFNG-vaccine network as

defined above. This network contains 102 genes and 154 interactions. The second lar-

gest IFNG-vaccine-VO network contains the small network and also genes and interac-

tions associated with specific VO vaccine terms or their synonyms (e.g., tuberculosis

vaccine BCG). The intermediate contains 140 genes and 214 interactions. Therefore,

the application of VO allows discovery of 38 more genes and 60 more interactions.

These new genes and interactions were not identified if only the term vaccine (or its

variants) were used.
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List of genes for vaccines or specific VO vaccine terms are predicted and sorted by

centrality analyses

Figure 2 provides the general numbers of the different IFNG networks. To make more

specific analysis, the most central genes (the genes ranked among the top 20 by at

least one of the four centrality measures) are analyzed in more detail in Table 1. Since

the networks are specific to IFNG, this gene is trivially ranked highest by all the cen-

trality measures. Therefore, it is not included in the rankings. The remaining most

central genes (a total of 32 genes) are predicted to be associated with IFNG and rele-

vant for the general vaccine or specific vaccine term(s). Literature evidence was manu-

ally curated for the vaccine development relatedness (Reference column in Table 1) of

these genes.

Based on Table 1, three different levels of prediction are available based on the com-

parison between the IFNG-vaccine network and the more specific IFNG-vaccine-VO

network:

(i) Genes ranked high in both networks: 23 genes were ranked high in both the

IFNG-vaccine and IFNG-vaccine-VO networks. A more detailed analysis indicated that

many of these genes had different levels of centralities (data not shown). It suggests

that the roles of certain genes (e.g., IL6) in vaccine research have widely been recog-

nized but studied in more depth in certain vaccines.

(ii) Genes ranked high in the IFNG-vaccine-VO network but not in the IFNG-vac-

cine network: Six genes (marked with *) are included in this group, i.e., NFKB1, TLR2,

NCAM1, CXCL10, CD86, and CCL2. These genes are found in the IFNG-vaccine net-

work, but are not inferred as genes important for vaccine development, although there

exists supporting literature evidence (Table 1). Using the VO enabled the identification

of these vaccine-related genes.

(iii) Genes ranked high in the IFNG-vaccine-VO network but not found in the

IFNG-vaccine network: This group includes three genes (marked with **), i.e.,

TLR4, TP53, and FCGR2B. These genes are not contained in the IFNG-vaccine

Figure 2 Three layers of IFNG-associated gene networks.
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network. Using the VO enabled the discovery of these genes as belonging to the

IFNG-vaccine mediated gene interaction network and as genes important for vac-

cine research.

These gene lists provide new information to study vaccine-induced human gene

networks associated with IFNG. For example, Toll-like receptor-4 (TLR4) is an

important cell receptor that participates in many immune responses against patho-

gen infections. TLR4-active agents are often developed as vaccine adjuvants [12].

The finding of the presence of TLR4 in the IFNG-vaccine-VO network, but absence

from the IFNG-vaccine network is a demonstration that our ontology-based method

provides reasonable and useful information to better understand the vaccine-

associated immune networks.

Table 1 Predicted 32 genes related to IFN-g and vaccine networks

Gene Degree Eigenvector Betweenness Closeness Reference (PMID)

IL2 + + + + 8459207

TNF + + + + 16446013

IL10 + + + + 10930151

IL6 + + + + 10225849

IL4 + + + + 8519092

CSF2 + + + + 19459853

IL8 + + + + 11378044

IL5 + + - + 11138639

NFKB1 * + + + + 16971487

IL13 + + + + 12232042

CD4 + + + + 17298856

TLR2 * + + + - 12874299

IL7 + - + + 17496983

IL18 + - - + 19467215

EIF2AK2 + + + - 19596385

CD40LG + + + + 11403919

CD40 + + - - 11403919

CD28 + + - - 12594842

C3 + + + - 19477524

TLR4 ** + - - - 12874299

TP53 ** - + - - 10379742

FCGR2B ** - + - - 12874345

CD46 - + + - 11757799

NCAM1 * - - + + 16316416

CXCL10 * - - + - 10799249

CD86 * - - + - 12594842

HSPD1 - - + - 12218165

IFNA1 - - - + 19667099

CCL2 * - - - + 19833737

TPBG - - - + 16630022

GNLY - - - + 10644038

CD8A - - - + 18425263

These genes were ranked among the top 20 by at least one of the centrality measures in the literature-mined IFN-g and
vaccine network using VO (i.e. IFNG-vaccine-VO network). The sign “+” means that a gene is ranked among top 20 with
the corresponding centrality measure. The sign “-” indicates the opposite. Genes marked with * were not ranked high in
the IFNG-vaccine network built without using the VO (i.e. IFNG-vaccine network). Genes marked with ** were not found
in the IFNG-vaccine network. The PubMed PMIDs are listed to affirm that the associations mined are verified by
literature.
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The predicted IFNG-BCG network

As an example of specific study on a single vaccine, BCG is a licensed tuberculosis vac-

cine to protect against infection of Mycobacterium tuberculosis. We used the “BCG”

term and all its synonyms in VO to extract the network of interactions related to the

BCG vaccine. The resulting network consists of 56 genes and 77 interactions (Figure

3). In total, 24 of these genes (colored with purple in Figure 3) were not found in the

IFNG-vaccine network, which was constructed without using the “BCG” term in the

VO.

BCG actively interacts with IFNG and genes in the IFNG network. For example, the

interactions between BCG treatment, TLR2 and TLR4 are interesting. BCG is able to

activate TLR2 and TLR4 [13]. It induces the maturation of dendritic cells (DCs) via

both TLR2 and TLR4 [14]. It can also induce TNF-alpha secretion from DC via TLR2

and TLR4 [15]. Our program also identified TNFSF10 (synonym: TRAIL) and TLR2

that are associated with BCG treatment (Figure 3). It was reported that BCG can

directly stimulate the release of tumor necrosis factor (TNF)-related apoptosis-inducing

ligand (TRAIL, a synonym for TNFSF10) from polymorphonuclear leukocytes (PMN)

through toll-like receptor-2 (TLR2) recognition that is augmented by IFNG [16]. BCG

treatment also triggers the induction of FCGR2B (synonym: CD32) on PMN [17], urin-

ary IFNG, IP-10, TNF-alpha, and vascular endothelial growth factor (VEGF) [18]. All

these genes and interactions were detected by our program and exist in the IFNG-

BCG network.

Many new hypotheses can be generated by comparing the three layers of IFNG

networks. For example, a direct interaction between IFNG and TLR6 was not reported

as shown in the IFNG-BCG network (Figure 3). However, such interaction has

been reported in the literature [19] and shown in the generic IFNG network. TLR6

Figure 3 The IFNG-BCG network. All edges represent gene-gene interactions that are associated
with the BCG vaccine. In total 24 new genes (colored with purple) are found by using the term
“BCG” contained in the VO.
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(a co-receptor for TLR2) is a known receptor for bacterial derivatives. Therefore, it

can be hypothesized that BCG will also interact with TLR6. Meanwhile, those new

genes and interactions induced by BCG treatment may be possibly inferred to other

vaccines (e.g., vaccines for intracellular pathogens such as Influenza vaccines or

Brucella vaccines). Those genes and networks in the generic IFNG or IFNG-vaccine

network may provide new genes and interactions for inferring future BCG mechanism

research.

The networks of gene-vaccine and vaccine-vaccine associations

An abstract-level co-occurrence method was used to identify the specific vaccines that

are associated with IFNG and the top ranked 32 genes listed in Table 1. We assume

that a gene and a specific vaccine are associated if they appear together in the same

abstract. In summary, 28 vaccines (Table 2) were found to be associated with the most

central genes in the IFNG-vaccine-VO network. No other vaccines are identified to be

associated with these top ranked 32 genes and IFNG. CD46 (a complement regulatory

protein) and TPBG (trophoblast glycoprotein) are the two genes (out of the top 32)

that don’t co-occur with any of the specific vaccines in VO. These two genes were

ranked high in the IFNG-vaccine network, built without using VO. It suggests that

these two genes have been well studied in the generic vaccine development context,

but not in the context of specific vaccines.

Based on the associations between different genes and vaccines and the knowledge of

these specific vaccines gained from the VO, it is possible to analyze the associations

between different vaccines. For example, different vaccine types can be classified based

on the asserted VO vaccine hierarchy (Figure 4A) and inferred VO vaccine hierarchy

(Figure 4B). The asserted ontology hierarchy is an ontology hierarchy specified by an

ontology editor(s). As an application of the Web Ontology Language (OWL) [20], the

inferred ontology hierarchy is generated by a specific ontology reasoner, such as FACT

++ (http://owl.man.ac.uk/factplusplus/), based on necessary and sufficient conditions.

The combination of necessary and sufficient conditions makes an ontology class a fully

defined class. For example, the class term inactivated vaccine is fully defined as:

‘vaccine using whole organism’ and (has_quality some inactivated)

Many vaccines (e.g., Fluarix) have the characteristics (necessary condition) of being

inactivated. For example, Fluarix has the following necessary condition:

has_quality some inactivated

Many vaccines also use whole microbial organism for vaccine development. Based on

the logic definition of the VO term inactivated vaccine, those vaccines (e.g., Fluarix)

that are annotated in VO as using whole microbial organism and having the character-

istics of being inactivated can be inferred as inactivated vaccines although they are not

originally asserted as such (Figure 4).

The vaccines are organized based on the inferred ontology hierarchy in Table 2.

More phenomena can be observed by comparing the gene-vaccine network and the

vaccine ontology hierarchies. For example, it is shown that the live attenuated bacterial

vaccine BCG has been found to interact with 31 out of the top 32 genes described

above. Another live attenuated bacterial vaccine also interacts with 17 genes. It is inter-

esting that CD4 is associated with every viral vaccine in the vaccine list (Table 2).

Among the 28 vaccines, most subunit vaccines and all viral vaccines, including three
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Influenza vaccines (Fluarix, Fluzone, and Vaxigrip), are not directly associated with

IFNG; however, they are frequently associated with IFNA1 (IFN-alpha 1).

A vaccine-vaccine association network was further built, where two vaccines are

connected if they share at least one gene. For example, an edge between the vaccines

Fluzone and Fluarix is created, since they are both associated with the IFNA1 gene

(Table 2). In total, 259 edges were found in the final vaccine-vaccine association

network (Figure 5).

A centrality analysis was further performed based on this network. The BCG and

LVS have the highest centrality scores by all four centrality methods. These two vac-

cines are connected with all the other vaccines in the network with at least one shared

central gene (Figure 5). The vaccines next to them include RTS,S/AS02A, Dryvax, and

Table 2 28 vaccines identified to be associated with the top 32 genes

Vaccines Num.
genes

Associated genes

Inactivated viral vaccine

Fluzone 4 IFNA1, CD4, CD8A, IL10

Vaxigrip 4 IFNA1, CD4, CD8A, TNF

Engerix-B 3 IFNA1, CD4, IL2

FSME -
IMMUN

3 CD4, IL6, TNF

Fluarix 1 IFNA1

Havrix 1 CD4

Vaqta 1 CD4

Live attenuated bacterial vaccine

BCG Vaccine 31 HSPD1, IL18, CCL2, IL5, CD40, EIF2AK2, TLR4, IL13, CD40LG, CD86, IFNG, CSF2,
CXCL10, TP53, FCGR2B, NFKB1, IFNA1, GNLY, IL2, IL10, IL4, CD28, CD4, C3, IL6, CD8A,
IL8, TLR2, IL7, TNF, NCAM1

LVS 17 CCL2, CD40, TLR4, CD86, IFNG, IFNA1, NFKB1, IL10, IL2, IL4, CD4, C3, IL6, IL8, CD8A,
TLR2, TNF

Brucella
strain 19

5 IFNA1, CD4, CD8A, IL2, IL10

RB51 2 CD4, CD8A

CVD 1207 2 IL4, IL5

CVD 1208 1 IFNG

CVD 1208S 1 IFNG

Live attenuated viral vaccine

Rotarix 2 CD4, CD8A

RotaTeq 2 CD4, CD8A

Varilrix 2 CD4, CD8A

Varivax 1 CD4

ProQuad 1 CD4

Other live vaccine

Dryvax 5 IFNA1, CD4, CD8A, IFNG, IL2

TICE BCG 3 IFNA1, CD4, CD8A

Subunit vaccine

RTS,S/AS02A 7 IFNA1, IL4, CD4, IFNG, IL5, CD8A, IL2

Pneumo 23 3 IFNA1, IL4, CD4

FMP1/AS02A 2 IFNA1, IL5

Gardasil 2 CD4, IL2

ActHIB 1 CD4

Infanrix 1 IFNA1

Menactra 1 C3
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Pneumo 23. The vaccines S19, Fluzone, Vaxigrip, TICE BCG, and Engerix-B follow

them and share the same centrality scores with each other. These ten vaccines are

most widely studied in the context of IFNG research. All the rest are ranked lower

with the same score.

The community detection algorithm described in the Methods section identified two

vaccine communities that are shown with red and blue in Figure 5. It is interesting to

Figure 4 The 28 vaccines that are associated with the top 32 genes. (A) Asserted hierarchy; (B)
Inferred hierarchy after using HermiT OWL reasoner (http://hermit-reasoner.com/). The results were
extracted from the Vaccine Ontology using OntoFox[25]and displayed using the Protégé ontology
editor (http://protege.stanford.edu/).
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classify the vaccines in these two communities based on the vaccine classification from

the Vaccine Ontology (Figure 4). One of the communities (shown in red) consists of

mostly viral vaccines. Out of 16 vaccines, this community contains 12 viral vaccines,

three bacterial vaccines, and one cancer vaccine. The cancer vaccine (TICE BCG) con-

tains live attenuated BCG bacteria. In contrast, the other community (shown in blue)

contains mostly bacterial vaccines. Specifically, this community contains eight bacterial

vaccines, two protozoan vaccines, and two viral vaccines. It appears that the top five

vaccines with the highest centrality scores (BCG, LVS, RTS,S/AS02A, Dryvax, and

Pneumo 23) are located in one single community.

Discussion
Our study indicates that the application of the Vaccine Ontology (VO) in the central-

ity-based literature mining enhanced the gene interaction discovery, leading to our

finding of new genes and interactions that could not be found before. Our method

also allows the generation of the networks of gene-vaccine and vaccine-vaccine associa-

tions, leading to better understanding of vaccine-induced immune mechanisms.

The VO is developed using the Web Ontology Language (OWL) [20]. The

OWL-based vaccine ontology provides rich semantic constructs, such as necessary and

sufficient conditions. An asserted ontology term hierarchy provides user-defined is_a

definitions. Each ontology term also includes different ontological attributes, which can

be used for ontological reasoning and generating inferred ontology hierarchy (Figure

4B). These hierarchies can be used for ontological analyses of various networks gener-

ated using centrality and ontology-based literature discovery

Biomedical ontologies, particularly, the Gene Ontology (GO), have been used in

retrieval of gene interaction networks based on literature data [21,22]. For example,

Daraselia et al. [21] developed a method for automatic extraction of gene ontology

annotation and its correlation with clusters in protein networks. The approach

Figure 5 The vaccine-vaccine association network. Vaccines in one of the communities are shown
in red and the vaccines in the other community are shown in blue.
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developed by Raychaudhuri et al. [22] assigned GO terms to PubMed abstracts and

then assigned identified GO terms to proteins based on statistical analysis of their

occurrences in PubMed abstracts. Compared to existing methods, the primary novelty

of our ontology-based network discovery approach is that it is based on the novel lit-

erature-mined network centrality analysis method that we internally developed [3]. The

centrality- and ontology-based approach is generic and can be used to identify other

gene interaction networks using biomedical ontologies in other domains.

Derived from current research, we propose a new strategy of a Centrality and Ontol-

ogy-based Network Discovery using Literature data (CONDL). The general framework

of this CONDL strategy is illustrated in Figure 6. Given a concept of interest (e.g., vac-

cine), an ontology in this concept (e.g., VO), and a set of known concept-related genes

(seed genes, e.g., IFNG), the goal is to predict novel concept-related genes. First, a gene

interaction network is built by automatically extracting the interactions of the seed

genes and their neighbors from the literature. Then, network centrality metrics are

used to rank the genes in the network. The underlying hypothesis is that the central

genes in this concept-specific network of interactions are also likely to be related to

the concept. By comparing the resulting generic gene network (e.g., the generic IFNG

network) and the concept-specific subnetwork (e.g., IFNG-vaccine network), many new

observations and hypotheses were generated [3]. The ontology can be used to extend

the concept-specific subnetwork. Furthermore, a network of gene-ontology term asso-

ciations, and a network of ontology terms can be generated. The ontological attributes

of ontology terms can be used for more advanced ontology analyses (Figure 6).

To further facilitate the study of interaction networks, we have started to generate an

Interaction Ontology Network (INO; http://sourceforge.net/projects/ino). INO was

initiated to classify those more than 800 interaction keywords we manually collected in

this study. These keywords are organized in INO using a hierarchical structure and

aligned with the Basic Formal Ontology (BFO; http://www.ifomis.org/bfo). For exam-

ple, INO includes an ontology class term increase, which has synonyms increases,

increased, increasing, and elevated. The parent ontology term of increase in INO is

Figure 6 The general framework of the CONDL strategy (a centrality and ontology-based network
discovery using literature data).
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positive regulation. This strategy of classifying interaction terms in hierarchical ontol-

ogy structure will allow the literature mining and ontology communities to further re-

use these terms and support automated reasoning.

Our future plan includes a larger scale of vaccine interaction network analysis

beyond the IFNG-associated networks. We are also developing a web server to store

the analyzed data and provide a user-friendly web interface to query and visualize the

results. The interactions shown in our networks may be specific for certain conditions.

The interactions may not be true when experimental conditions change. The possibili-

ties of using other ontologies in our analyses would facilitate our gene interaction net-

work investigations. For example, the Cell Ontology [23] can be used to extract

cellular locations of gene interactions. The Cell Line Ontology [24] can be used to

determine which cell lines were studied for specific gene interactions.

Additional material

Additional file 1: VO Terms A file in text format containing the 186 VO terms and their synonyms used in this
study. The synonyms of a term are separated with “|#|”.
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