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Abstract

Background: Dynamic models in Systems Biology are used in computational simulation experiments for addressing
biological questions. The complexity of the modelled biological systems and the growing number and size of the
models calls for computer support for modelling and simulation in Systems Biology. This computer support has to be
based on formal representations of relevant knowledge fragments.

Results: In this paper we describe different functional aspects of dynamic models. This description is conceptually
embedded in our “meaning facets” framework which systematises the interpretation of dynamic models in structural,
functional and behavioural facets. Here we focus on how function links the structure and the behaviour of a model.
Models play a specific role (teleological function) in the scientific process of finding explanations for dynamic
phenomena. In order to fulfil this role a model has to be used in simulation experiments (pragmatical function).
A simulation experiment always refers to a specific situation and a state of the model and the modelled system
(conditional function). We claim that the function of dynamic models refers to both the simulation experiment
executed by software (intrinsic function) and the biological experiment which produces the phenomena under
investigation (extrinsic function). We use the presented conceptual framework for the function of dynamic models to
review formal accounts for functional aspects of models in Systems Biology, such as checklists, ontologies, and formal
languages. Furthermore, we identify missing formal accounts for some of the functional aspects. In order to fill one of
these gaps we propose an ontology for the teleological function of models.

Conclusion: We have thoroughly analysed the role and use of models in Systems Biology. The resulting conceptual
framework for the function of models is an important first step towards a comprehensive formal representation of the
functional knowledge involved in the modelling and simulation process. Any progress in this area will in turn improve
computer-supported modelling and simulation in Systems Biology.

Background
The modelling of complex biological systems is faced with
huge challenges. New high-throughput experimentation
generates enormous amounts of data which forms the
empirical basis for dynamic models in Systems Biology
(for short called “bio-models” in this paper). The manage-
ment and analysis of the “data iceberg” [1] is impossible
without computer support. Modelling and simulation on
the systems level requires the integration of data from dif-
ferent sources on various levels in a collaborative manner
[2] and the incorporation of existing models. See [3] for
a detailed discussion of the challenges for modelling and
simulation in Systems Biology.
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Bio-models are mathematical descriptions of biological
processes which are used to answer biological questions.
Generally, these questions are causal questions asking for
mechanistic explanations of dynamic biological phenom-
ena. In order to serve as mechanistic explanations it is
necessary that the temporal behaviour of a bio-model
can be simulated by means of computers. Therefore, the
bio-model has to be encoded in an appropriate computer-
understandable format. System-level understanding of
biological phenomena requires the integration of bio-
models from different abstraction levels expressed in dif-
ferent modelling paradigms [4]. Computer support for
modelling and simulation is an important contribution to
meet the challenges in Systems Biology. This computer
support has to be based on formal representations of rel-
evant knowledge fragments. A first step towards such
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a formal representation is an ontological analysis of the
domain of knowledge in question. The result of such an
analysis will be a “conceptual framework”, i.e. a set of cat-
egories and relations between them which can be used to
capture the respective knowledge. What we call a “con-
ceptual framework” is usually called “domain model” or
“conceptual model” in computer science. In the context
of this work the use of the traditional terms seems to be
misleading because the omnipresent term “model” is used
with different meaning.
The function of a bio-model describes its role in the

scientific process of finding mechanistic explanations for
biological phenomena. Beside this teleological aspect of a
model’s function there are pragmatical aspects: The func-
tion of a bio-model also describes the use of the model in
simulation experiments. In such simulation experiments
behaviours of the model are generated. Thus, function
links a model (structure) to its behaviours. To summarise,
the function of bio-models describes why and how to use
models in simulation experiments:

“Models can fulfil many functions as we have seen; but
they generally perform these functions not by being
built, but by being used. Models are not passive
instruments, they must be put to work, used, or
manipulated.” ([5], p.32)

Physiology is the branch of biology dedicated to func-
tion of living systems. The notion of “function” as used
in physiology incorporates two aspects of a biological
entity: (1) The function states a role an entity plays
as a component of an encompassing process. The bio-
logical function is therefore tied to a specific process.
(2) The function characterises the behaviour which the
entity has to exhibit for fulfilling its role. Biological func-
tion links system structure (the entities and relation)
to behaviour. The most famous example is the func-
tion of genes which links the genotype to the pheno-
type. In this paper we transfer this notion of function to
bio-models.
We claim that the function of a bio-model links its struc-

ture to its behaviour. Before we describe the function
of a bio-model in detail we will introduce the “mean-
ing facets” which provide a framework to systematically
describe the knowledge involved in creating and using
bio-models. In the meaning facets framework the func-
tion of a bio-model mediates between its structure and its
behaviour (cf. Figure 1). The present paper focuses on how
the function plays this mediating role.
In order to do so, we first analyse the function of bio-

models and develop a conceptual framework. Then, the
conceptual framework is used to show whether and how
the function can be formalised. Thereby, we review exist-
ing formal approaches and identifymissing pieces. For one

of the identified gaps we outline a possible filler. Finally,
we compare our conceptual framework with related work.

Meaning facets of bio-models
Generally, a mathematical model establishes a relation
between a system under observation (what Rosen [6] calls
the “natural system”) and a formal system. Rosen calls this
the “Modeling Relation”. In order to be useful the mod-
elling relation has to be an isomorphism: the structure
of the formal system, expressed as entities and relations
between them, can be mapped onto the structure of the
natural system, recognised as objects and interactions.
In our analysis of the modelling process in Systems

Biology we make two important observations about bio-
models [7]. First, a bio-model has a dual interpretation:
In order to be used in computer simulations the encoded
model has to be intrinsically interpreted with respect
to the encoding format used. This can be done without
referring to the modelled natural system. Furthermore, a
model has to be related to the natural system (cf. Rosen’s
modelling relation [6] mentioned above), i.e. it has to
be extrinsically interpreted. Second, dynamic models are
considered on three levels: Models are systems of com-
ponents and relations (model structure). Models are used
in simulation experiments for answering biological ques-
tions (model function). Models exhibit temporal changes
(model behaviour). The three levels of bio-models are
inspired by function modelling in engineering (see, e.g.,
[8]). In function modelling formally represented teleolog-
ical knowledge is used for the design and diagnosis of
engineering artefacts.
We claim that full computer support of the overall mod-

elling process has to be based on a complete description
of a bio-model encompassing all six “meaning facets” [9],
i.e. the intrinsic and extrinsic sides on each of the three
levels. If we look at the scientific process of modelling
a biological system in order to explain data observed in
experiments we can clearly identify the three levels and
the dual interpretation (see Figure 1). More details about
the six meaning facets are given by Knüpfer et al. [9]
including a complete description of an example model
with respect to the meaning facets. However, in this paper
we will focus on the functional facets of bio-models.

Conceptual framework for the function of
bio-models
A bio-model used in simulation experiments in order
to answer biological question has an intrinsic and an
extrinsic function (see above) which can be understood
in teleological and in pragmatical terms. There is a third
perspective on the function of bio-models, which we call
“conditional”: the role played by an entity depends on the
context; in different situations or under different condi-
tions an entity may have different roles. In the following
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Figure 1 Structure, function and behaviour of a bio-model. Structure (blue/left), function (yellow/middle) and behaviour (green/right) of a
bio-model. The model relates the (intrinsic) computer representation with the (extrinsic) biological reality. (1) Structure: The biological target system
is transferred into a model which can in turn be intrinsically interpreted as a formal system. This establishes a modelling relation between the two
systems. If there is a valid mapping between the components of the target system and the formal system, we call the model a competence model.
(2) Function: The intention of the model is its use in simulation experiments for explaining biological phenomena observed in biological
experiments. (3) Behaviour: The simulation experiments produce results which can be interpreted as the dynamics of the model. This dynamics can
be related to the interpreted data of the biological experiments. If the behaviour of the model is similar to the behaviour of the biological system,
we call the model a performance model with respect to the corresponding biological phenomena. Explanation is using a competence model in an
simulation experiment which makes it a performance model with respect to the biological phenomena to explain.

we will investigate the individual functional aspects in
detail. The introduced concepts were distinguished by
writing them in italics throughout the paper. Table 1
summarises the used concepts.
The presented conceptual framework extends the

Minimum Information About a Simulation Experiment
(MIASE, [10]) which is a reporting guideline for simula-
tion experiments performed on bio-models. The rules of
MIASE regard the conditional and pragmatical function
of bio-models. The conceptual framework presented here
also incorporates the teleological function and relates the
description of simulation experiments (intrinsic function)
to the biological counterparts (extrinsic function).
It should be noted that a bio-model can have more than

one function if it be used to answer different biological
questions. The separation of structure and function of

Table 1 Functional aspects of bio-models

Intrinsic Extrinsic

Teleological function Intended use Model use intention

Constraints Assumptions

Conditional function Model instantiation Boundary conditions

Initial values Initial state

Pragmatical function Setup Experimental settings

Post-processing Result calculations

bio-models in our meaning facets framework facilitates
this re-use of the samemodel for different purposes. How-
ever, the model structure can restrict the adequate use of
a model in so far as not every model structure is able to
answer a given question.

Teleological function
Bio-models play an important teleological role in answer-
ing questions about the biological system under investiga-
tion. These questions lead to specific intentions of using
the model in simulation experiments (called “model use
intentions” in the following). Model use intentions may
be, for example, the explanation of observed behaviours
or the prediction of possible behaviours. What is an
accepted explanation or prediction depends on the sci-
entific field and community [11]. Furthermore, there are
specific assumptions underlying the model use inten-
tions, e.g. the assumption that a specific reaction is very
fast. The extrinsic teleological function of bio-models
refers to the model use intentions and the underlying
assumptions.
The intended use of the model in simulation experi-

ments has to reflect the model use intentions. Depending
on these intentions different types of simulation exper-
iments may be appropriate. Often, different simulation
experiments have to be combined in order to yield the
desired outcome. Constraints which are in line with the
assumptions are imposed on the simulation experiments.
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Such constraints may include value restrictions, ratios
between values, and conservation rules. The intrinsic tele-
ological function of a bio-model describes its intended use
and imposed constraints.

Conditional function
The questions addressed by the model, in general, assume
certain boundary conditions and a specific initial state
of the experimentally observed biological system. The
boundary conditions determine the environment of the
biological system (e.g. temperature, pH, nutrition) and
may be reflected by corresponding kinetic data. It is also
possible to give plausible ranges for some of the condi-
tional values instead of single values. The extrinsic con-
ditional function of a bio-model is expressed in terms of
boundary conditions and initial states.
A bio-model contains state variables and formal param-

eters. In order to be used in simulation experiments,
concrete values must be assigned to all parameters. This
is called “model instantiation”. Furthermore, the initial
values for all state variables have to be chosen. The intrin-
sic conditional function of a bio-model makes the model
ready to be used in simulation experiments by means of
model instantiation and choice of initial values.

Pragmatical function
As mentioned above, bio-models explain or predict the
behaviour of the modelled biological system. This tele-
ological function requires a complementary description
of the experimental settings which lead to the observed
behaviour and allow for the verification of the predicted
behaviour. Usually the experimental data is transformed
into the final observations by means of result calcula-
tions. The extrinsic pragmatical function of a bio-model
describes the experimental settings and result calculations
related to the dynamic phenomena under investigation.
Bio-models are used in simulation experiments. The

setup of the simulation experiments precisely describes

the procedure applied to the instantiated model. This
involves the simulation algorithm used and specific set-
tings for this algorithm. In addition, the exact steps,
their order and applied perturbations have to be speci-
fied. Post-processing of the raw data from the simulation
experiments generates the desired outcome. The intrinsic
pragmatical function of a bio-model describes the setup of
the simulation experiments applied to themodel structure
and the post-processing which finally produces the model
behaviour.

Formal approaches to the function of bio-models
In this section we briefly review existing approaches for
formalising the different functional aspects of bio-models.
The aim of this review is to investigate the coverage
of formal representations of functional knowledge as a
basis for computer support. Table 2 provides an overview
of the formal approaches. The classification of the for-
mal approaches in checklists, languages and ontologies is
motivated by [12]. Table 2 can be seen as a detailed view
of the middle column “Simulation description” of Figure 1
from ([12], p.7) which reviews existing approaches for bio-
models. The formal approaches displayed in Table 2 and
the gaps are discussed in the following sections.

Checklists
To start the formalisation of a specific kind of sci-
entific data, like bio-models, experiment protocols, or
experimental results, the responsible community first
of all has to agree on the information needed. So-
called “Minimum Information Checklists” state what
information at least has to be described. Checklists
are semi-formal in that they structure the information.
The information, however, is still formulated in natural
language.
The concrete intrinsic functional description of the sim-

ulation experiments is the main focus of MIASE [10].
MIASE requests information about the simulation type

Table 2 Formal approaches for functional aspects of bio-models

Functional aspect Checklists Languages Ontologies

Teleological function

Intrinsic: Intended use MIASE SED-ML MINTENTO

Extrinsic: Model use intention Unknown Unknown MINTENTO

Conditional function

Intrinsic: Model instantiation MIASE SED-ML Not applicable

Extrinsic: Boundary conditions MIBBI SABIO-RK* XCO

Pragmatical function

Intrinsic: Setup MIASE SED-ML KiSAO

Extrinsic: Experimental settings MIBBI FuGE MMO

*The database scheme of SABIO-RK could be seen as a formal language for experimental conditions.
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(intended use, teleological function), the model instantia-
tion (conditional function), the exact experimental setup,
and the necessary post-processing (pragmatical function).
For the description of the extrinsic function there are

a lot of specific checklists listed in the MIBBI portal
(Minimum Information for Biological and Biomedi-
cal Investigations, [13]), for example, MIAME (Min-
imum Information About a Microarray Experiment,
[14]) and MIFlowCyt (Minimum Information about a
Flow Cytometry Experiment, [15]). The listed check-
lists concern information about the boundary conditions
(conditional function) and the experimental settings
(pragmatical function) for specific types of biologi-
cal experiments. We are not aware of any checklists
for the model use intentions (teleological function) of
bio-models.

Languages
In most cases a checklist can be translated to a spec-
ification of a formal language. Such a formal language
for describing simulation experiments is SED-ML (Sim-
ulation Experiment Description Markup Language, [16])
which allows to specify the type of simulation, i.e. the
intended use (intrinsic teleological function), the model
instantiation and initial values (intrinsic conditional func-
tion) as well as the setup and post-processing of the
simulation experiments (intrinsic pragmatical function).
However, SED-ML can not fully describe the intended
use and the imposed constraints. The Systems Biology
Markup Language (SBML, [17]) used for the encoding
of the model structure is also able to determine parame-
ter values (model instantiation) and initial values. But, in
order to be able to reuse models in different simulation
experiments we suggest to clearly separate descriptions
of models (in SBML) from descriptions of their use
(in SED-ML).
There are languages for describing extrinsic experi-

mental conditions and specific biological experiments.
SABIO-RK (System for the Analysis of Biochemical Path-
ways – Reaction Kinetics, [18]), for example, allows the
representation of experimental and environmental bound-
ary conditions for measurements of the stored kinetic
data. The Functional Genomics ExperimentObjectModel
(FuGE, [19]) describes experimental settings in functional
genomics. We will not go into detail here. We are not
aware of any languages for the model use intentions (tele-
ological function) of bio-models.

Ontologies
Ontologies formalise conceptual knowledge. They can
provide vocabularies for formal languages.
The Kinetic Simulation Algorithm Ontology (KiSAO,

[20]) is employed within SED-ML to precisely specify
the algorithms used for the simulation experiment. Thus,

KiSAO contributes to the description of the intrinsic prag-
matical function of bio-models (setup).
Ontologies for intrinsicmodel instantiation seem not to

be very useful: There is not much conceptual knowledge
involved in assigning values to parameters and variables.
This is not the case for the (extrinsic) boundary condi-
tions. The Experimental Conditions Ontology (XCO) [21]
provides a rich vocabulary of experimental conditions
for phenotype experiments. The Measurement Method
Ontology (MMO) [21] can be used for specifying the
measurement method in descriptions of extrinsic experi-
mental settings. Because XCO and MMO are slightly out
of our scope we will not provide further details.
At the moment there exists no ontology for the teleo-

logical function of bio-models. In the next section we pro-
pose an ontology for both the intrinsic and the extrinsic
teleological function.

A new ontology for intentions of bio-models
In this section we provide first ideas for an ontology for
the teleological function of bio-models. For convenience,
we will call this proposed ontology MINTENTO (Mod-
elling Intention Ontology). Such an ontology would, for
example, facilitate computer support for the choice of
appropriate simulation types andmethods based on inten-
tions. Such an ontology would also allow to place simula-
tion results in the context of the respective intentions. As a
consequence, this will ease the reuse of simulation results.
How could an ontology for the teleological function

of bio-models look like? Here we present first ideas for
MINTENTO. The teleological function of bio-models
comprises of two aspects: the extrinsic model use inten-
tions and the intrinsic intended use of the model fulfilling
the intentions. This reflects the difference between a func-
tion (here: “model use intention”) and its realisation (here:
“intended use”) which is also employed for the ontological
analysis of biological function by Burek et al. [22]. There
may exist realisedBy relations between classes of the
two mainMINTENTO branches. A statement of the form
“A realisedBy B”, where A is a subclass of “model use
intention” and B is a subclass of “intended use”, means
for every instance a of A there is an instance b of B (a
process) such that the execution of b realises a. As a
consequence the instance level relation realises reads
as “fulfils or contributes to”.
In MINTENTO we want to cover both aspects and

appropriate realisedBy relations between them. To
grammatically reflect this distinction we use infinitive
verb forms (e.g. “to construct”) for model use intentions
and nouns for the realising processes (e.g. “construction”).
MINTENTO specialises the upper ontology BFO (Basic
Formal Ontology, [23]): “model use intention” is a subclass
of the BFO concept “snap:Function” and “intended use” is
a subclass of the BFO concept “span:Process”.
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The model use intentions for the investigation of a bio-
logical system are formulated in natural language. There
is a wide diversity of model use intentions. Morrison and
Morgan describe different high-level (teleological) func-
tions of models [5]. Summarising they state:

“[...] models fulfil a wide range of functions in building,
exploring and applying theories; in various
measurement activities; and in the design and
production of technologies for intervention in the
world.” ([5], p.24)

The set of ways how models can be used, provided by
Morrison and Morgan [5], is a good starting point for
an upper classification of general model use intentions.
Models are used “to construct (a theory)”, “to explore
(a theory)”, “to measure”, and “to intervene”. These four
upper level model use intentions are based on two dis-
tinctions: (1) A model “can mediate between theory and
the world” ([5], p.11), i.e. the model is either intended
“to affect theory” or “to affect reality”. (2) There is a dis-
tinction between using a model “to effect (something)”
and “to learn (something)” ([5], p.11). Figure 2 shows the
two distinctions and the resulting upper level model use
intentions.
In this paper we focus on dynamic and computational

bio-models. The intended use of this kind of model is
the simulation of the model’s dynamic behaviour. There
is also the possibility to mathematically analyse dynamic
properties of a bio-model without explicitly considering
any temporal behaviour. Therefore, the upper level of
the “intended use” branch of MINTENTO consists of
“simulation” and “analysis”. Simulations are further dif-
ferentiated into “elementary simulation” and “combined
simulation” (see Figure 3). An elementary simulation cal-
culates the temporal behaviour of the model for a single
model instantiation whereas a combined simulation con-
sists of several elementary simulations for differentmodel
instantiations and integrates the single results into the
final outcome. An example for an elementary simulation
is a uniform time-course simulation, where the state of
the formal system specified by the model is calculated at
discrete equidistant time points. This simulation type is

model use intention

to affect theory

to effect

to construct to intervene

to learn

to explore to measure

to affect reality

Figure 2 Upper level of MINTENTO: model use intention. Upper
level terms for the “model use intention” branch of MINTENTO. The
edges represent subclass (is-a) relations.

intended use

simulation

elementary simulation combined simulation

analysis

Figure 3 Upper level of MINTENTO: intended use. Upper level
terms for the “intended use” branch of MINTENTO. The edges
represent subclass (is-a) relations.

covered by SED-ML Level 1 Version 1 [24]. A parame-
ter scan is an example for a combined simulation where
the scanned parameter is varied in the particular elemen-
tary simulations. The next SED-ML version is supposed to
provide mechanisms for defining combined simulations,
like sequential and nested simulations (cf. the website [25]
for current developments).
In order to illustrate such realisedBy relations

betweenmodel use intentions and intended use we look at
some common tasks (“model use intentions”), a bio-model
is used for: (1) “to approximate” observed behaviour, (2)
“to investigate” the variability in behaviour, (3) “to demon-
strate” the ability for specific kinds of behaviour, and (4)
“to explore” parameter influence on the behaviour. Each
task requires a different corresponding (realisedBy)
simulation type: (1) time series (eventually including
parameter fitting), (2) bifurcation analysis, (3) stability
analysis, and (4) parameter scan.

Related conceptual frameworks
In this section we will compare our conceptual framework
for the function of bio-models with related conceptuali-
sations from the fields of Artificial Intelligence, modelling
and simulation, functional modelling, and biology.
The dual intrinsic/extrinsic interpretation of bio-

models is rooted in the “knowledge representation
hypothesis” from Artificial Intelligence:

“Any mechanically embodied intelligent process will be
comprised of structural ingredients that a) we as
external observers naturally take to represent a
propositional account of the knowledge that the overall
process exhibits, and b) independent of such external
semantical attribution, play a formal but causal and
essential role in engendering the behavior that
manifests that knowledge.” ([26], p.15)

Simon generalises this duality to all kinds of artifacts
which serve as interfaces between an inner and an outer
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environment [27]. Rosen’s modelling relation [6] is a con-
gruence between an extrinsic/outer natural system and an
intrinsic/inner formal system established by a model.
As stated above, a conceptual framework provides

categories and relations between them which are
employed to capture relevant knowledge fragments.
There are other conceptual frameworks for modelling
and simulation in general [28,29], and in particular
for bio-modelling [12]. Our meaning facets, how-
ever, provide much more details and are more rigid,
i.e. they provide categories of finer granularity and
define them more precisely. Our meaning facets are
therefore a solid foundation for computer support for
modelling and simulation based on formal knowledge
representation.
Zeigler’s notion of an “experimental frame” [29] resem-

bles the model instantiation (conditional function) and
the experimental setup (pragmatical function) presented
in this paper. His experimental frame “is the operational
formulation of the objectives that motivate a modeling
and simulation project” ([29], p.27), i.e. it also describes
the teleological function of a model.
The field of functional modelling relates structure,

behaviour and function of engineering artifacts. Erden
et al. reviews the different approaches to formalise func-
tion and its relations to structure and behaviour [8]. Two
different notions of function are employed [8]: On the
one hand, function is mediating between structure and
behaviour and determines the “structural behaviours”, i.e.
all possible behaviours the model is able to show. This
is essentially what we call conditional and pragmatical
function, respectively. On the other hand, function refers
to the intentions of the modeller and restricts the possi-
ble behaviours to the “expected behaviours”. This notion
of function as purpose corresponds to our teleological
function. In short, functional modelling addresses “the
questions of what the device and its components do or
what the purpose of the device and its components are”
([8], p.149). Joining these two sides, function becomes
“the bridge between human intention and physical behav-
ior of artifacts” ([30], p.271). The distinction between
structural and expected behaviours originates from
Gero [31].
We transfer the notion of function in biology to mod-

elling in systems biology. There are some strong par-
allels between function in biology and function of bio-
models. The idea that function links between structure
and behaviour is deeply rooted in molecular biology, as,
e.g., stated by Lander:

“If one such behavior seems useful (to the organism), it
becomes a candidate for explaining why the network
itself was selected, i.e., it is seen as a potential purpose
for the network.” ([32], p.0712)

However, we will not discuss the notion of function in
biology further here. Krohs and Kroes compare the notion
of function in biology and technology and examines dis-
analogies and parallels [33].
There are some formal approaches to biological func-

tion. Ontologies like EcoCyc [34] and the Gene Ontology
[35] list molecular functions played by biological enti-
ties. Burek et al. presents an ontology of biological func-
tions which formalises three functional aspects [22]: the
so-called “function structure”, the realisation and the has-
function relation, which could be related to our teleolog-
ical, pragmatical and conditional function, respectively.
Because of the different knowledge domains of [22] and
our work, the two are not identical. We provide more
details on each functional aspect. However, the similarity
of these conceptualisation and the one presented in this
paper can be seen as further justification for transferring
the notion of biological function to bio-models.

Conclusion
Wehave applied the notion of function to dynamicmodels
in Systems Biology. Function is the link between themodel
structure and the model behaviour. The intrinsic function
of bio-models describes three aspects of the model’s use:
Why should the model be used in simulation experiments
(teleological function)? Which model instance should be
used in simulation experiments (conditional function)?
How should the model be used in simulation experiments
(pragmatical function)? The extrinsic function of a bio-
model refers to the intentions of using the model in order
to address biological questions.
The presented conceptual framework of the functional

aspects of bio-models was used to systematise and review
corresponding formal accounts. Some functional aspects
are well covered by checklists, languages and associ-
ated ontologies. However, there are no checklists and
languages for the extrinsic teleological function. Closing
these gaps would improve the standardised descriptions
of biological experiments.
At the moment there also exists no ontology for the

model use intentions and the intended use of bio-models.
We outlined such an ontology, the Modelling Intention
Ontology (MINTENTO). Since this is ongoing work we
are only presenting first thoughts about MINTENTO
here. We nevertheless believe that these thoughts provide
an important starting point for developing an ontology for
the teleological function of bio-models. Next steps would
involve the incorporation of lower levels terms and the
specification ofMINTENTO in some standard format like
OWL (Web Ontology Language, [36]).
Our ontological analysis of functional aspects of

dynamic models in Systems Biology and their use in simu-
lation experiments provides an important prerequisite for
formalising the involved knowledge. Ultimately, this will
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improve any computer-supported research method for
answering biological questions by means of bio-models.
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