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Abstract

Background: The amount of web-based resources (databases, tools etc.) in biomedicine has increased, but the
integrated usage of those resources is complex due to differences in access protocols and data formats. However,
distributed data processing is becoming inevitable in several domains, in particular in biomedicine, where
researchers face rapidly increasing data sizes. This big data is difficult to process locally because of the large
processing, memory and storage capacity required.

Results: This manuscript describes a framework, called MAPI, which provides a uniform representation of resources
available over the Internet, in particular for Web Services. The framework enhances their interoperability and
collaborative use by enabling a uniform and remote access. The framework functionality is organized in modules
that can be combined and configured in different ways to fulfil concrete development requirements.

Conclusions: The framework has been tested in the biomedical application domain where it has been a base for
developing several clients that are able to integrate different web resources. The MAPI binaries and documentation
are freely available at http://www.bitlab-es.com/mapi under the Creative Commons Attribution-No Derivative Works
2.5 Spain License. The MAPI source code is available by request (GPL v3 license).

Keywords: Service-oriented architectures, Web-service integration, Software framework
Background
The World Wide Web (WWW) has emerged as a gallery
of resources, such as Web Services (WS) and datasets,
which can be discovered, combined and exploited to en-
hance our capacity of producing new knowledge. One
prominent example is the BioCatalogue [1] repository with
metadata describing over 2200 WS (November 2011).
The potential of using WS to support biomedical re-

search has been widely reported. For example, in [2,3],
WS are used to establish genome-disease associations
which are necessary for patient genome sequencing to
support determination of diagnosis or therapy. In [4],
semantics are used to enrich the patient record system, in
particular for tasks related to drug prescription (drug
interactions, medical insurance coverage for the drug etc.).
The authors show how web-services can be used to com-
municate information between the legacy systems and
databases.
* Correspondence: ortrelles@uma.es
Computer Architecture Department, University of Málaga, Complejo
Tecnológico, Campus de Teatinos, Málaga 29080, Spain

© 2013 Karlsson and Trelles; licensee Biomed
Creative Commons Attribution License (http:/
distribution, and reproduction in any medium
However, sending the output from a WS to another WS
(i.e. as workflows or pipelines) is complex because of differ-
ences in WS communication protocols (varying from
SOAP [5] to WS using REST [6] principles) and data for-
mats (for example FASTA [7], GenBank [8] and FASTQ
[9]). WS metadata describing tool inputs and outputs and
syntax description of formats (datatypes) in shared reposi-
tories simplifies the development of user-friendly client
software that can combine WS as workflows [10]. With
such metadata, it is also possible to apply tools such as
ReadSeq [11] to automatically transform biological se-
quence data between formats.
This paper describes a software framework (MAPI)

which provides support for WS integration. MAPI
addresses the following aspects of WS integration and
usage:

• Management and discovery of WS instances in
metadata registries
• Unification of WS metadata
• WS invocation (execution) and data format
conversion.
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In [12] we showed how MAPI facilitates client develop-
ment by allowing the developers to focus on GUI aspects.
This paper gives complementary background and details, in
particular with respect to the metadata schema in MAPI
(see Section “Common (shared) model”) and aspects
related to addressing heterogeneity in WS and user data
(see Section “Seamless data format transformation”).
Additionally, this paper exemplifies the usage of MAPI
functions for a simple use case (see Section “Use Case–
Homologous Protein Finder”) and discusses the role of
MAPI in biomedical settings where there are strong
requirements for security (see Section “Potential of using
WS in biomedicine”).
We will discuss the role of MAPI in the biomedicine do-

main where a wide variety of formats, protocols and tools
are used [13]. As a proof of concept, MAPI provides sup-
port for BioMOBY WS [14], WSDL – described SOAP WS
(for example, from European Bioinformatics Institute, EBI
[15] and DNA Data Bank of Japan, DDBJ [16]), Taverna
[17] workflows, WS from INB [18] and ACGT [19]
projects.
Implementation
This section gives an overview of the MAPI software
framework and its novel characteristics. The MAPI frame-
work covers functionality related to service-oriented archi-
tectures, in particular management of metadata for WS,
datatypes, data, files and users. We will describe the mod-
ules (components) and their overall functionality.
Figure 1 MAPI architecture. The figure shows the different software com
or several accesses. The Workers, Formatters and Loaders enable the Execu
protocols and data formats respectively.
BioMOBY datatype taxonomy
It is quite common that the results from one WS invoca-
tion must be further analyzed using other web-services.
The standard BioMOBY [14] aims to simplify this task by
defining a shared datatype taxonomy and a standardized
web-service protocol. The taxonomy follows the object-
oriented paradigm where data types are related to other
data types. Data types can inherit parts from another data
type and add additional structure/attributes by including
(containing) or consisting of arrays of other data types. For
example, the datatype GenericSequence from the datatype
taxonomy of BioMOBY MobyCentral inherits from
VirtualSequence the attributes id (String) and namespace
(String) and length (Integer). GenericSequence adds a new
attribute called SequenceString (String) which contains
the actual sequence characters.

Modules
MAPI modules and their metadata schemas are based on
concepts related to WS (e.g., tool, datatype, endpoint, par-
ameter, etc.) and relationships between WS concepts
(e.g., the datatype of a parameter). For details about the
schemas, please see Figure 1 and Additional file 1: Supple-
mentary material (“Internal data models”).
The following modules are available:

� Tool: A tool is an abstract grouping of software
components used to solve a specific type of problem.
Several types of tools are supported in this module;
examples include locally available applications
ponents which comprise the overall framework. Each module has one
tion and Data modules to invoke services following different service
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(on a client machine), remotely accessible WS or even
complex workflows. Each tool has one or more
operations. Each operation has one or more input/
output parameters. Each parameter is associated with
a specific datatype.

� ToolLocation: Each Tool instance can have one or
many ToolLocation instances representing service
endpoints (mirrors). Note that the instances can
specify different WS communication protocols
(for example BioMOBY or SOAP) for the same
abstract Tool. Multiple endpoints help to create
robust and fault-tolerant clients because it is
possible to call another endpoint when one or more
are not available. The module also provides access to
information about the host machine of the endpoint
(such as memory, bandwidth etc.).

� Datatype: This module manages the shared
taxonomy of datatypes. Using such taxonomy is
essential for WS interoperability because it obligates
WS providers to adhere to the taxonomy. By
declaring that a WS works with a specific datatype
in the ontology, WS providers guarantee that the
WS is able to process data of a specific datatype
(or compatible datatypes based on inheritance as
declared in the taxonomy). MAPI has taken the
approach used in BioMOBY a as base for the
DataType module: inheritance (IS relation) and
HAS and HASA relations.

� Functional categories: This module organizes
functional categories in taxonomy. A functional
category is a keyword with semantic properties that
can be hierarchically arranged. The arrangement is
structured in such a way that each resource can be
annotated with one or more keywords, from
descriptions that range from very specific to generic.

� Namespaces: The namespace module stores
information about data provenance (data sources).
Namespaces provide a method to place resources in
context by qualifying elements and attribute names.

� Data: This module deals with the management of
structured data. Internally, the module transforms user
data from different data formats to a common,
structured data format (as defined in the datatype
module). Clients can programmatically extract different
parts of the structured data (using components called
Loaders) and/or export data to different formats (using
components called Formatters).

� File System: This module provides an abstract view
of files and folders and permits client software to
read and write files/directories regardless of where
or how they are physically stored.

� Execution: This module provides mechanisms to
invoke the tools defined in the Tool and ToolLocation
modules. The set of supported tools can be extended
by independent plug-ins called Workers and are in
charge of actually invoking the tools.

� Statistics: This module is used to record and provide
statistics about tool usage. This information can be
used to analyze the behavior of endpoints (mirrors),
identify which endpoints is most frequently used etc.
in order to implement more efficient scheduling
algorithms.

� Users: This module provides the functionality
required for handling information about persons
(users, data owners or tool providers) and
institutions associated with resources. The main
strength of this module is its ability to combine with
any of the others modules to produce ‘secure
versions’, where the access to information
(read/write) is restricted based on user rights.
Functionality
The functionality of each module has been designed
around the resource it manages (e.g., users, files, tools,
data types). Each module provides methods for acces-
sing, querying and editing metadata. The main function-
alities of the modules are:

1. Retrieval of Resources/Information (all modules):
metadata for a specific resource or all resources
(lists) can be retrieved.

2. Filtering (all modules): all lists of resources retrieved
by the modules can additionally be filtered so that the
resources satisfy different criteria (extendable by
writing new filters).

3.Hierarchical Browsing (File system and Functional
categories): for modules that handle resources
organized in a taxonomy, the framework provides the
functions needed to browse the resources as a tree
and change the parent/child relations of the
resources (i.e. modifying the taxonomy).

4.General Editing (all the modules): every module has
methods for adding new resources. In the same way,
resources can be deleted and it is possible to
configure whether dependent resources will also be
deleted in a cascade fashion or whether deletion will
be rejected while the dependences exist. Finally, the
values of resource attributes can be modified.

5. Compatibility Search (Tools, Data and Datatypes):
the framework provides functions for finding
compatible WS based on the parameter datatypes.

6.Data Formatting (Data): the data module has
functions for managing the formatters available in
the system and converting user data between
different formats.

7. Task Invocation (Execution): The Execution module
manages sub-components (workers) which are able
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to execute/invoke different types of tools (WS,
workflows etc.).

8. Task Querying (Execution): This module lets software
developers query status and obtain results/statistics
from service executions.

A detailed list of the functionality of each module is
available at http://www.bitlab-es.com/mapi/.
Model characteristics
This section describes the main characteristics of the
MAPI framework. The design of MAPI has been focused
on providing a common and generic model of WS meta-
data, with the minimal set of metadata necessary to con-
struct client software.
A flexible modular model
Models for different aspects of WS metadata are separated
in different modules and can be combined to adapt to a
specific requirement. Because some modules require
information from another module, the modules are not
Figure 2 Setup for two clients. Two clients have instantiated MAPI modu
Interface layer communicates with repository A through Access A and ano
2 only has one instance which communicates to Repository B through Acc
regardless whether they are communicating with repository A or B. The Ac
be developed only once). The specific configuration in each client is contro
more modules than only the Tool Module (which needs, at least, the ToolL
simplification we only show instances of the Tool Module.
totally independent. For example, the Tool module
requires the Datatype module to provide the definition of
data types used for the parameters of tools defined in the
Tool module.
Each module has two layers: Access and Interface. The

Access layer is in charge of mapping the information from
the data model used in the source repository to the model
used in MAPI, while the Interface defines the protocol
and programmatic method used by clients to access the
functionality of the module (i.e. the public API).
Communication between these two layers is carried

out using a common, internal interface.
In addition to the two main layers, it is possible to add

more layers (following the same internal interface) to
supply new features, such as a cache. Adding more
layers does not affect the Interface layer (for example,
software clients only need to update the configuration to
enable caching).
This separation in layers allows flexible clients to be

developed. This can be seen in Figure 2, where two dif-
ferent clients share the same access code but are config-
ured to use a different set of tools.
les. Client 1 has two instances of the Tool Module, one where the
ther where it communicates with repository B through Access B. Client
ess B. Note that the interface for both clients is always the same,
cess B code is also the same for both clients (i.e. the access needs to
lled through the configuration file. Note that it is necessary to use
ocation, DataType and FunctionalCategory modules). However, for

http://www.bitlab-es.com/mapi/
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Common (shared) model
By allowing software developers to work with a shared
and common model of WS metadata, it becomes much
simpler to construct client software which is able to work
with different types of WS because the complexity and
heterogeneity in service-oriented architectures are dealt
with by MAPI, not by the client software code directly.
Configurations for several taxonomies are supplied

with the standard distribution of MAPI (for example,
the main BioMOBY MobyCentral taxonomy http://www.
biomoby.org or the INB taxonomy http://www.inab.org).
However, please note that MAPI is not limited to using
a specific datatype or functional category taxonomy
since writing new configurations can extend the set of
taxonomies available for MAPI.
Similar conditions apply to functional categories. In it-

self, MAPI does not specify any functional categories but
can be configured to use external sources, such as those
found in BioMOBY MobyCentral. For example, a user
interested in finding services performing a certain task
could browse the service tree using a graphical tool which,
in turn, uses MAPI functions getFunctionalCategoryRoots
to obtain the roots of the taxonomy and recursively call
the getChildren and getTools methods for the Functional-
Category instance to obtain the functional category
instances (children) which inherit from the instance and
the tools annotated with the instance respectively. Client
software uses the same API calls to obtain this information,
regardless of which service catalogue is used. MAPI will
use the relevant access depending on the configuration.
Extensibility of data model
Naturally, it is not realistic to establish a data model which
successfully predicts all future requirements and WS stan-
dards. Therefore, the data model in MAPI is extensible.
Additional modules can be implemented for new concepts
without affecting existing modules. If some feature is ne-
cessary for an existing module, it is possible to extend the
existing module (with a new module) and add the new fea-
ture (i.e. feature inheritance between modules).
Seamless data format transformation
As has been mentioned earlier, biomedicine is an ex-
ample of a research field where a multitude of tools pro-
duce and consume many different data formats. One
example of such dispersion is a multitude of formats for
biological sequence data. This dispersion limits the feasi-
bility of interconnecting WS which require or produce
data in different sequence formats.
The data module in MAPI represents structured user

data with methods to read, navigate and modify the data
structure (this can be compared to APIs to navigate and
modify XML DOM trees).
Modifications to the data structure can be applied auto-
matically with two types of MAPI components, Loaders
and Formatters. Both types of components are applied
based on the datatype taxonomy (inheritance) without user
intervention. Components configured to work on a specific
parent datatype will also be applied to any data of child
datatypes.
Loaders are able to modify the data structure (as defined

in the datatype module) of user data. This enables data to
be represented in a generic way, but still be compatible
with requirements of particular data standards. For ex-
ample, in BioMOBY, sequences contain several fields be-
sides the actual sequence data: every data object in
BioMOBY must have two attributes (identifier and name-
space), and every sequence must also contain explicitly the
length of the sequence data. When MAPI loads raw se-
quence data and is asked to produce this data in the Bio-
MOBY format, two loaders are applied seamlessly (without
the need for programmers to specify this) to include the
required attributes and calculate/add the length of the se-
quence data. The loader component which adds the two
required attributes is always invoked for all BioMOBY data
(it is configured to be applied to any data which inherits
from the base class; in essence all BioMOBY data). It is
possible to develop new loaders and to configure when
they are used.
Formatters, also extensible and configurable, are respon-

sible for the serialization of the generic data structure to
the actual data format (for example, BioMOBY data is
serialized as XML).
Efforts to provide mechanisms for data format trans-

formation exist (see for example [11]), but the approach in
MAPI is – to our knowledge – unique in the sense that
software developers can specify a set of formatters and loa-
ders (in essence a set of rules) which are applied seamlessly
when connecting services.

Results and discussion
This section will discuss some aspects of the design and
implementation of MAPI. The first part provides a case
study and gives an overview of the features provided by
other systems in comparison with MAPI. The second part
comments on different types of service and data hetero-
geneity, and the mechanisms that MAPI provides to ad-
dress this.

Clients implemented using MAPI
MAPI is a software framework aiming to simplify WS
integration and client development. The usefulness of
MAPI in practice for biomedicine is therefore best
represented in higher-level clients implemented using
MAPI. In [12], we showed how the MAPI framework
can be used to build complex clients. One notable ex-
ample is jORCA [20] which uses MAPI in different ways:

http://www.biomoby.org
http://www.biomoby.org
http://www.inab.org
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for example the Datatypes, Namespaces and WS trees
are built using the DataTypes, Namespaces, Tools and
FunctionalCategory modules. In this sub-section, please
refer to Table 1 for functionalities referenced. For each
module, jORCA asks for the list of tools, datatypes and
namespaces (functionality 1) and for relations with the
FunctionalCategories (functionality 3). jORCA also
makes use of the Filtering functionality (functionality 2)
for the quick-search tool; and using the ToolModule,
jORCA is able to quickly retrieve the list of compatible
tools for a selected datatype (functionality 5). The Exe-
cution module along with the ToolLocation module is
essential to execute and monitor tools in a transparent
way to the final user (functionality 7 and 8).
The functions for information retrieval and filtering

can be used to implement software for WS discovery
and composition, such as Magallanes [21]. Magallanes is
a discovery engine that uses MAPI to access information
(functionality 1) stored in different repositories. MAPI
also makes intensive use of the search for compatible
WS with a datatype in the Tool module for the auto-
matic generation of workflows (functionality 5). Magal-
lanes is also available as a plugin for jORCA.
Use case – homologous protein finder
In this scenario, a bioinformatician has obtained a protein
sequence and wishes to know whether this protein has
been isolated in another species or even if the protein has
any isoform into the same species being studied. The
bioinformatician knows the protein identifier and wishes
to search in a database for additional information. This ex-
ample is obviously basic and only involves retrieving the
sequence from a database and then comparing that se-
quence against other known sequences but the purpose of
Table 1 Features available in different systems. Legend: [✓] S

Functionality MAPI BioMOBY Glo

1. Retrieval resources ✓ ✓ ✓

2. Querying ✓ ✓ ✓

3. Filtering ✓ L ✓

4. Compatibility search ✓ ✓ NA

5. Retrieval information ✓ ✓ ✓

6. Browsing tree ✓ L NA

7. Data Formatting ✓ NA NA

8. Task invocation ✓ ✓ ✓

9. Task query ✓ ✓ NA

10. Task scheduling OG NA ✓

11. Adding resources ✓ ✓ ✓

12. Delete resources ✓ L ✓

13. General aditing ✓ NA NA

14. Support reasoners OG ✓ NA
this use case is to illustrate the usage of MAPI functional-
ity (API calls).

Actors

� WS provider
� Bioinformatician

Steps

1. The WS provider deploys two BioMOBY WS with
the following metadata:
upp

bus
a. Name getAminoAcidSequence: input id type Object,
output sequence type AminoAcidSequence

b.Name runRPSBlast: input sequence type
GenericSequence, output blast_report type BLAST-
Text

2. The WS provider registers (see Figure 3) the
corresponding WS metadata using the Flipper
application [22] which, in turn, uses the following
MAPI functions ToolModule:newTool, Tool:
addOperation, Tool:addParameter (in that order)
to add an abstract definition of the WS and
ToolLocationModule:newToolLocation to add
specific details related to the protocol (in this case
BioMOBY), such as the endpoint where the WS
was deployed.

3. The bioinformatician uses the WS client jORCA
(please see Section “Clients implemented using
MAPI”). She searches for a potential path from
input datatype Object, output datatype BLAST-
Text. This is performed by the Magallanes
components (see Figure 4) which, using MAPI
functions, obtains a representation of the output
orted; [NA] Not Available; [L] Limited; [OG] On-Going

UDDI Feta WSMX SADI

✓ ✓ ✓ ✓

✓ ✓ ✓ ✓

NA NA ✓ ✓

NA ✓ ✓ ✓

✓ ✓ ✓ ✓

NA NA L NA

NA NA ✓ NA

NA NA ✓ NA

NA NA ✓ NA

NA NA L NA

✓ ✓ ✓ ✓

✓ ✓ ✓ ✓

✓ L ✓ ✓

NA ✓ ✓ ✓



Fig
use

Karlsson and Trelles Journal of Biomedical Semantics 2013, 4:4 Page 7 of 12
http://www.jbiomedsem.com/content/4/1/4
datatype (DataTypeModule:getDataType), asks the
ToolModule which tools produce an instance of
this datatype (using calls to ToolModule:
getToolList, Tool:getOperations, Operation:
getParameters to obtain instances of Parameter),
looks at the datatypes of those parameters etc.
until it finds an optimum “path” between the
requested input and output datatypes. In this case,
the datatypes differ slightly (the input datatype of
runRPSBlast is not the same as the output
datatype of getAminoAcidSequence). However,
since tools in BioMOBY can accept data instances
with subtypes of their declared input datatypes,
Magallanes can determine that the services are
compatible using calls to DataType:isSubtypeOf
(AminoAcidSequence is a subtype of
GenericSequence). The datatype ontology from INB
is a good example of an ontology that would give
good results for this service composition.
Obviously this pipeline is very simple (only two
services) but a more advanced example, together
ure 3 Registering a service using Flipper. This shows the metadata neces
d in this screenshot utilizes MAPI functions to register the service in a BioMO
with details about this procedure, can be found in
[21]. More complex service compositions could be
imagined for other services and datatypes where
the formats differ (in this specific example both
services required BioMOBY formatted XML). In
more complex cases, MAPI would apply
Formatters and Loaders to (if possible) make the
data compatible for the next service in the
pipeline. Please see the MAPI API documentation
and example code snippets in additional files from
[9] for further details on this process.

4. Once the tool composition (i.e. pipeline) has been
identified, the bioinformatician can enact the
pipeline from within jORCA. jORCA knows which
input parameters are necessary by using MAPI to
obtain the necessary parameters for the first WS
using the MAPI function Operation:
generateInterface.

5. Once the bioinformatician has provided the
necessary input (see Figure 5) and started
execution with jORCA, the relevant MAPI worker
sary for registering the service runRPSBlast. The application Flipper
BY service registry.
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for the service will be called automatically when
calling the ExecutionModule:addTask method.

6. Once running, jORCA will continuously ask the
Task object produced by the previous addTask
method for the status and, eventually, the results.
This brief example shows the main functionality of
MAPI with regards to WS registration, discovery and
invocation.

Dealing with heterogeneity
The main goal of the MAPI framework is to enhance
interoperability and compatibility between different tech-
nologies by acting as a bridge for their combined use. It is
necessary to consider the following aspects in order to
combine WS:

1. Syntactic heterogeneity: differences in data formats
and service protocols

2. Semantic heterogeneity: differences in the meaning of
concepts

MAPI provides metadata which can be used for syntax-
based searches (plain-text descriptions of WS functionality)
and searches based on semantics (classification of func-
tionalities or WS input/output datatypes). Such datatype
ure 4 Discovering a workflow using Magallanes. This shows how a
PI functions to discover the workflow. In many cases, there are several p
most appropriate service (see [17] for details). Please note that MAPI re
connected even if the output datatype of getAminoAcidSequence is Ami
ericSequence. This is possible because of the inheritance relation betwe
metadata can be used to dynamically compose different
WS into workflows.
If we combine WS which use and produce data in differ-

ent formats, we have to take into account several aspects:

� Different names/identifiers, which could be handled in
MAPI by adding another Access layer where the
identifiers are mapped. For example, most DDBJ [16]
service parameters were declared in their WSDL as
plain strings. Therefore, we have annotated the
parameters with (semantic) datatypes used in the INB
service registry in the Access layer implemented for
this repository. This enables clients to perform more
exact WS discovery (and WS composition).

� Differences in data structure and format, which
could be handled by the use of Loaders in MAPI.
Loaders are able to modify the structure of a given
datatype in order to adapt it to a new structure. For
example, as was noted earlier, sequences in
BioMOBY contain information about the length of
the sequence, whereas standard formats such as
FASTA do not. When using the BioMOBY datatype
taxonomy in MAPI, sequences in FASTA format are
loaded and structured according to the datatype
model for sequences (one part with the sequence
and another with the calculated length of the
pipeline can be generated using Magallanes. The application uses
ossible paths (compatible services). In those cases, the user can select
cognizes that the services getAminoAcidSequence and runRPSBlast can
noAcidSequence and the input datatype of runRPSBlast is
en the datatypes (AminoAcidSequence ISA GenericSequence).
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sequence). We have several implementations of
heuristics based on rules and regular expressions
[23], which can recognize biological sequences in
different formats. Other heuristics can be specified
to recognize further formats like PDB formats,
Blast- or ClustalW-outputs. These heuristics allow
software clients to recognize raw input data and
suggest a reasonable classification to the user.
Similar efforts have been undertaken with shim-
services in myGrid [24].

Limitations
In this section, we will discuss limitations in the MAPI
approach and give examples of specific solutions.

Model differences
To add support for new standards or systems, it is neces-
sary to map the new information to be added to the mo-
del of the module in question. For example, for mapping
WSDL-described WS, it was necessary to map the contents
in WSDL to the Tool, ToolLocation and Datatype modules
(this task took one person approximately one week to
complete these accesses). Note that once the code has been
developed, it can be re-used for different services: for ex-
ample, MAPI uses the same access to obtain metadata
about EBI web-services as it does for WABI web-services.
Figure 5 Enacting a workflow using jORCA. This shows how the workflo
required to enter the initial input data for getAminoAcidSequence and can,
However, in some cases, it is not possible to make a
complete mapping from the original source to MAPI. For
example, in the data model of MAPI, all WS are consid-
ered to have operations but BioMOBY WS do not concep-
tually provide operations. Therefore, we created a virtual
operation in the MAPI representation of BioMOBY WS.
So far, we have not encountered major problems related
to modelling differences when developing access compo-
nents for new service types.
Functionality differences
As can be seen in Table 1, it is difficult to agree on a gen-
eral set of features for all systems. For example, in the case
of BioMOBY, metadata editing is not supported in the
API. Therefore, the BioMOBY access provides this func-
tionality by de-registering and registering the metadata
instance again with the modified information in a trans-
parent way for the software developer. This method raises
the possibility of information inconsistency because the
resource can be related with other resources. In this case,
de-registering temporarily leaves the repository in an in-
consistent state. However, as de-registering and subse-
quent re-registering is almost immediate, no information
inconsistency in the BioMOBY repository has been
reported so far.
w generated in Figure 4 can be enacted using jORCA. The user is
if necessary, modify secondary parameters to fine-tune the enactment.
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Format conversions
MAPI supports plug-ins, which facilitate the interoperation
of data in multiple formats. This is possible with many
formats, but in some cases the conversion is incomplete
since the target format does not support the complete data.
For example, a gene sequence can be extracted from a
GenBank record and then exported as a BioMOBY object,
but the process cannot be reversed since the information
discarded from the GenBank record cannot be recovered.
This problem is, however, not specific to MAPI and is im-
possible to avoid because the data formats support differ-
ent amounts of information.
Format conversion simplifies the integration of heteroge-

neous WS in many cases, but the approach with loaders/
formatters is not possible in all cases. For example, because
the Loaders load the full user data into the main memory,
huge data sets are not feasible because of memory limita-
tions. However, this depends on the loader implementa-
tion. MAPI only provides the interface and does allow
extensions of the functionality. For larger data sets, it
would be possible to implement a loader which only loads
parts of the data “on-demand” into memory and avoids
loading the entire dataset at once.

Future work
In our opinion, WS for biomedical applications must sup-
port user authentication, transport encryption, call-by-
references and long-running data processing.
Initial work has been started for MAPI to support

these requirements. MAPI now support RESTful WS
protocol deployed on cloud computing platforms
through a new worker implementation [25]. This worker
is able to communicate with the WS using user creden-
tials (please see the MAPI tutorial pages for more infor-
mation about this worker). The worker does not send
data directly to the WS but instead sends a data refe-
rence which the WS uses to retrieve and process the
data. Because some data processing can take consider-
able time, the communication with the service is split in
several steps, submitting the input data references, poll-
ing for status and, finally, retrieving the resulting data
references. These new developments for MAPI show the
flexibility of the suggested architecture: registering ser-
vice parameters as “data references” and supporting a
new WS protocol.

Alternatives to MAPI
In order to illustrate the coverage of MAPI (in terms of
functionality) in comparison with the state-of-the-art fra-
meworks, we evaluated several software frameworks with
similar functionalities (see Table 1): BioMOBY, Globus
[26], UDDI [27], Feta [28], WSMX [29] and SADI [30].
Many frameworks do not support all functionalities. For
example, the API of BioMOBY datatypes only supports
querying for the derived datatypes of a certain datatype
but not for the parent datatypes (functionality 3). WS can
be tagged in standard UDDI systems to indicate functio-
nally, but such tags are not organized hierarchically (func-
tionality 3). It is therefore difficult to use Table 1 as a
direct way to compare MAPI with the state-of-the-art and
it should instead be used as an indication of the function-
ality coverage of the frameworks in question.
As we mentioned previously, the BioMOBY framework

inspired MAPI. SADI, a recent evolution of BioMOBY,
aims to simplify publication and integration of stateless,
independent and transformative WS in bioinformatics.
SADI advocates a set of best-practices and guidelines
which simplify WS composition (chaining). Among
those sets of best-practices we can note that SADI WS
use HTTP standard operations (for example submitting
data is a POST operation and WS descriptions can be
obtained via a GET operation). These WS descriptions
basically follow the MyGrid/BioMOBY pattern but with
references to OWL ontologies for the input/output para-
meters. The WS descriptions are also available at a pub-
lic registry which provides a central point for client
software during discovery of available SADI WS. SADI WS
accept and return RDF messages which are instances of the
OWL classes declared in the service descriptions. One side-
effect is that SADI WS calls can be made “by reference”
simply by letting the instance contain a URI to some exter-
nal data source.
In many ways, SADI extends the BioMOBY standard;

it uses the same service description class as BioMOBY/
MyGrid but has moved from using SOAP as a protocol
to HTTP standard operations (GET, POST) and to sen-
ding RDF data instead of the non-standardized format-
ting of BioMOBY. Service parameters are annotated
with the semantic datatype like in BioMOBY, but are
generalized to use any ontology. SADI defines its core
metadata according to BioMOBY/MyGrid, which is also
the inspiration for the MAPI core metadata set.
It is difficult to compare SADI and MAPI because they

fundamentally aim at different things: SADI is a set of
best-practice guidelines and reference implementations
aiming to simplify publishing semantically well-
described services, while MAPI is a software framework
for building clients wishing to use different types of WS
standards and metadata registries. MAPI is designed to
work with any web-service or service metadata registry
regardless of the protocol, while SADI recommends a
specific protocol.
Another popular tool for computational analysis of gen-

omic data is the Galaxy platform [31]. The aim of Galaxy
differs from MAPI; the former provides a web-based
workbench for storing and sharing data aimed at end-
users (bioinformaticians), while the latter is a framework,
which provides a uniform representation of resources
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available over the Internet, in particular for Web Services.
One goal of Galaxy is to make computation accessible
for end-users without programming knowledge. MAPI
requires programming knowledge and is aimed at soft-
ware developers developing programs. Much, but not all,
of the functionality of Galaxy is provided in MAPI by ex-
ternal software clients such as jORCA and Flipper which
both use MAPI. jORCA, for example, also aims to be ac-
cessible and useful for non-programmers. Like Galaxy,
jORCA presents tools in a standardized interface. In the
case of jORCA, this is possible because it uses the stand-
ard view of tools in MAPI where all tools are presented
the same.
However, a detailed discussion is outside of the scope of

this paper. For a more complete summary of the functio-
nality of external software clients for MAPI, we refer to
their respective papers (jORCA [20], Magallanes [21]).
In Additional file 2: Supplementary Material (“Com-

paring WSMX with MAPI”), we discuss the approach
taken in WSMX compared to the one of MAPI.
Conclusions
Internet has boosted the development of numerous
resources that are remotely accessible in diverse applica-
tion domains. For this reason, the need for discovering
the right WS for data processing is increasingly urgent
and so is the ability to uniformly invoke different WS
and combine them to create complex workflows.
In this paper, we have described a framework for

developing clients which integrate different resources
and systems. This work is an effort toward integrating
different tools, repositories and data sources into a
unique, flexible and extensible system. To meet these
objectives, the system masks the differences in the infor-
mation structure used by the different resources and
provides a uniform representation of such resources to
the software developer.
The framework is organized into independent modules

which can be combined in different ways. This design
is flexible, extensible and proportional. It is flexible in
the sense that it can be used to model different types of
systems. It is extensible in the sense that new descriptors
and even new modules can be developed to provide new
functionalities or access new resources. Finally, it is pro-
portional in the sense that developers only need to
install those modules which implement the needed
functionality.
Every module consists of at least two layers: one layer

for reading and writing metadata from their original
source (Access) and another layer to expose the data in
a uniform way (Interface). The inclusion of new imple-
mentations of Access and Interfaces allows the extension
to new repositories or new concepts respectively.
Our framework also addresses data heterogeneity
(from the point of view of data formats). MAPI attempts
to simplify the use of data in different data formats in
the following ways:

� A configurable and extensible set of heuristics can
be used to recognize the data format of user
provided data.

� A configurable and extensible set of formatters/
loaders which are able to read a user data file in a
given format and access/modify data in a structured
way (mapped to the MAPI internal data model as
defined in the datatype module).

This is only a partial solution to data heterogeneity and
we recognize that this is still an open problem.
As a proof of concept, MAPI provides support for

BioMOBY WS, WSDL–described SOAP WS (for example,
from European Bioinformatics Institute, EBI and DNA
Data Bank of Japan, DDBJ), Taverna workflows, WS from
the INB and ACGT projects.
MAPI modules have been successfully used to imple-

ment a set of tools targeted at the biomedical domain, a
field which uses a large number of formats, protocols
and types of tools. These tools range from the simplest,
such as a format parser or a file browser, to the more
complex, such as a complete tool for the discovery of
WS (Magallanes) or a full software suite for the execu-
tion of tools (jORCA).
We plan to extend MAPI with access to WS registries

such as BioCatalogue [1] and the SADI registry and
metadata [30]. Additionally, we are planning to develop
a worker component to invoke SADI WS.
WS support machine-to-machine interoperability over a

network. However, a weakness of this approach is that WS
can differ in their definition, invocation protocols, commu-
nication and data formats, preventing service interoperabil-
ity. MAPI contributes to the ‘high level’ integration of
bioinformatics WS by offering a unique model to represent
WS and providing the functionality to create client software
able to work with different types of WS.
Availability and requirements
Project name: Modular API (MAPI)
Project home page: http://www.bitlab-es.com/mapi/
Operating system(s): Platform independent
Programming language: Java
Other requirements: None
Licence: MAPI binaries and documentation are under
the Creative Commons Attribution-No Derivative Works
2.5 Spain license and MAPI source code is available
under GPL v3 license.
Any restrictions to use by non-academics: None

http://www.bitlab-es.com/mapi/
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Additional files

Additional file 1: Supplementary Material Internal Data Model. This
document describes in detail the metadata model used in MAPI.

Additional file 2: Supplementary Material Comparing WSMX with
MAPI. This document describes in detail the metadata model used in
MAPI and a comparison of WSMX and MAPI.
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