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Abstract

Background: We consider the task of automatically extracting DNA methylation
events from the biomedical domain literature. DNA methylation is a key mechanism
of epigenetic control of gene expression and implicated in many cancers, but there
has been little study of automatic information extraction for DNA methylation.

Results: We present an annotation scheme for DNA methylation following the
representation of the BioNLP shared task on event extraction, select a set of 200
abstracts including a representative sample of all PubMed citations relevant to DNA
methylation, and introduce manual annotation for this corpus marking nearly 3000
gene/protein mentions and 1500 DNA methylation and demethylation events. We
retrain a state-of-the-art event extraction system on the corpus and find that
automatic extraction of DNA methylation events, the methylated genes, and their
methylation sites can be performed at 78% precision and 76% recall.

Conclusions: Our results demonstrate that reliable extraction methods for DNA
methylation events can be created through corpus annotation and straightforward
retraining of a general event extraction system. The introduced resources are freely
available for use in research from the GENIA project homepage http://www-tsujii.is.s.
u-tokyo.ac.jp/GENIA.

Background
During the previous decade of concentrated study of biomedical information extraction

(IE), most efforts have focused on the foundational task of detecting mentions of enti-

ties of interest and the extraction of simple associations between these entities, typi-

cally represented as binary relations [1-3]. However, in recent years there has been

increased interest in biomolecular event extraction using representations that capture

typed, structured n-ary associations of entities in specific roles, such as regulation of

the phosphorylation of a specific domain of a particular protein[4-7]. The state of the

art in such extraction methods was evaluated in the BioNLP’09 Shared Task on Event

Extraction (below, BioNLP ST) [8], and event extraction following the BioNLP ST

model has continued to draw interest also after the 2009 task, with recent work includ-

ing advances in extraction methods [9-12], the release of extraction system software

and large-scale automatically annotated data [13,14] and the development of additional

annotated resources following the event representation [15,16] as well as a follow-up

shared task in 2011 [17,18]. Of the findings of the BioNLP ST evaluation, it is of parti-

cular interest to us that the highest-performing methods include many that are purely
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machine-learning based [8], learning what to extract directly from a corpus annotated

with examples of the events of interest. This implies that state-of-the-art extraction

methods for new types of events can be created by providing annotated resources to

an existing system, without the need for direct development of natural language pro-

cessing or IE methods. We recently applied such an annotation-based approach to the

automatic extraction of five types of protein post-translational modification events

[15]. While this study demonstrated the feasibility of the approach, extraction perfor-

mance was somewhat low, with analysis indicating training data size as a limiting fac-

tor. Here, we apply a similar approach to DNA methylation, a specific and biologically

highly relevant event type not considered in previous event extraction studies. Focus

on a single event type was expected to allow more reliable extraction through

increased training data and analysis of the requirements for training accurate extrac-

tion methods.

In the following, we first outline the biological significance of DNA methylation and

discuss existing resources. We then introduce the event extraction approach applied,

describe the new annotated corpus created in this study, and present event extraction

results using a method trained on the corpus.

DNA methylation

The term epigenetics refers to the study of molecular mechanisms “beyond genetics”

that cause inheritable changes of gene expression and/or phenotype without alteration

of the DNA sequence. Such mechanisms are today understood to play an important

role in many biological processes, including the genetic program for development, cell

differentiation, and tissue-specific gene expression. DNA methylation was first sug-

gested as an epigenetic mechanism for the control of gene activity during development

in 1975 [19,20], and the role of DNA methylation in cancer was first reported in 1987

[21]. DNA methylation of CpG islands in gene promoter regions is now understood to

be one of the most consistent genetic alterations in cancer, and DNA methylation is a

prominent area of study.

Chemically, DNA methylation is a simple reaction adding a methyl group to a speci-

fic position of a cytosine pyrimidine ring or an adenine purine ring. While a single

nucleotide can only be either methylated or unmethylated, in text the overall degree of

promoter methylation is often reported as hypo- or hyper-methylation, with hyper-

methylation implying that the expression of a gene is silenced. Because of the precise

definition of the phenomenon and the relatively specific terms in which it is typically

discussed in publications, we expected it to provide a well-defined target for annotation

and automatic extraction.

DNA methylation in PubMed

We follow common practice in biomedical IE in drawing texts for our corpus from

PubMed abstracts. Currently containing more than 20 million citations for biomedical

literature (over 11M with abstracts) and growing exponentially [22], the literature data-

base provides a rich resource for IE and text mining. To facilitate access to documents

relevant to specific topics, each PubMed citation is manually assigned terms that iden-

tify its primary topics using MeSH, a controlled vocabulary of over 25,000 terms.

MeSH contains also a DNA Methylation term, allowing specific searches for citations
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on the topic. Figure 1 shows the number of citations per year of publication matching

this term contrasted with overall citations, illustrating explosive growth of interest in

DNA methylation, outstripping the overall growth of the literature. Particular increases

can be seen after the introduction of DNA microarrays for monitoring gene expression

[23] and the introduction of high-throughput screening methods [24,25]. The total

number of PubMed citations tagged with the DNA Methylation MeSH term at the

time of this writing is 16734 (15557 of which have an abstract). The large number of

documents tagged as relating to this topic and the human judgments assuring their

relevance make querying for this term a natural choice for selecting texts for annota-

tion. However, direct PubMed query as the only selection strategy would ignore signifi-

cant existing resources, discussed in the following.

DNA methylation databases

A growing number of databases collating information on DNA methylation are becom-

ing available. The first such database, MethDB [26], was introduced in 2001 and

remains actively developed. MethDB contains PubMed citation references as evidence

for contained entries, but no more specific identification of the expressions stating

DNA methylation events. The methPrimerDB [27] database provides additional infor-

mation on PCR primers on top of MethDB, but does not add further specification of

the methylated gene or text-bound annotation. PubMeth [28] is a database of DNA

methylation in cancer with evidence sentences from the literature, initially selected by

PubMed query for “more than 15 methylation-related keywords” (e.g. DNA methyla-

tion, methylated, epigenetic). This database stores information on cancer types and sub-

types, methylated genes and the experimental method used to identify methylation, as

well as annotated evidence sentences. MeInfoText [29] is a database of DNA methyla-

tion and cancer information automatically extracted from PubMed documents
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Figure 1 DNA methylation in PubMed. Citations tagged with the MeSH term DNA Methylation
compared to all citations in PubMed by publication year. Note different scales.
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matching the query terms human, methylation and cancer using term co-occurrence

statistics. Of the DNA Methylation resources, only PubMeth and MeInfoText contain

text-bound annotation identifying specific spans of characters containing the gene

mention and stating the DNA methylation. In this study, we consider specifically Pub-

Meth as a source of reference text-bound annotations due to availability and the ability

to redistribute derived data. Initial text-bound annotations in PubMeth were generated

using keyword lookup, but the database annotations are manually reviewed. Table 1

shows example evidence sentences from PubMeth and their annotated spans. While

the PubMeth annotation differs from the BioNLP ST representation in a number of

ways, such as not separating coordinated entities (Table 1c) and not annotating methy-

lation sites (Table 1d), it provides both a reference identifying annotation targets from

a biologically motivated perspective and a potential starting point for full event

annotation.

Annotation

For annotation, we adapted the representation applied in the BioNLP ST on event

extraction with minimal changes in order to allow systems developed for the task to be

applied also for the newly annotated corpus. Documents were selected following the

basic motivation presented above, with reference to the requirements specified by the

annotation scheme, and some automatic preprocessing was applied as annotator sup-

port. This section details the annotation approach.

Entity and event representation

For the core named entity annotation, we primarily follow the gene/gene product

(GGP) annotation criteria applied for the BioNLP ST data [30]. In brief, the guidelines

specify annotation of minimal contiguous spans containing mentions of specific gene

or gene product (RNA/protein) names, where specific name is understood to be one

that would allow a biologist to identify the corresponding entry in a gene/protein data-

base such as Uniprot or Entrez Gene. The annotation thus excludes, for example,

names of gene/protein families and complexes. A single annotation type, Gene or gene

product, is applied without distinction between genes and their products, and normali-

zation of the tagged strings to gene/protein database entries is not performed as part

of the annotation effort.

These strict guidelines were followed in the annotation of previously unannotated

documents, but for compatibility with PubMeth annotations we relaxed the specificity

requirement in the reannotation of documents included in the database, allowing the

annotation of, for example, gene or gene product families when these were annotated

in PubMeth.

Table 1 Examples of PubMeth evidence sentence annotation

a) MS-PCR revealed the [methylation] of the [p16] gene in 10 (34%) of 29 [NSCLCs]

b) 30% (27 of 91) of [lung tumors] showed [hypermethylation] of the 5’CpG region of the [p14ARF gene]

c) [Promotor hypermethylations] were detected in [O6-methylguanine-DNA methyltransferase (MGMT), RB1,
estrogen receptor, p73, p16INK4a, death-associated protein kinase, p15INK4b, and p14ARF]

d) The promoter region of the [p16INK4] gene was [hypermethylated] in the tumor samples of the primary or
metastatic site

Annotated spans delimited by brackets and statements expressing methylation underlined, gene mentions shown in
italics, and cancer mentions in bold.
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In addition to the identification of the modified gene, to fully characterize a DNA

methylation event it is important to identify the site of the modification. We marked

mentions of sites as DNA domain or region terms following the original GENIA term

corpus annotation guidelines [31]. As in the BioNLP ST data, site mentions were only

marked when the sites are relevant to one or more events. Thus, unlike the GGP and

event annotations, the DNA domain or region annotations are not exhaustive.

For representing DNA methylation events, the annotation applied to capture protein

phosphorylation events in the BioNLP ST task 2 closely matched the needs for DNA

methylation (Figure 2). While the Site arguments of the ST Phosphorylation events are

protein domains, machine-learning based extraction methods should be able to associ-

ate this role with DNA domains given training data. We thus adopted a representation

where DNA methylation events are associated with a gene/gene product as their

Theme and a DNA domain or region as Site. Each event is also associated with a parti-

cular span of text expressing it, termed the event trigger. Annotators were instructed to

always mark some trigger expression, using the best approximation in cases where no

unambiguous trigger (e.g. methylates) was present. We note that while we do not here

specifically distinguish degrees of methylation (e.g. methylation from hyper-methyla-

tion), the trigger annotations are expected to facilitate adding these distinctions if

necessary for particular applications: statements identifying the degree of methylation

are likely to be found in the close context of the expression stating the methylation

event. We further initially marked catalysts using Positive regulation events following

the BioNLP ST model, but dropped this class of annotation as a sufficient number of

examples was not found in the corpus.

The event types of the BioNLP ST are drawn from the GENIA Event ontology [5],

which in turn draws its type definitions from the community-standard Gene Ontology

(GO) [32]. To maintain compatibility with these resources, we opted to follow the GO

also for the definition of the new event type considered here. GO defines DNA methy-

lation as:

The covalent transfer of a methyl group to either N-6 of adenine or C-5 or N-4 of

cytosine.

We note that while the definition may appear restrictive, methylation of adenine N-6

or cytosine C-5/N-4 encompasses the entire set of ways in which DNA can be

Figure 2 Event representation. BioNLP Shared Task representation for annotation of phosphorylation
events (above) and representation applied for DNA methylation (below).
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methylated. To GO definition could thus be adopted without limitation to the scope of

the annotation.

Document selection

The selection of source documents for an annotated corpus is critical for assuring that

the corpus provides relevant and representative material for studying the phenomena

of interest. Domain corpora frequently consist of documents from a particular subdo-

main of interest: for example, the GENIA corpus focuses on documents concerning

transcription factors in human blood cells [31]. Methods trained and evaluated on

such focused resources will not necessarily generalize well to broader domains. How-

ever, there has been little study of the effect of document selection on event extraction

performance. Here, we applied two distinct strategies to get a representative sample of

the full scope of DNA methylation events in the literature and to assure that our anno-

tations are relevant to the interests of biologists and our results applicable to the over-

all distribution of DNA methylation events in the literature.

In the first strategy, we aimed in particular to select a representative sample of docu-

ments relevant to the targeted event types. For this purpose, we directly searched the

PubMed literature database. We further decided not to include any text-based query in

the search to avoid biasing the selection toward particular entities or forms of event

expression. Instead, we only queried for the single MeSH term DNA Methylation. This

term has the PubMed annotation scope definition:

Addition of methyl groups to DNA. DNA methyltransferases (DNA methylases) per-

form this reaction using S-ADENOSYLMETHIONINE as the methyl group donor.

While this definition of DNA Methylation takes a different perspective than the GO

definition adopted for the event specification, in practice it identifies the same concept:

by definition, DNA methylation is only performed by DNA methyltranferases, and the

mentioned donor is the only one presently known. We can thus expect that PubMed

queries for this concept match a complete and unbiased set of documents involving

the targeted concepts.

While search for documents that are indexed by humans with the MeSH term DNA

Methylation is expected to provide high-precision results for the full topic, not all such

documents necessarily discuss events where specific genes are methylated. In initial

efforts to annotate a random sample of these documents, we found that many did not

mention specific gene names. To reduce wasted effort in examining documents that

contain no markable events, we added a filter requiring a minimum number of (likely)

gene mentions. We first tagged all citations tagged with DNA Methylation that have an

abstract in PubMed (14350 at the time of selection) using the BANNER protein/gene

name tagger [33] trained on the GENETAG corpus [34]. We found that while the

overwhelmingly most frequent number of tagged mentions per document is zero, a

substantial mass of abstracts have large mention counts (Figure 3). We note that as the

tagger has been evaluated at 86% F-score on a broad-coverage corpus [34], it is unli-

kely to severely misestimate the true distribution. We decided after brief preliminary

experiments to filter the initial selection of documents to include only those in which

at least 5 gene/protein mentions were marked by the automatic tagger. This excludes

most documents without markable events without introducing obvious other biases.
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In the second strategy, we extended and completed the annotation of a random

selection of PubMeth evidence sentences, aiming to leverage existing resources and to

select documents that had been previously judged relevant to the interests of biologists

studying the topic. This provides an external definition of document relevance and

allows us to estimate to what extent the applied annotation strategy can capture biolo-

gically relevant statements. This strategy is also expected to select a concentrated,

event-rich set of documents. However, the selection will also necessarily carry over

biases toward particular subsets of relevant documents from the original selection [28]

and will not be a representative sample of the overall distribution of such documents

in the literature.

For producing the largest number of event annotations with the least effort, the most

efficient way to use the PubMeth data would have been to simply extract the evidence

sentences and complete the annotation for these. However, viewing the context in

which event statements occur as centrally important, we opted to annotate complete

abstracts, with initial annotations from PubMeth evidence sentences automatically

transferred into the abstracts. We note that not all PubMeth evidence spans were

drawn from abstracts, and not all that were matched a contiguous span of text. We

could align PubMeth evidence annotations into 667 PubMed abstracts (approximately

57% of the referenced PMID number in PubMeth) and completed event annotation for

a random sample of these.

Document preprocessing

To reduce annotation effort, we applied automatic systems to produce initial candidate

sentence boundaries and GGP annotations for the corpus. For sentence splitting, we

applied the GENIA sentence splitter [35], and for gene/protein tagging, we applied the

BANNER NER system [33] trained on GENETAG [34] (as for document filtering). The

GENETAG guidelines and gene/protein entity annotation coverage are known to differ

from those applied for GGP annotation here [36]. However, the broad coverage of

PubMed provided by the GENETAG suggests taggers trained on the corpus are likely

to generalize to new subdomains such as that considered here. By contrast, all annota-

tions that we are aware of that follow the GGP guidelines are subdomain-specific.

Figure 3 Gene/protein mentions in DNA methylation abstracts. Number of abstracts with given
number of automatically tagged gene/protein mentions.
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We note that all annotations in the produced corpus are at a minimum confirmed by

a human annotator and that events are annotated without performing initial automatic

tagging to assure that no bias toward particular extraction methods or approaches is

introduced.

Results
Corpus statistics

We annotated 100 abstracts following each of the two document selection strategies.

The statistics of the resulting corpus are given in Table 2. There are some notable dif-

ferences between the subcorpora created using the different selection strategies. While

the subcorpora are similar in size, the PubMeth GGP count is 1.4 times that of the

PubMed subcorpus – perhaps affected by the PubMeth entity annotation criteria – yet

roughly equal numbers of methylation sites are annotated in the two. This difference is

even more pronounced in the statistics for event arguments, where two thirds of Pub-

Meth subcorpus events contain only a Theme argument identifying the GGP, while

events where both Theme and Site are identified are more frequent in the other sub-

corpus. (The overall number of annotated sites is less than the number of events with

a Site argument as the annotation criteria only call for annotating a site entity when it

is referred to from an event, and multiple events can refer to the same site entity.) As

the extraction of events specifying also sites is known to be particularly challenging [8],

these statistics suggest the PubMed subcorpus may represent a more difficult extrac-

tion task. Only very few DNA demethylation events are found in either subcorpus, sug-

gesting that a separate document selection strategy is necessary to assure substantial

coverage of the reverse modification type. Overall, the PubMeth subcorpus contains

nearly twice as many event annotations as the PubMed one, indicating that the focused

document selection strategy was successful in identifying particularly event-rich

abstracts.

Annotation quality

The annotation was performed by three experienced annotators with a molecular biol-

ogy background, with one coordinating annotator with extensive experience in domain

event annotation organizing and supervising the overall process.

Table 2 Corpus statistics

PubMeth PubMed Total

Abstracts 100 100 200

Sentences 1118 1009 2127

Entities

GGP 1695 1195 2890

Site 240 234 474

Total 1935 1429 3364

Events

Theme only 660 214 874

Theme and Site 323 297 620

DNA methylation 977 485 1462

DNA demethylation 6 26 38

Total 983 511 1494
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To measure the consistency of the produced annotation, we performed independent

double annotation for 20% of the corpus abstracts. These abstracts were all selected

from the PubMed subcorpus, for which annotation was created without initial human

annotation as reference. As the PubMeth subcorpus annotation was created using par-

tial human annotation as a starting point, agreement is expected to be higher on the

PubMeth subcorpus than on the PubMed subcorpus. This experiment should thus pro-

vide a lower bound on the overall consistency of the corpus.

We first measured agreement on the gene/gene product (GGP) entity annotation,

and found very high agreement among 935 entities marked in total by the two annota-

tors: 91% F-score using exact match criteria and 97% F-score using the relaxed “over-

lap” criterion where any two overlapping annotations are considered to match. We

note that the high agreement is not due to annotators simply agreeing with the auto-

matic initial annotation: the F-score of the automatic tagger against the two sets of

human annotations was 65%/66% for exact and 85%/86% for overlap match. We then

separately measured agreement on event annotations for those events that involved

GGPs on which the annotators agreed, using the standard criteria described in the sec-

tion on Evaluation Criteria below. Agreement on event annotations was also high: 84%

F-score overall (85% for DNA methylation and 75% for DNA demethylation) over a

total of 442 annotated events.

The overall consistency of the annotation depends on joint annotator agreement on

the GGP and event annotations. However, in experimental settings such as that of the

BioNLP ST where gold GGP annotation is assumed as the starting point for event

extraction, measured performance is not affected by agreement on GGPs and thus

arguably only the latter factor applies. As this setting is adopted also in the present

study, annotation consistency suggests a human upper bound no lower than 84% F-

score on extraction performance.

Estimates of the annotation consistency of biomedical domain corpora are regrettably

seldom provided, and to the best of our knowledge ours is the first published estimate

of inter-annotator agreement for a corpus following the event representation of the

BioNLP ST. Given the complexity of the annotation – typed associations of event trig-

ger, theme and site – the agreement compares favorably to e.g. the reported 67% inter-

annotator F-score reported for protein-protein interactions on the ITI TXM corpora

[37] as well as to the full event agreement for the GREC corpus [6].

Event extraction method

To estimate the feasibility of automatic extraction of DNA methylation events and the

suitability of presently available event extraction methods to this task, we performed

experiments using the EventMine event extraction system of Miwa et al. [9]. On the

task 2 of the BioNLP ST dataset, the benchmark most relevant to our task setting, the

applied version of EventMine was recently evaluated at 55% F-score [38], outperform-

ing the best task 2 system in the original shared task [39] by more than 10% points.

To the best of our knowledge, this system represents the state of the art for this event

extraction task.

EventMine is an SVM-based machine learning system following the pipeline design

of the best system in the BioNLP ST [40], extending it with refinements to the feature

set, the use of a machine learning module for complex event construction, and the use
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of two parsers for syntactic analysis [9]: the HPSG-based deep parser Enju [41] using

the high-speed parsing setting (“mogura”) and the GDep [42] native dependency par-

ser, both with biomedical domain models based on the GENIA treebank data [43].

(We note that while EventMine is not presently publicly released, the system that its

design is based on [40] is available [44], has broadly comparable performance, and

allows retraining.)

For evaluation, we applied a version of the BioNLP ST evaluation tools [45] modified

to recognize the novel event types.

Evaluation criteria

We followed the basic task setup and primary evaluation criteria of the BioNLP ST.

Specifically, we followed task 2 (“event enrichment”) criteria, requiring for the correct

extraction of a DNA methylation or demethylation event both the identification of the

modified gene (GGP entity) and the identification of the modification site (DNA

domain or region entity) when stated. As in the shared task, human annotation for

GGP entities was provided as part of the system input but other entities were not, so

that the system was required to identify the mentioned modification sites.

The performance of the system was evaluated using the standard precision, recall

and F-score metrics for the recovery of events, with event equality defined following

the “Approximate span” matching criterion applied in the primary evaluation for the

BioNLP ST. This criterion relaxes strict matching requirements so that a detected

event trigger or entity is considered to match a gold trigger/entity if its span is entirely

contained within the span of the gold trigger, extended by one word both to the left

and to the right.

Experimental setup

We divided the corpus into three parts, first setting one third of the abstracts aside as

a held-out test set and then splitting the remaining two thirds in a roughly 1:3 ratio

into a training set and a development test set, giving 100 abstracts for training, 34 for

development, and 66 for final test. The splits were performed randomly, but sampling

so that each set has an equal number of abstracts drawn from the PubMeth and

PubMed subcorpora.

The EventMine system has a single tunable threshold parameter that controls the

tradeoff between system precision and recall. We first set the tradeoff using a sparse

search of the parameter space [0:1], evaluating the performance of the system by train-

ing on the training set and evaluating on the development set. As these experiments

did not indicate any other parameter setting could provide significantly better perfor-

mance, we chose the default threshold setting of 0.5. To study the effect of training

data size on performance, we performed extraction experiments randomly downsam-

pling the training data on the document level with testing on the development set. In

final experiments EventMine was trained on the combined training and development

data and performance evaluated on the held-out test data.

Extraction performance

Table 3 shows extraction results on the held-out test data. While DNA methylation

events could be extracted quite reliably, the system performed poorly for DNA
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demethylation events. The latter result is perhaps not surprising given their small

number – only 38 in total in the corpus – and indicates that a separate selection strat-

egy is necessary to provide resources for learning the reverse reaction. Overall perfor-

mance shows a small preference for precision over recall at 77% F-score. We view this

level of performance very good as a first result for the new event type.

To evaluate the relative difficulty of the extraction tasks that the two subcorpora

represent and their merits as training material, we performed tests separating the two

(Table 4). As predicted from corpus statistics, the PubMed subcorpus represents the

more challenging extraction task. When testing on a single subcorpus, results are,

unsurprisingly, better when training data is drawn from the same subcorpus; however,

training on the combined data gives the best performance for all three test sets, indi-

cating that the subcorpora are compatible.

The learning curve (Figure 4) shows relatively high performance and rapid improve-

ment for modest amounts of data, but performance improvement with additional data

levels out relatively fast, nearly flattening as use of the training data approaches 100%.

This suggests that extraction performance for this task is not primarily limited by

training data size and that additional annotation following the same protocol is unli-

kely to yield notable improvement in F-score without a substantial investment of

resources. As performance for the PubMed subcorpus (for which inter-annotator

agreement was measured) is not yet approaching the limit implied by the corpus anno-

tation consistency, the results suggest further need for the development of event

extraction methods to improve DNA methylation event extraction.

Related work
DNA methylation and related epigenetic mechanisms of gene expression control have

been a focus of considerable recent research in biomedicine. There are many excellent

reviews of this broad field; we refer the interested reader to [46,47].

There is a wealth of recent related work also on event extraction. In the BioNLP’09

shared task, 24 teams participated in the primary task and six teams in Task 2 which

mostly resembles our setup in that it also required the detection of modified gene/pro-

tein and modification site. The top-performing system in Task 2 [39] achieved 44% F-

score, and the highest performance reported since that we are aware of is 55% F-score

for EventMine [9]. The performance we achieved for DNA methylation is considerably

Table 3 Overall extraction performance

Event type precision recall F-score

DNA methylation 77.6% 77.2% 77.4%

DNA demethylation 100.0% 11.1% 20.0%

Total 77.7% 76.0% 76.8%

Table 4 Extraction performance by subcorpus F-score performance shown.

Test set

Training set PubMed PubMeth Both

PubMed 64.9% 71.2% 71.6%

PubMeth 62.9% 80.0% 74.0%

Both 66.2% 82.5% 76.8%

F-score performance shown.
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better than this overall result, essentially matching the best reported performance for

Phosphorylation events, which we previously argued to be the closest shared task ana-

logue to the new event category studied here. Nevertheless, direct comparison of these

results may not be meaningful due to confounding factors. The only text mining

efforts specifically targeting DNA methylation that we are aware of are those per-

formed for the initial annotation of the PubMeth and MeInfoText databases [28,29],

both applying approaches based on keyword matching. However, neither of these stu-

dies report results for instance-level extraction of methylation statements, and the key-

word matching approaches applied in these efforts do not provide the level of detail

required for evaluation against an event-annotated resource, precluding direct compari-

son. The present study is in many aspects similar to our previous work targeting pro-

tein post-translational modification events [15]. In this work, we annotated 422 events

of 7 different types and showed that retraining an existing event extraction system

allowed these to be extracted at 42% F-score. Our approach here differs from this pre-

vious work in particular in its larger scale and concentrated focus on a specific event

type of high interest, reflected also in the results: while extraction performance in our

previous work was limited by training data size, in the present study notably higher

extraction performance was achieved and a plateau in performance with increasing

data reached.

Discussion and future work
We have presented a study of the automatic extraction of DNA methylation events

from literature through annotation following the BioNLP’09 shared task event repre-

sentation and the use of a retrainable event extraction system. We created a corpus of

200 publication abstracts selected to include a representative sample of DNA methyla-

tion statements from all of PubMed and manually annotated for nearly 3000 mentions
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Fraction of traning data (%)

Both PubMed PubMethTest set: 

Figure 4 Learning curves. Learning curves for the two subcorpora and their combination. Both
subcorpora used for training, development sets for testing. Average and error bars calculated by 10
repetitions of random subsampling of training data.
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of genes and gene products, 500 DNA domain or region mentions, and 1500 DNA

methylation and demethylation events. Evaluation using the EventMine system showed

that DNA methylation events can be extracted at 78% precision and 76% recall by

retraining a previously introduced event extraction system with this corpus. The learn-

ing curve suggested that the corpus size is sufficient and that future efforts in DNA

methylation event extraction should focus on extraction method development.

One natural direction for future work is to apply event extraction systems trained on

the newly introduced data to abstracts available in PubMed and full texts available at

PMC to create a detailed, up-to-date repository of DNA methylation events at full lit-

erature scale. Such an effort would require gene name normalization and event extrac-

tion at PubMed scale. While substantial challenges remain for accurate normalization

and event extraction at this scale, both have recently been shown to be technically fea-

sible using methods competitive with the state of the art [14,48]. Further combining

the extracted events with cancer mention detection could provide a valuable resource

for epigenetics research.

The newly annotated corpus, the first resource annotated for DNA methylation using

the BioNLP shared task event representation, is freely available for use in research

from the GENIA project homepage [49]. DNA methylation event extraction following

the model developed in this study is included as part of the Epigenetics and Post-trans-

lational Modification task of the BioNLP Shared Task 2011 [17,50].
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