
RESEARCH Open Access

Automatic extraction of semantic relations
between medical entities: a rule based approach
Asma Ben Abacha*, Pierre Zweigenbaum

From Fourth International Symposium on Semantic Mining in Biomedicine (SMBM)
Hinxton, UK. 25-26 October 2010

* Correspondence: abacha@limsi.fr
LIMSI, CNRS, Orsay, F-91403, France

Abstract

Background: Information extraction is a complex task which is necessary to develop
high-precision information retrieval tools. In this paper, we present the platform
MeTAE (Medical Texts Annotation and Exploration). MeTAE allows (i) to extract and
annotate medical entities and relationships from medical texts and (ii) to explore
semantically the produced RDF annotations.

Results: Our annotation approach relies on linguistic patterns and domain
knowledge and consists in two steps: (i) recognition of medical entities and (ii)
identification of the correct semantic relation between each pair of entities. The first
step is achieved by an enhanced use of MetaMap which improves the precision
obtained by MetaMap by 19.59% in our evaluation. The second step relies on
linguistic patterns which are built semi-automatically from a corpus selected
according to semantic criteria. We evaluate our system’s ability to identify medical
entities of 16 types. We also evaluate the extraction of treatment relations between a
treatment (e.g. medication) and a problem (e.g. disease): we obtain 75.72% precision
and 60.46% recall.

Conclusions: According to our experiments, using an external sentence segmenter
and noun phrase chunker may improve the precision of MetaMap-based medical
entity recognition. Our pattern-based relation extraction method obtains good
precision and recall w.r.t related works. A more precise comparison with related
approaches remains difficult however given the differences in corpora and in the
exact nature of the extracted relations. The selection of MEDLINE articles through
queries related to known drug-disease pairs enabled us to obtain a more focused
corpus of relevant examples of treatment relations than a more general MEDLINE
query.

Introduction
Medical knowledge is growing significantly every year. According to some studies, the

volume of this knowledge doubles every five years [1], or even every two years [2].

With large-scale digitisation, several medical search engines went on display, such as

PubMed [3] for searching biomedical literature, CISMeF [4], catalog and index of

French medical Web sites or Health On the Net [5], a public medical search engine.

However, while these search engines have a big contribution in making large volumes

of medical knowledge accessible, their users have often to deal with the burden of
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browsing and filtering the numerous results of their queries in order to find the precise

information they were looking for. This point is more crucial for practitioners who

may need an immediate answer to their queries during their work.

In this context, we need systems able to respond to users queries with precise

answers. Such tools need deep analysis of biomedical documents in order to extract

relevant information. At the first level of this information come the medical entities (e.

g. diseases, drugs, symptoms). At the second, more complicated level comes the extrac-

tion of semantic relationships between these entities.

In this paper, we present our method to extract semantic relations between medical

entities, with an empirical study on the “treatment” relation. We first propose an

enhanced use of MetaMap [6] to extract medical entities and compare it with the sim-

ple application of MetaMap on the same test corpora. To extract occurrences of the

target relations, we then design linguistic patterns based on selected sentences from

PubMed Central articles. We present a method to obtain such sentences by leveraging

UMLS Metathesaurus knowledge and MeSH indexing of PubMed Central. We evaluate

entity and relation extraction on a distinct corpus of 580 sentences and obtain promis-

ing results. We also present MeTAE, a platform for automatic semantic annotation

and exploration of medical texts which incorporates these information extraction com-

ponents and allows querying the obtained information. We finally discuss our results

and conclude on further work.

Background
MetaMap [6] is a reference tool for medical entity recognition which allows mapping

medical text to UMLS concepts. Using MetaMap therefore provides a strong baseline

to start with. MetaMap is able to identify most concepts in the titles of articles from

MEDLINE [7]. Meystre and Haug [8] obtained good precision and recall measures

(resp. 0.753 and 0.892) with an approach based on MetaMap for extracting “medical

problems”. However, the use of MetaMap leads to some residual problems at two

levels: (i) in the segmentation and the extraction of medical entities: MetaMap consid-

ers some general words and some verbs as medical entities (e.g. best, normal, take,

reduce) and (ii) in the categorization of medical entities: MetaMap may propose several

concepts for the same term as well as several semantic types for the same concept. We

address these two issues in our system by performing independent segmentation of the

text before giving it to MetaMap, then imposing constraints on the semantic types of

concepts it detects. Domain-independent relation extraction has been studied by a

wide range of approaches which can be classified in four categories. Statistical

approaches based on term frequency and co-occurrence of specific terms [9], machine

learning techniques [10], linguistic approaches [11] (e.g. using manually written extrac-

tion rules) and hybrid approaches which combine two or more of the preceding meth-

ods [12]. In the medical domain, the same strategies can be found but the specificities

of the domain led to specialised methods. Cimino and Barnett [13] used linguistic pat-

terns to extract relations from titles of Medline articles. The authors used MeSH head-

ings and co-occurrence of target terms in the title field of a given article to construct

relation extraction rules. Khoo et al. [14] focused on extracting causal relations from

abstracts of biomedical articles by aligning manually-constructed graph patterns with

syntactic dependency trees. Lee et al. [15] used UMLS to identify semantic relations
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between medical entities. Their first method could extract 68% of the semantic rela-

tions in their test corpus but if many relations were possible between the relation argu-

ments no disambiguation was performed. Their second method [16] targeted the

precise extraction of “treatment” relations between drugs and diseases. Manually writ-

ten linguistic patterns were constructed from medical abstracts talking about cancer.

Their system reached 84% recall but an overall 48.14% precision. Embarek and Ferret

[17] proposed an approach to extract four kinds of relations (Detect, Treat, Sign and

Cure) between five kinds of medical entities. The patterns used were constructed auto-

matically using an alignment algorithm wich maps sentence parts using an edit dis-

tance (defined between two sentences) and different word-level clues. SemRep [18], a

natural language processing application, targeted the extraction of semantic relation-

ships in biomedical text through a rule-based approach. SemRep [19] obtained a 53%

recall and 67% precision in identifying risk factors and biomarkers for diseases asserted

in MEDLINE citations. An enhanced version of SemRep [20] was proposed to identify

core assertions on pharmacogenomics and obtained an overall 55% recall and 73% pre-

cision. Domain-independent relation extraction methods are not directly applicable to

the medical domain due to the lack of domain independent markers that may help to

recognise medical entities (e.g. capital letters, regular grammatical structure) and to the

variety in the expression of domain concepts (e.g. Amoxicillin = amoxycillin =

AMOX). To bypass these problems, medical relation extraction approaches often rely

on domain knowledge such as the UMLS Metathesaurus and Semantic Network. But

the post-use of extracted relations is not always taken into account in the extraction

procedure. For instance, if the extracted relations are to be used in keyword querying

systems, we should either give priority to recall or give the same priority for recall and

precision, while, if the final application is a question answering system for practi-

tioners, priority should be given to the precision of extraction. Medical relation extrac-

tion approaches sometimes also do not care about extracting the arguments of a

relation (e.g. [16]), or evaluate their approaches by counting relations extracted with

only one argument as correct (e.g. [21]), considering that recall is the most important

measure. In our context we are interested in medical question answering systems as

back-end and give priority to precision, considering the correct extraction of argu-

ments as mandatory to validate the identified relations.

Most relation extraction methods rely on a corpus where example occurrences of the

target relations can be found. For instance, given pairs of seed terms which are known

to entertain the target relation, semi-supervised methods such as that introduced in

[11] collect occurrences of these term pairs in the corpus and use them to build rela-

tion patterns. The selection of a relevant corpus is a key point here: for such a method

to work, the corpus must contain mentions of the target relationship between these

pairs of terms. We propose a method to increase the chances that such mentions are

actually found in the selected texts.

Method
Our annotation method is twofold. In a first step, we extract medical entities from sen-

tences and determine their categories. In a second step, we extract semantic relations

between the extracted entities using lexical patterns. In this section we describe our
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approach for medical entity recognition, relation extraction and patterns construction

before presenting our evaluation method.

Medical entity recognition

By “medical entity”, we refer to an instance of a medical concept such as Disease or

Drug. Medical entity recognition consists in: (i) identifying medical entities in the text

and (ii) determining their categories. For instance, in the following sentence “ACE inhi-

bitors reduce major cardiovascular disease outcomes in patients with diabetes.”, the

medical entity ACE inhibitors should be identified as a treatment and the medical

entity cardiovascular disease outcomes should be identified as a problem.

One of the most important obstacles to identifying medical entities is the high termi-

nological variation in the medical domain (e.g Swine influenza = swine flu = pig flu).

MetaMap [6] deals with this variation by using morphological knowledge found in

the UMLS Specialist Lexicon and term variants present in the UMLS Metathesaurus.

However, as mentioned in the Background section, some issues must still be addressed.

According to empirical observations, the sentence and noun phrase segmentations pro-

vided by MetaMap is not as performant as the segmentation provided by other non-

specialized tools known in Natural Language Processing. Besides, a disambiguation

step is required on the obtained concepts.

To solve these problems, we propose an approach in three points:

1. Split the biomedical texts into sentences and extract noun phrases with non-spe-

cialized tools. We use LingPipe [22] and Treetagger-chunker [23] which offer a better

segmentation according to empirical observations.

2. Determine medical entities as well as UMLS concepts and semantic types with

MetaMap.

3. Filter the obtained medical entities with (i) a list of the most frequent/noticeable

errors and (ii) a restriction on the semantic types used by MetaMap in order to keep

only semantic types which are sources or targets for the targeted relations (cf. Table 1).

Relation extraction

Our approach is based on the use of linguistic patterns. For every couple of medical

entities, we collect the possible relations between their semantic types in the UMLS

Semantic Network (e.g. between the semantic types Therapeutic or Preventive Proce-

dure and Disease or Syndrome there are five relations: treats, prevents, complicates,

etc.). We construct patterns for each relation type (cf. the following section) and

match them with the sentences in order to identify the correct relation. The relation

extraction process relies on two criteria: (i) a degree of specialization associated to

each pattern and (ii) an empirically-fixed order associated to each relation type which

allows to order the patterns to be matched. We target six relation types: treats, pre-

vents, causes, complicates, diagnoses and sign or symptom of (cf. Figure 1).

Table 1 Examples of categories and corresponding UMLS semantic types

Category Examples of UMLS Semantic Types

Problem Anatomical Abnormality, Injury or Poisoning, Disease or Syndrome

Treatment Pharmacologic Substance, Therapeutic or Preventive Procedure

Test Diagnostic Procedure, Laboratory Procedure
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Pattern construction

Semantic relations are not always expressed with explicit words such as treat or pre-

vent. They are also frequently expressed with combined and complex expressions.

Therefore, it is difficult to build patterns which can cover all relevant expressions.

However, the use of patterns is one of the most effective methods for automatic infor-

mation extraction from textual corpora if they are efficiently designed [13,16,17].

To build patterns for a target relation R, we used a corpus-based strategy akin to that

of [11] and followers. We illustrate it with the treats relation. To apply this strategy we

first need seed terms corresponding to pairs of concepts known to entertain the target

relation R. To obtain such pairs, we extracted from the UMLS Metathesaurus all the

couples of concepts connected by the relation R. For instance, for the treats Semantic

Network relation, the Metathesaurus contains 45,145 treatment-problem pairs linked

with the “may treat” Metathesaurus relation (e.g. Diazoxide may treat Hypoglycemia).

We then need a corpus of texts where occurrences of both terms of each seed pair will

be looked for. We build this corpus by querying the PubMed Central database [24]

(PMC) of biomedical articles with focused queries. These queries try to identify articles

that have high chances of containing the target relation between the two seed con-

cepts. We aimed to optimize precision, therefore we applied the following principles.

• Since PMC, like PubMed, is indexed with MeSH headings, we restrict our set of

seed concepts to those which can be expressed by a MeSH term.

• We impose a MeSH-based search mode to PMC by adding the /MH qualifier to

the concepts.

• We also want these concepts to play an important role in the article. One way to

specify this is to ask for them to be ‘major topics’ of the paper they index ([MAJR]

field in PubMed or PMC; note that this implies /MH).

Figure 1 Excerpt of the relations model
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• Finally, the target relation should be present between the two concepts. MeSH and

PMC provide a way to approximate a relation: some of the MeSH subheadings (e.g.,

therapy or prevention and control) can be taken as representing underspecified rela-

tions, where only one of the concepts is provided. For instance, Rhinitis, Vasomotor/

TH can be seen as describing a treats relation (/TH) between some unspecified treat-

ment and a rhinitis. Unfortunately, MeSH indexing does not allow the expression of

full binary relations (i.e., linking two concepts), so we had to keep this approximation.

Queries are thus designed according to the following model: <problem>/TH[MAJR]

and <treatment>/MH. They are submitted to PMC to obtain full-text articles on the

required topics. This method should increase the chances of obtaining sentences where

one of the reference relations occurs, and provides a large variety of expressions of the

target relation.

The resulting corpus contains a set of medical articles in XML format. From each

article we construct a text file by extracting relevant fields such as the title, the sum-

mary and the body (if they are available).

Then, we split every text into sentences using the segmentation model of the Ling-

Pipe project. We apply MetaMap on each sentence and keep the sentences which con-

tain at least one couple of concepts (c1, c2) connected by the target relation R

according to the Metathesaurus.

This semantic pre-analysis reduces the manual effort required for subsequent pattern

construction, which allows us to enrich the patterns and to increase their number. The

patterns constructed from these sentences consist in regular expressions taking into

account the occurrence of medical entities at precise positions. Table 2 presents the

number of patterns constructed for each relation type and some simplified examples of

regular expressions. A similar process was performed to extract another different set of

articles for our evaluation.

Evaluation

To build an evaluation corpus, we queried PubMedCentral with MeSH queries (e.g.

Rhinitis, Vasomotor/th[MAJR] AND (Phenylephrine OR Scopolamine OR tetrahydrozo-

line OR Ipratropium Bromide)). Then we chose a subset of 20 varied abstracts and arti-

cles (e.g. reviews, comparative studies).

We verified that no article of the evaluation corpus is used in the pattern construc-

tion process. The last stage of preparation was the manual annotation of medical enti-

ties and treatment relations in these 20 articles (total = 580 sentences). Figure 2 shows

an example of an annotated sentence.

We use the standard measures of recall, precision and F-measure. However, correct-

ness of named entity recognition depends both on the textual boundaries of the

extracted entity and on the correctness of its associated category (semantic type). We

Table 2 Examples of relation patterns

Relation Pattern number Simplified examples

causes 28 . . . E1 may trigger E2 . . .

diagnoses 12 E1 is the best test for (the diagnoses of)? E2

treats 46 . . . E1 was found to reduce E2 . . .

prevents 13 . . . E1 for prophylaxis against E2 . . .
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apply a commonly used coefficient to boundary-only errors: they cost half a point and

precision is calculated according to the following formula:

Precision
C B T

N
= + × + ×0 5 0.

(1)

• C: number of correct entities.

• B: number of entities with correct semantic type but incorrect boundaries.

• T: number of entities with wrong semantic types.

• N: total number of retrieved entities. (C + B + T = N)

The recall of named entity rceognition was not measured due to the difficulty of

manually annotating all the medical entities in our corpus. For the relation extraction

evaluation, recall is the number of correct treatment relations found divided by the

total number of treatment relations. Precision is the number of correct treatment rela-

tions found divided by the number of treatment relations found.

Results and discussion
In this section, we present the obtained results, the MeTAE platform and discuss some

issues and features of the proposed approaches.

Results

Table 3 shows the precision of medical entity recognition obtained by our entity

extraction approach, called LTS+MetaMap (using MetaMap after text to sentence

segmentation with LingPipe, sentence to noun phrase segmentation with Treetagger-

Figure 2 Example of manual annotations

Table 3 Medical entity extraction according to semantic types. Tr = T/N, type error rate;
Br = B/N, boundary error rate; P = precision. All results are percentages.

MetaMap LTS+MetaMap

Tr Br P Tr Br P

Disease Or Syndrome 9.09 52.27 64.77 9.81 26.48 76.94

Injury or poisoning 33.33 34.84 49.24 26.19 35.71 55.95

Neoplastic Process 29.03 6.45 67.74 37.5 12.50 56.25

Anatomical Abnormality 85.71 0.00 14.28 40.00 0.00 60.00

Cell or Molecular Dysfunction 66.66 25.00 20.83 44.44 44.44 27.79

Total 30.08 30.52 54.62 12.23 27.10 74.21
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chunker and Stoplist filtering), compared to the simple use of MetaMap. Entity type

errors are denoted by T, boundary-only errors are denoted by B and precision is

denoted by P. The LTS+MetaMap method led to a significant increase in the overall

precision of medical entity recognition. Actually, LingPipe outperformed MetaMap

in sentence segmentation on our test corpus. LingPipe found 580 correct sentences

where MetaMap found 743 sentences containing boundary errors and some sen-

tences were even cut in the middle of medical entities (often due to abbreviations).

A qualitative study of the noun phrases extracted by MetaMap and Treetagger-chun-

ker also shows that the latter produces less boundary errors.

For the extraction of treatment relations, we obtained 60.46% recall, 75.72% precision

and 67.23% F-measure. Other approaches similar to our work like [16] obtained 84%

recall, 48.14% precision and 61.20% F-measure for the extraction of treatment rela-

tions. Semrep [20] obtained 54% recall, 84% precision and 68.21% F-measure on a set

of predications including the treatment relationship (i.e. administrated to, manifesta-

tion of, treats). However, given the differences in corpora and in the nature of rela-

tions, these comparisons must be considered with caution.

Annotation and exploration platform: MeTAE

We implemented our approach in the MeTAE platform which allows to annotate

medical texts or files and writes the annotations of medical entities and relations in

RDF format in external supports (cf. Figure 3). MeTAE also allows to explore

semantically the available annotations through a form-based interface. User queries

are reformulated using the SPARQL language according to a domain ontology which

defines the semantic types associated to medical entities and semantic relationships

with their possible domains and ranges. Answers consist in sentences whose annota-

tions conform to the user query together with their corresponding documents (cf.

Figure 4).

Figure 3 MeTAE: annotation interface
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Discussion

Several semantic relation extraction approaches only address relation detection (e.g.

find that a sentence contains the searched relation [16]). In the context of medical

question-answering systems, we are not only interested in relation detection but also

in the linked medical entities. We focus on searching <source,relation,target> triples

such that the source and the target have known categories (semantic types) and such

that the relation is valid w.r.t domain knowledge and w.r.t linguistic considerations (i.e.

the sentence really states that the source treats the target). In this context, the same

sentence may contain several triples <source,relation,target>.

A first analysis of the false positives shows that the main error causes are: (i) errors

in the extraction of medical entities (ii) patterns of the treatment relation that also

cover forms of expression of other relations and (iii) sentences that contain possible

source and target entities without them being connected with the treatment relation.

Using external segmentation tools (LingPipe, Treetagger) brought improvements

compared to the direct use of MetaMap. However, other segmentation tools exist and

could display a different behavior. We performed a comparative study of a larger set of

tools in a recent work [25].

It is interesting to note that our method brought new relation assertions between

medical entities. For example, in the sentence: “Fosfomycin and amoxicillin-clavulanate

appear to be effective for cystitis caused by susceptible isolates”, our system automati-

cally extracted that fosfomycin (E1) and amoxicillin-clavulanate (E2) are two treat-

ments for cystitis (E3) when no may treat relation is asserted between (E1,E3) resp.

(E2,E3) in the UMLS Metathesaurus. The computation of the new assertions ratio is

planned in a short term perspective.

A limitation to our approach is the fact that it will not always be the case that we

have knowledge bases with semantic relationships between medical entities as a start-

ing point. Also, the keyword and MeSH-qualifiers based method requires to have a

specific qualifier for the target relation (here, TH for the treatment relation) to obtain

Figure 4 MeTAE: exploration interface
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a more focused corpus for pattern construction. If this is not the case, a decrease in

the relevance of the obtained abstracts/texts may be expected.

A classic disadvantage of pattern-based methods is the expensive cost needed to

obtain a good recall. Nevertheless, it is interesting to test and improve manual patterns

to keep a good control on the extraction precision. Also, such methods can be inte-

grated in hybrid extraction approaches to balance their qualities with that of statistical

methods, as we did in recent work [26].

We obtained good results in precision and F-measure compared to other semantic

relation extraction approaches. This meets our initial objective, which is to have a high

precision in relation extraction in order to build efficient question-answering systems.

Conclusions
In this paper, we presented a knowledge and linguistic-based approach for the extrac-

tion of medical entities and the semantic relations linking them. This approach is

based on two main steps: (i) the recognition of medical entities with an enhanced use

of MetaMap and (ii) the exploitation of linguistic patterns taking into account the

semantic types of medical entities. The results obtained on a real test corpus show the

effectiveness of our approach and its advantages for question-answering systems.

In short-term perspectives, we intend to study the false negatives in order to improve

our patterns. We also intend to design a method which automatically extracts contex-

tual information such as the status of the relation (e.g. hypothetical, established-

known) and information about patients (e.g. gender, age).

Acknowledgements
The research work in its first unrevised form was presented at the SMBM 2010, Hinxton, Cambridge, U.K. This work has
been partially supported by OSEO under the Quaero program.
This article has been published as part of Journal of Biomedical Semantics Volume 2 Supplement 5, 2011: Proceedings
of the Fourth International Symposium on Semantic Mining in Biomedicine (SMBM). The full contents of the
supplement are available online at http://www.jbiomedsem.com/supplements/2/S5.

Authors contributions
ABA designed the proposed methods, built the relation patterns, implemented the platform, manually annotated the
evaluation corpus and wrote a first version of the manuscript. PZ participated in the study design, proposed the
MeSH-based method for corpus selection and contributed to the manuscript. Both authors read and approved the
final manuscript.

Competing interests
The authors declare that they have no competing interests.

Published: 6 October 2011

References
1. Engelbrecht R: Expert systems for medicine functions and developments. Zentralbl Gynakol 1997, 119(9):428-34.
2. Hotvedt MO: Continuing medical education: actually learning rather than simply listening. JAMA 1996, 275(21):1638.
3. PubMed. [http://www.pubmed.com].
4. CISMeF. [http://www.chu-rouen.fr/cismef].
5. Health On the Net. [http://www.healthonnet.org].
6. Aronson AR: Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program. AMIA Annu

Symp Proc 2001, 17-21.
7. Pratt W, Yetisgen-Yildiz M: A Study of Biomedical Concept Identification: MetaMap vs. People. AMIA Annu Symp Proc

2003, 529-533.
8. Meystre SM, Haug PJ: Comparing natural language processing tools to extract medical problems from narrative

text. AMIA Annu Symp Proc 2005, 525-9.
9. Hindle D: Noun classification from predicate argument structures. Proceedings of the 28th annual meeting of the

Association for Computational Linguistics 1990, 268-275.
10. Zhu J, Nie Z, Liu X, Zhang B, Wen JR: StatSnowball: a statistical approach to extracting entity relationships.

Proceedings of the 18th international conference on World Wide Web 2009.

Ben Abacha and Zweigenbaum Journal of Biomedical Semantics 2011, 2(Suppl 5):S4
http://www.jbiomedsem.com/content/2/S5/S4

Page 10 of 11

http://www.jbiomedsem.com/supplements/2/S5
http://www.ncbi.nlm.nih.gov/pubmed/9381838?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8637135?dopt=Abstract
http://www.pubmed.com
http://www.chu-rouen.fr/cismef
http://www.healthonnet.org


11. Hearst MA: Automatic Acquisition of Hyponyms from Large Text Corpora. Proceedings of the 14th conference on
Computational Linguistics 1992, 539-545.

12. Suchanek FM, Ifrim G, Weikum G: Combining Linguistic and Statistical Analysis to Extract Relations from Web
Documents. Proceedings of the 12th ACM SIGKDD international conference on Knowledge Discovery and Data Mining
2006, 712-717.

13. Cimino J, Barnett G: Automatic knowledge acquisition from MEDLINE. Methods of Information in Medicine;32(2) 1993,
120-130.

14. Khoo CSG, Chan S, Niu Y: Extracting Causal Knowledge from a Medical Database Using Graphical Patterns.
Proceedings of 38th Annual Meeting of the ACL, Hong Kong 2000.

15. Lee CH, Na JC, Khoo C: Ontology Learning for Medical Digital Libraries. Proceedings of the 6th International Conference
of Asian Digital Library 2003, 302-305.

16. Lee CH, Khoo C, Na JC: Automatic identification of treatment relations for medical ontology learning: An
exploratory study. Proceedings of the Eighth International ISKO Conference 2004, 245-250.

17. Embarek M, Ferret O: Learning Patterns for Building Resources about Semantic Relations in the Medical Domain.
Proceedings of the Sixth International Language Resources and Evaluation (LREC’08) 2008.

18. Rindflesch TC, Bean CA, Sneiderman CA: Argument Identification for Arterial Branching Predications Asserted in
Cardiac Catheterization Reports. AMIA Annu Symp Proc 2000, 704-708.

19. Fiszman M, Rosemblat G, Ahlers CB, Rindflesch TC: Identifying risk factors for metabolic syndrome in biomedical text.
AMIA Annu Symp Proc 2007, 249-253.

20. Ahlers CB, Fiszman M, Demner-Fushman D, Lang FM, Rindflesh TC: Extracting Semantic Predications From Medline
Citations for Pharmacogenomics. Pacific Symposium on Biocomputing 2007.

21. Pustejovsky J, no JMC, Zhang J, Kotecki M, Cochran B: Robust Relational Parsing over Biomedical Literature:
Extracting Inhibits Relations. Pacific Symposium on Biocomputing 2002, 362-373.

22. LingPipe. [http://alias-i.com/lingpipe/].
23. TreeTagger. [http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/].
24. PMC. [http://www.ncbi.nlm.nih.gov/pmc/].
25. Ben Abacha A, Zweigenbaum P: Medical Entity Recognition: A Comparison of Semantic and Statistical Methods.

Proceedings of the 10th ACL workshop on Biomedical Natural Language Processing (BioNLP’11), 9 pages, Portland, Oregon,
USA, 2011.

26. Ben Abacha A, Zweigenbaum P: A Hybrid Approach for the Extraction of Semantic Relations from MEDLINE
Abstracts. Proceedings of the 12th International Conference on Computational Linguistics and Intelligent Text Processing
(CICLing’11), volume 6608 of Lecture Notes in Computer Science, pages 139-150, Tokyo, Japan, 2011.

doi:10.1186/2041-1480-2-S5-S4
Cite this article as: Ben Abacha and Zweigenbaum: Automatic extraction of semantic relations between medical
entities: a rule based approach. Journal of Biomedical Semantics 2011 2(Suppl 5):S4.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Ben Abacha and Zweigenbaum Journal of Biomedical Semantics 2011, 2(Suppl 5):S4
http://www.jbiomedsem.com/content/2/S5/S4

Page 11 of 11

http://www.ncbi.nlm.nih.gov/pubmed/21860884?dopt=Abstract
http://alias-i.com/lingpipe/
http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/
http://www.ncbi.nlm.nih.gov/pmc/

	Abstract
	Background
	Results
	Conclusions

	Introduction
	Background
	Method
	Medical entity recognition
	Relation extraction
	Pattern construction
	Evaluation

	Results and discussion
	Results
	Annotation and exploration platform: MeTAE
	Discussion

	Conclusions
	Acknowledgements
	Authors' contributions
	Competing interests
	References

