
JOURNAL OF
BIOMEDICAL SEMANTICS

Malone et al. Journal of Biomedical Semantics 2014, 5:25
http://www.jbiomedsem.com/content/5/1/25

DATABASE Open Access

The Software Ontology (SWO): a resource for
reproducibility in biomedical data analysis,
curation and digital preservation
James Malone1, Andy Brown2, Allyson L Lister2, Jon Ison1, Duncan Hull2, Helen Parkinson1 and
Robert Stevens2*

Abstract

Motivation: Biomedical ontologists to date have concentrated on ontological descriptions of biomedical entities
such as gene products and their attributes, phenotypes and so on. Recently, effort has diversified to descriptions of
the laboratory investigations by which these entities were produced. However, much biological insight is gained from
the analysis of the data produced from these investigations, and there is a lack of adequate descriptions of the wide
range of software that are central to bioinformatics. We need to describe how data are analyzed for discovery, audit
trails, provenance and reproducibility.

Results: The Software Ontology (SWO) is a description of software used to store, manage and analyze data. Input to
the SWO has come from beyond the life sciences, but its main focus is the life sciences. We used agile techniques to
gather input for the SWO and keep engagement with our users. The result is an ontology that meets the needs of a
broad range of users by describing software, its information processing tasks, data inputs and outputs, data formats
versions and so on. Recently, the SWO has incorporated EDAM, a vocabulary for describing data and related concepts
in bioinformatics. The SWO is currently being used to describe software used in multiple biomedical applications.

Conclusion: The SWO is another element of the biomedical ontology landscape that is necessary for the description
of biomedical entities and how they were discovered. An ontology of software used to analyze data produced by
investigations in the life sciences can be made in such a way that it covers the important features requested and
prioritized by its users. The SWO thus fits into the landscape of biomedical ontologies and is produced using
techniques designed to keep it in line with user’s needs.

Availability: The Software Ontology is available under an Apache 2.0 license at http://theswo.sourceforge.net/; the
Software Ontology blog can be read at http://softwareontology.wordpress.com.

Background
We report on the Software Ontology (SWO) [1,2], an
ontology for describing the software used within compu-
tational biology, which includes bioinformatics resources
and any software tools used in the preparation and main-
tenance of data. Development of the SWO is motivated
by the growing interest in the recording and reproducibil-
ity of biomedical investigations [3,4]. Reproducibility is as
important for computational investigations of data as it

*Correspondence: robert.stevens@manchester.ac.uk
2School of Computer Science, University of Manchester, Oxford Road,
Manchester, M13 9PL, UK
Full list of author information is available at the end of the article

is for investigations in the ‘wet’ laboratory [5,6]. In order
to understand research results presented from data analy-
sis investigations or perform new analyses based on these
results, it is important to know whence the data came,
how they were analysed and with what tools. In a recent
Science paper, Peng [7] suggested that making research
that uses computational methods reproducible requires
much greater attention to detailing the software as part
of the experimental process. Gentleman et al [5] state the
need for reproducibility by combining analysis code with
the data; e.g., using BioConductor packages to analyze
MicroArray data. However, for reproducibility, the version
of the BioConductor packages, R and any associated soft-
ware that may have an influence on the outputs would

© 2014 Malone et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited.

http://theswo.sourceforge.net/
http://softwareontology.wordpress.com
mailto: robert.stevens@manchester.ac.uk
http://creativecommons.org/licenses/by/2.0

Malone et al. Journal of Biomedical Semantics 2014, 5:25 Page 2 of 13
http://www.jbiomedsem.com/content/5/1/25

need to be known - and even the hardware upon which it
was run, as all of these can have an influence on the results
obtained.
The growing use of workflows as a means of analyz-

ing biological data [8-10] and as a means of recording
and exchanging method [11] has provided one avenue for
the recording of method. There has also been a move to
automatically describe the provenance of computations
(including the actual run of a workflow), and ontologies
have been provided to support this recording [12]. An
ontology such as the SWO provides the vocabulary and
identifiers for the software aspects of such automatically
recorded provenance.
As well as the reproducibility angle, describing software

and the data it consumes and produces is important
for search for software and construction of applica-
tions and workflows. Registries such as BioCatalogue [13]
describe Web services used in bioinformatics accord-
ing to data consumed and produced, and the func-
tional units of the services involved and so on. These
semantic descriptions can be then used for search and
retrieval. Similarly, automated or semi-automated work-
flow construction depends on descriptions of the services
[14].
An ontology of software can have impact in all of

these areas by providing the means to describe soft-
ware used, the data consumed and produced, its versions
and so on. The scope of SWO is thus broad; it needs
to cover not only bioinformatics, but any tools used in
the management, analysis and presentation of biologi-
cal data. Prima facie, the SWO needs to cover, but is
not limited to, this range of software, and descriptions
of its objectives (for what it is used), the data it con-
sumes and produces, the algorithms it implements to
achieve these objectives, its version, and some aspects
of its project details. This software would include, for
example, spreadsheets, word-processors, databases, as
well as the bespoke desktop and services on the Web
used by bioinformaticians within computational biology.
A rich description of such a broad range of software
used in life science investigations implies a similarly broad
scope for an ontology of software. To date, however,
attempts to produce such an ontology have not been
convincing, although some promising efforts have been
made:

• DOAP (Description Of A Project) [15] describes a
software project (home page, developers, language,
etc.), rather than the software itself. There is an
overlap in scope—the home page and developers are
features that the SWO will need, but the SWO aims
to model the software artifact itself, not the project.

• OWL-S [16] is a domain neutral and general
mechanism for describing Web services, such that

they can be discovered, composed and invoked. Of its
three aspects, OWL-S’s profiling mechanism comes
within the scope of the SWO, but the ‘grounding’ for
the automatic invocation of a Web service is outside
the SWO’s scope. In addition, its focus on only Web
services precludes its model from our use.
WSMO [17] (Web Services Modeling Ontology) has
a similar remit and again is not suitable for the
SWO’s aims.

• Ontologies of data mining tools cover much of the
same ground as the SWO, but are obviously restricted
to data mining. As data mining tools are used within
bioinformatics and computational biology, we aim to
include such descriptions into the SWO, and we
incorporate portions of DMOP [18] into the SWO.

• The Ontology of Biomedical Investigations (OBI) [19]
has a broad remit of enabling scientists to accurately
and precisely describe how a biomedical investigation
was planned and performed, including devices,
samples, sample preparation, etc. As its remit is
broad, it has also spun out ontologies such as the
Information Artifact Ontology (IAO) [20] to allow
descriptions of information such as digital documents
associated with an investigation. Descriptions of
software used in an investigation could fit within
OBI’s remit, but the SWO has been deliberately kept
separate as its scope is greater than biomedical
investigations themselves. However, the SWO is built
to be broadly inline with OBI and IAO.

• EDAM [21] is a vocabulary for describing data related
concepts in bioinformatics including types of data,
identifiers, formats, operations and ’topics’ of broad
biological areas. EDAM is limited to these concepts
and as such does not cover software and related
software items like algorithms and licenses.
The SWO aims at a wider scope of describing any
software used in the pursuit of computational
biology; this includes spreadsheets, database systems,
XML parsers, ontology development environments
and the like. EDAM is now a subset of the SWO and
has been integrated into the SWO.

• The Bioinformatics Resource Ontology (BRO) [22]
has a similar remit to EDAM—resource description
and discovery. However, it models resources very
broadly, capturing concepts concerning research
infrastructures, people, funding etc. It also conflates
various aspects of software, such as algorithm and
implementation.

• The myGrid Ontology [23], though focusing on
bioinformatics software resources, makes many of
the same distinctions as the SWO, but has not been
actively maintained for a long-time. EDAM covers
the concepts included in myGrid and, with the SWO,
supersedes and replaces the myGrid ontology.

Malone et al. Journal of Biomedical Semantics 2014, 5:25 Page 3 of 13
http://www.jbiomedsem.com/content/5/1/25

Bio-ontologies now cover a broad range of life science
entities from biological sequences (SO) [24] to the func-
tional attributes of gene products (GO) [25], and from
cells (CTO) [26] to gross anatomy (Uberon) [27] and
phenotype (PATO) [28]. We now also have ontologies
describing small molecules and their roles that participate
in many biological processes (ChEBI) [29]. Added to this
are descriptions of biomedical investigations such as the
OBI [19], the Experimental Factor Ontology (EFO) [30]
and the BioAssay Ontology [31]. The SWO fits neatly and
independently into this ontology landscape in its role as
an ontology concerned with the description of resources
used in the investigation of biomedical phenomena, rather
than the biomedical phenomena themselves.

User stories
The principal use for the SWO is in the description of
resources used in storing, managing and analyzing data.
Our SWO workshops produced a broad range of what
in agile development are termed ‘user stories’ for the
SWO [32] and we highlight a few here:

• Describing the software used in the analysis of gene
expression data. With the development of
next-generation high throughput sequencing
techniques, a slew of new software packages for
analyzing this data has emerged. Understanding how
results have been produced requires knowledge of the
software used. This is an important consideration for
the European Bioinformatics Institute (EBI), which
hosts such data resources as ArrayExpress [33] where
describing how data were analysed is important.

• The eagle-I project [34] concerns the collection of
descriptions of biomedical resources and services
available at various sites in North America such that
consumers can find those relevant to their work. The
eagle-I consortium require descriptions of data types
and formats, software names, programming languages
and licensing information to describe these resources.

• The European consortium under the BioMedBridges
project [35] wish to collect descriptions of Web
services and software tools used both within the
consortium and more widely in Europe in a Tool and
Service Registry [36]. They wish to answer user
questions about software attributes such as data types
and formats, licenses, and developer and source code
information and function. Queries require structure
for faceting such that higher-level categories in the
ontology can be used to ‘drill down’ to subsets of
interest.

• The British Library and UK National Archives
require software descriptions to assist in the curation
of digital artifacts for preservation purposes. Data
curated using specific versions of a piece of software

can produce varied results, so being able to describe
attributes such as version and data formats are of
great importance.

Materials andmethod
The Software Ontology has adapted agile software engi-
neering methods into the ontology engineering pro-
cess [1]. Agile methods offer a number of principles that
aim to keep users involved in the process of developing
software and enable rapid response to changing require-
ments whilst also building in consistent quality control
checks [32,37]. Specifically, the SWO project focused on
the following agile principles [38] and adapted them to
ontology development:

• The SWO’s users, domain experts, and ontology
engineers are all active contributors throughout the
process;

• Close engagement with users meant the introduction
of requirements gathering and ontology modelling
sessions as iterative activities, each iteration (sprint)
resulting in a new increment;

• Acknowledgment that requirements can evolve and
priorities can change throughout the engineering
lifecycle;

• Encouragement of self-organised and
cross-functional teams of developers;

• Testing is an integral part of development and
happens all the time;

• Provision of regular and frequent builds to the
participants for discussion, testing and refinement
(and ultimately agreement).

Applying these principles requires a number of events
to take place in order to deliver information to other
events in a cyclic manner, though events can be run in
parallel. The agile ontology engineering method can be
summarised as follows:

• Requirements gathering. Requirements are
captured from stakeholders by identifying key areas
of interest, eliciting competency questions [39] and
desirable features of the ontology. Activities are
driven by user stories, in the form of competency
questions, and card sorting exercises.

• Requirements prioritisation. Prioritisation of
requirements has two components, both of which are
adapted from agile engineering techniques. The first
is the estimation of the complexity of implementing a
particular requirement using ‘planning poker’ [32].
The second component allows participants to
collectively rank requirements by ‘bidding’ on
individual requirements of most interest to their
needs based on the ‘Buy a Feature’ method [40].

Malone et al. Journal of Biomedical Semantics 2014, 5:25 Page 4 of 13
http://www.jbiomedsem.com/content/5/1/25

• Implementation of the ‘Top’ requirements. The
implementation of the ontology focuses on the
prioritised requirements that were bought from the
previous event. Separating the ontology components
into modules allows concurrent development to
occur from co-located or distributed developers.
Additional content is gathered from stakeholders
using methods such as template completion via tools,
such as Populous [41] - a tool for creating ontologies
using a spreadsheet like interface, which are well
suited to large-scale concept collection.

• Evaluation of product. At the end of each iteration,
the ontology is evaluated against competency
questions [39]. Defined classes based on competency
questions act as queries within the ontology and are
used to demonstrate delivery of a particular feature to
stakeholders.

The SWO project conducted three face-to-face work-
shops between 2011-2012 (see [42] for details), dur-
ing which the method outlined above was applied [1].
The first workshop (WS1) was used primarily to gather
requirements and potential content, since there was no
ontology to evaluate at that point. The second (WS2) and
third (WS3) workshops took place four months and 12
months later and were used to both evaluate form and
content, as well as to generate new content for the SWO.
There were 18 participants in WS1, 14 in WS2 and 17
in WS3. Seven of these participants attended all three
workshops. Participants represented a user base under
the broad heading of ’digital curation and preservation’,
with more specific areas including archiving organiza-
tions, software sustainability, library services, astronomy,
life science and pharmaceutical research.

Spreadsheets and populous
Throughout the project, spreadsheets created using the
Populous tool [41] were used to collect specific software
descriptions from the community. Populous is a tool that
allows cell values to be connected to ontology parts such
that each row becomes a description for an ontology class
following a specified template. In this way, members of
the community did not have to learn new technology or
ontology languages to contribute directly to the ontol-
ogy; instead they simply worked in a familiar spreadsheet
environment.

Testing competency questions via DL queries
The testing component of the method concerns the use
of competency questions phrased as description logic
axioms executed as queries (DL queries). An ontology in
OWL should be able to satisfy competency questions pre-
cisely and this can be tested using the description logic
aspects of the language.

In the testing phase a DL query is formulated which
represents a question of interest, e.g. which software can
take as input image data in the JPG format images. If the
DL query is not producing the desired results then the
ontology needs further refinement and a further itera-
tion occurs. Testing using DL queries in this way is a ‘test
after’ [43] approach since test driven approaches require a
test to be written before the encoding. This is not suitable
for ontology development in most current environments
since writing a DL query as a test to be executed before
development requires testing infrastructure that, as yet,
does not exist in most environments.

Results
What should be modelled in the SWO?
WS1 resulted in a set of requirements that the ontology
was required tomatch; these were sorted into 15 groups of
features, each group’s label became a feature for modelling
in the ontology. In addition, there were 91 competency
questions aligned to these features (see Table 1 for the fea-
ture groups and [44] for the competency question groups).
For instance, the group Function contained sticky notes
containing can the software perform XML editing? and can
the software be used for word processing? It is worth not-
ing that a question could also fall into multiple groups,
for instance can the software perform XML editing? falls
into both Function and, by implication, Data/format fea-
ture groups since the software would need to be able to
parse XML. That all of the competency questions could
be aligned to a feature group, and conversely that each
feature group contained competency questions, provided
a validation of the process, since an orphaned question
might suggest a missing category or an empty feature
group.
The list of features for the SWO gained from the work-

shops are shown in Table 1 along with whether or not
they were ‘bought’, i.e. were prioritised in the user priori-
tisation sessions. From a modelling perspective, bought
features were a combination of both simple concepts and
more complex components; some features were deemed
important but too costly to model in a way suited to
customers’ needs, such as modelling the hardware upon
which software is run. One interesting result of the pri-
oritisation event is that the users initially suggested that
some features, such as algorithm, were ranked highly, but
following effort estimation suggesting this was very costly
to represent, the feature was not bought. Some features
which were discussed as important remained so after
prioritisation and were duly bought, such as data and
function.
In a second prioritisation event, the exercise was

repeated. The algorithm component of software (origi-
nally not prioritised) was consideredmore important than
had previously been determined and was added to the list

Malone et al. Journal of Biomedical Semantics 2014, 5:25 Page 5 of 13
http://www.jbiomedsem.com/content/5/1/25

Table 1 The feature groups identified by the workshop participants

Feature Definition Bought? Example competency question

Software The software itself Yes What is the name of the software?

Data Data that the software consumes and pro-
duces

Yes Will it render a gif format image?

Function The task the software is used to do, some-
times called objective

Yes Does this software provide XML editing?

Algorithm The specific instructions as part of software
to perform a given task

No What is the normalization algorithm used in
this software?

Configure parameters Parameters required to run the software; set-
tings

No What are setting needed to run this analysis?

Life cycle Stage of maturity of a piece of software No Does the software meet the ISO-4 standard?

Version The version information Yes What is the latest version of this software?

Supplier Developer and/or maintainer of software Yes Who developed this software?

Dependencies Other pieces of software or libraries required
to run it

No What are the dependencies for using OWL-
API?

Interface Modes of interaction with the software Yes Is there a Web API for Blast?

Source code location URL or otherwise of source code Yes Where can I get the code?

Cost of ownership Cost to purchase but also to run No Is it free?

Platform Which platform is required to run software No Will the software run on Ubuntu?

License What license and usage restrictions exist for
a given software

Yes What software can I use for my task which is
under the Apache 2 license?

Architecture Architectural structure of the software, such
as peer-to-peer

No Is the software client-server?

Those features that were ‘bought’ were then prioritised for inclusion in the ontology.

of features. This became apparent after the initial exam-
ples failed to answer some of the competency questions
regarding software that implements a given algorithm.
Since there was a small amount of additional extra effort
available, algorithm was included in some descriptions of
software added more recently to the SWO.

The ontology
The ontology was authored in the Web Ontology Lan-
guage (OWL) [45] using the ‘schema’ shown in Figure 1
as a guide for the top-level distinctions made in describ-
ing software. As of Release 1.1 in December 2013, the
SWO contained 3 777 classes, 50 object properties, 5 data
properties and 114 individuals. Table 2 shows the number
of classes under each major division in the SWO. Ini-
tially, addition of software used in bioinformatics to the
SWO was driven by the needs of the ontology’s authors
and client projects. Latterly, however, a more systematic
approach has been adopted; we are using results of a sur-
vey of Genome Biology and BMC Bioinformatics with
BioNERDS [46], a named entity recogniser for bioinfor-
matics software and databases. This survey provided a list
of software and databases ranked by the number of docu-
ments in which those resources were mentioned. We took
the top 50 resources and removed the databases and any

obviously spurious entries to leave only software (database
management systems such as mySQL are software, but for
the SWO a reference to database content, such as SWISS-
PROT, does not count as software). Genome Biology gave
27 software names, and BMC Bioinformatics 25 names
out of the top 50 resources in each case. These correlate
to 47.5% of the total document level mentions within the
top 50 in Genome Biology, and 53.7% in BMC Bioinfor-
matics. In this way we expect to be able to make the SWO
cover the main software used in bioinformatics and com-
putational biology (the list of software is available in the
supplementary data).
The SWO is separated into discrete ontology modules

that are combined to produce software descriptions. Sep-
arating the different aspects of software in this way allows
for both concurrent development and reuse of those com-
ponents useful for other projects, for instance the ‘orga-
nizations’ module for an ontology describing biomedical
instruments and ‘license’ module for an ontology of liter-
ature. Figure 2 illustrates the different OWL module files
and which components of the SWO they contain.
For describing the ontology we use the following font

conventions: classes and object properties. The SWO
is axiomatised as follows; the class Software is natu-
rally the focus of attention. A class of software may be

Malone et al. Journal of Biomedical Semantics 2014, 5:25 Page 6 of 13
http://www.jbiomedsem.com/content/5/1/25

license clause

software
interface

has_clause

data data format
specification

has_
format_

specification

has_specified
_data_input

has_specified
_data_output

algorithm

software

implementis_encode
d_in

organization

software
publishing process

software
development

process

has_
participant

has_
participant

license interfaceprogramming
language

version

has_version

has_license has_interface

information
processing

is_

executed_

Figure 1 The SWO’s ‘schema’.

described in terms of the data it takes as input, the data
it produces as output, the objective or processing task it
is designed to meet, licensing restrictions that apply to
using the software (and so on). Few of these properties
are universally true of software (there is software that, at
the granularity at which the SWO is represented) takes
no data as an input), so using restrictions to represent
these notions is not desirable. The only restriction on
Software is that it is executed in some process. A typical
piece of software would be described as follows:

Table 2 The number of classes or individuals under each
major division in the SWO; these are things that describe
domain content, rather than ontology ‘infra-structure

SWO division Number Example classes or individuals

Software 512 Blast, Excel, Endnote, Clustal

Data 1168 heatmap, sequence alignment
(protein), 2D PAGE image

Data Format 434 XLS, RDF-XML, BAM, JPEG

Information processing 608 Phylogenetic tree construction,
spreadsheet editing, ontology
engineering,
protein structure analysis

Algorithm 159 ANOVA, Chi-square, t-test

Organization 78 Agilent Technologies, Adobe
Systems, Bioconductor, SAS
Institute Inc.

Programming language 46 C++, Java, MATLAB language, Ruby

Software license 30 Apache license v2, GNU GPL, MIT
License

• A property has specified data input links a software to
its input data while has specified data output
similarly links software to its output data. the
‘specified’ part of these property names seeks to
capture the choice inherent in, for instance, data
inputs by enabling statements such as ‘software x is
specified to be able to take data types p, q and r as
inputs’, without saying each and every instance of
software actually does so. The tree of data is presently
fairly flat, with some structure separating image data
from much of the other data.

• Data format is separated from the data itself and is
related via a property has format specification which
can be used to specify that the data has a certain
syntax, such as XML or SVG. In the SWO we make a
distinction between data and the format of the data.
These are easily conflated, but useful to pull apart as
one type of data can be presented in many formats.
Perhaps the easiest example is that of image data;
here the data is the symbols or values that represent
the meaning of the data; the format, however, is the
syntax that governs the encoding and decoding of
that data. Thus data are the symbols upon which a
computer (typically via software) performs
operations. the format specifies how the data are to
be encoded. So, for images, image data is image data
(some symbols), but an image file could be encoded
in PNG, JPEG, PDF, etc, and, in some cases,
inter-converted, preserving the image data itself.

• The algorithm section of the SWO captures
algorithms which a piece of software implements.

Malone et al. Journal of Biomedical Semantics 2014, 5:25 Page 7 of 13
http://www.jbiomedsem.com/content/5/1/25

versiondata

data format
specification

algorithmorganization

software publishing
process

software
development

process

license clause

license interface
software

programming
language

information
processing

Figure 2 The SWO ’s ontology consists of several modules which are used to compose software descriptions.

• The property is executed in links a software to the
information processing class in which it is
executed. Information processing can be seen here as
the task for which the software is being used to help
accomplish. For instance, differential
expression analysis and ontology
engineering.

• Software can have a version using the has version
property. Versioning is complex and is discussed in
more detail below.

• Licenses are also described in the SWO as types of
software license. Software licenses are
described in terms of license clause classes via
the has clause property which capture specific
licensing aspects such as how software can be used,
redistributed, extended or modified.

• Interfaces to software, such as APIs and graphical user
interfaces, are described in software interface
and related to software by the property has interface.

• Software is encoded within a programming language
and this is represented via the property is encoded in
the programming language part of the ontology.

• Organizations involved in developing or publishing
software are captured as individuals under the
organization class and related to software as the
output of either via the software development
process or the software publishing
process.

• The SWO also contains datatype properties for
connecting, for instance documentation locations to
software with has documentation, homepage for
software has website homepage and a download URL
with has download location.

If we consider the example ofMicrosoft Excel™ 2007 this
is described in the SWO as follows:

• Excel is specified to be able to take as input any data
in various data formats such as the XLS spreadsheet
format and the tab delimited format.

‘has specified data input’ some
(data and (‘has format specification’ some ‘XLS spread-
sheet format’))

‘has specified data input’ some
(data and (‘has format specification’ some ‘tab delim-
ited file format’))

• Similarly, Excel is also specified as inputting and
outputting data in various data formats such as the
XLS spreadsheet format or as a tab delimited format.

‘has specified data input’ some
(data and (‘has format specification’ some ‘XLS spread-
sheet format’))

‘has specified data input’ some
(data and (‘has format specification’ some ‘tab delim-
ited file format’))

• Excel 2007 is versioned as Excel Microsoft 2007.

‘has version’ value ‘Microsoft 2007 version’

• It has a proprietary commercial license.

‘has license’ some ‘Proprietary commercial soft-
ware license’

• It has a graphical user interface.

‘has interface’ some ‘Graphical user interface’

• Excel 2007 is both developed and published by
Microsoft.

‘output of’ some
(‘software development process’ and (‘has partici-

pant’ value Microsoft))
‘output of’ some
(‘software publishing process’ and (‘has partici-

pant’ value Microsoft))

• Excel can be used to edit spreadsheets.

‘is executed in’ some ‘spreadsheet editing’

For Excel, the specified inputs and outputs are Data, as
spreadsheets can have content of a more or less arbitrary
type. The SWOhas not attempted to represent all possible

Malone et al. Journal of Biomedical Semantics 2014, 5:25 Page 8 of 13
http://www.jbiomedsem.com/content/5/1/25

formats for software such as Excel. Instead those data for-
mats that are necessary for the annotations and searches
for the SWO’s use cases are prioritised. In line with many
ontology projects, the SWO is largely driven by the needs
of its users.
BLAST 2.2.26 is described as follows:

• BLAST 2.2.26 can take as input, for example, DNA
sequence data in FASTA format or in GenBank
format.
‘has specified data input’ some
(‘DNA nucleotide sequence’ and (‘has format specifica-
tion’ some ‘FASTA format’))
‘has specified data input’ some
(‘DNA nucleotide sequence’ and (‘has format specifica-
tion’ some ‘GenBank format’))

• It has several interfaces including a command line
interface and web based.
‘has interface’ some ‘command-line interface’
‘has interface’ some ‘web user interface’

• This version is developed by the NIH.
‘output of’ some
(‘software development process’ and (‘has partici-

pant’ value NIH))

• Blast can be used to perform multiple sequence
alignment. It can also be used to perform pairwise
sequence alignment.
‘is executed in’ some ‘multiple sequence alignment’
‘is executed in’ some ‘pairwise sequence alignment’

• It can be downloaded from ftp://ftp.ncbi.nih.gov/
blast/executables/

‘has download location’ value ‘‘ftp://ftp.ncbi.nih.gov/
blast/executables/’’

The SWO makes a distinction between an item of soft-
ware and a software suite; this is MS Word 2010 as
opposed to MS Office 2010 that is a bundle of several
MS products including MS Word. A software suite is a
piece of software in its own right, as it provides a thin
wrapper around the bundled software—even if this is
just for presentational reasons. The SWO describes MS
Office by using the property has part to relate the software
components. For example, MS Office 2001:
has part some ‘Microsoft Excel 2002’
has part some ‘Microsoft Word 2001’

Software licences
Several competency questions focused on licensing issues
such as ‘is the software open source’ or ‘available with-
out restrictions on derivatives’. To capture this, software
licenses were given parts, as mentioned above, which were
‘license clauses’. This way, a license can be described by
attaching the relevant clause components which enables
questions to be asked over these components. Figure 3
illustrates an example of a defined class that uses the
same logic to infer types of software licenses that have
clauses that indicate the software is open source. The
highlighted class,’ GNU project Free Software License
Type’ is described as follows:
‘software license’
and (‘has clause’ some ‘Source code available’)
and (‘has clause’ some
(‘Distribution unrestricted’
or ‘Distribution with notices’))

Figure 3 Inferring open source software licenses from the ontology.

ftp://ftp.ncbi.nih.gov/blast/executables/
ftp://ftp.ncbi.nih.gov/blast/executables/
ftp://ftp.ncbi.nih.gov/blast/executables/
ftp://ftp.ncbi.nih.gov/blast/executables/

Malone et al. Journal of Biomedical Semantics 2014, 5:25 Page 9 of 13
http://www.jbiomedsem.com/content/5/1/25

Software versions
The version name class is used to describe individu-
als which are a specific version name for a given piece of
software. These versions are then related to the class of
software with which they are associated using has_version.
The version’s name is captured in the RDFS:label anno-
tation of the given individual.
Competency questions for software versions required

not only a record of what version name was attributed
to a given software instance but also which versions pre-
ceded and proceeded a given piece of software. There are
two forms of the question: Find all previous versions and
find the version prior to the one in hand (and similarly
for subsequent versions). This is a list of versions and we
use the pattern described in [47]. The directly following
and preceding version individuals are asserted via the
properties directly followed by and directly preceded by.
These properties have the super-properties followed by
and preceded by, which are transitive (if A is preceded
by B and b is preceded by C, then A is preceded by C).
In OWL the sub-property implies the super-property, so
the chain of transitive links is maintained automatically.
This means that both forms of the competency question
for versions can be answered. The variant of asking for
the version n back in the chain would be answered with
an expression like ‘directly preceded by’ some
‘directly preceded by’ ‘version x’ for the
version two versions back in the list. In addition software
which has a ‘dual’ licensing form (often for branding) can
also be captured. In Manchester OWL this appears as
follows:
‘Microsoft Excel 2007’
has_version value ‘Microsoft 2007 version’

Microsoft 2007 version
directly_preceded_by ‘Microsoft 2003 version’
directly_followed_by ‘Microsoft 2010 version’

We can now perform the query by using the two transi-
tive parent properties which will allow us to get, for exam-
ple, all predecessors. Continuing the example, for versions
ofMicrosoft Excel which came before this current version,
in Manchester OWL:
‘Microsoft Excel’ and (has_version some (‘version nameor num-
ber’ and (followed_by value ‘Microsoft 2007 version’)))

which when asked of the SWO returns the classes
Microsoft Excel 2002 and Microsoft Excel
2003.

Merging SWO and EDAM
The SWO has a broader scope of software than EDAM,
but both broadly model software in the same way. As such,
EDAM is a subset of the SWO, we have been merging
EDAM into the SWO. Although much of EDAM is now
merged into the SWO, there is still an ongoing process of

refactoring to align these fully. Full details of the merge
procedure can be found on the SWO blog [42]. The
process to date can be summarised as follows:

1. Modifications to the underlying annotations within
EDAM were performed to align the structure of the
ontologies more closely.

2. The native OBO format was converted to OWL.
3. High-level EDAM hierarchies were merged into the

SWO structure.

Annotations and Conversion to OWL
A number of annotations were added to the EDAM
ontology in preparation for its conversion to OWL and,
ultimately, merging with the SWO. These included:

• The addition of the definition_editor annotation
property from EFO to all classes with definitions,
providing authorship in a manner in line with the
method already employed within the SWO.

• The addition of the EDAM idspace to all properties
(and usages of those properties) within the OBO file
as the automated conversion to OWL creates an
incorrect OWL-based namespace,

• The addition of appropriate alternative annotations
to the converted OWL files, as the OWLAPI 4.1 does
not convert some annotations to OWL correctly,

• The automatic conversion of EDAM to OWL using
Protege 4.1’s conversion feature, which makes use of
the underlying OWLAPI. While the Protege 4.1
conversion process between OBO and OWL is
straightforward, some manual changes were required
[48]. The merge of EDAM into SWO and therefore
into OWL will render this process unnecessary in the
future.

Merging
There are four high-level EDAM terms: Data, Format,
Operation and Topic. These terms and their hierar-
chies are in the process of being manually merged with
the SWO. The initial stages of this have been previously
described in [49]. In this process, each high-level EDAM
term is compared against the SWO and either added as
a subclass to an appropriate point (where no equivalent
class exists) or formally axiomatised as equivalent to a
pre-existing SWO class.
EDAM’s Format and Data have been fully merged,

and can be found within the SWO as equivalent classes
to data format specification and data, respec-
tively. EDAM’s Topic class describes ‘broad domains or
fields of interest’ and has no equivalent class within the
SWO, and has been added without any modifications as a
child of the SWO’s information class.
Initially it appeared that the EDAM Operation class

would be a good match for the SWO Objective

Malone et al. Journal of Biomedical Semantics 2014, 5:25 Page 10 of 13
http://www.jbiomedsem.com/content/5/1/25

hierarchy. EDAM Operation describes tasks, such
as ‘data annotation’ or ‘classification’ in much the
same way as SWO objective. However EDAM’s
Objective, defined as ‘information describing the
intended outcome of running a process’, does not match
the SWO’s Operation’s modelling of the whole pro-
cess (inputs, outputs, process and outcome). As the def-
inition of EDAM Operation class fitted better under
process in the SWO, Operation has been merged
with information processing (a child of process
in the SWO) and the two classes have been axiomatised as
being equivalent.
If EDAM’s Operation had been simply placed under

process in the SWO, then the SWO Objective
and newly-enhanced process hierarchies would have
contained many similarities. For example, the EDAM
sequence analysis class within Operation
has many similarities with the SWO classes within
Objective such as molecular sequence
analysis. As such, Operation was first merged with
the SWO information processing, then the SWO
Objective hierarchy was refactored as part of the
process hierarchy, and finally the Objective class
itself was deprecated (for further details see [50]).
An additional issue arose with the EDAM class

Parameter. Parameter was considered a class of data
in EDAMwhereas the contextual nature of whether or not
something is a parameter would suggest it is a role in the
SWO. The class metadata is a type of data in the SWO
but in EDAM this is a type of report.
There is also a use of asserted multiple hierarchies in

EDAM, for example BioXSD (format) class is an asserted
subclass of five other classes; Alignment format
(XML), Raw sequence format, Sequence
feature annotation format, Sequence
record format and XML. The SWOhierarchy enforces
a single axis of asserted classification and multiple classi-
fications are built by inference following a normalisation
style approach [51]. EDAM did not have this strict con-
straint during its development, so in the merged SWO
and EDAM asserted polyhierarchy exists, however, refac-
toring is ongoing to remove any remaining asserted
polyhierarchy.
Some of this integration can be seen in Figure 3.

The shared EDAM upper level classes with the SWO,
such as data (Data in EDAM) and data format
specification (Format in EDAM) can be seen here.
Equivalence axioms were placed between classes where
integration was clear (i.e. the ontologies referred to the
same concept but with different URIs).

The SWO’s polyhierarchy
The polyhierarchy produced and maintained in the SWO
by this approach produces an ontology in which software

is described along many dimensions. These dimensions
are those captured in the properties and divisions within
the SWO. As well as license and version above, soft-
ware can also be classified along the other dimensions
previously described, such as:

• The data it takes as input:

software and has specified data input some data

• The data it takes as output:

software and has specified data output some data

• The process the software supports:

software and is executed in some information processing

• The data format supported by the software

software and has specified data input some (data and (has
format some data format specification))

and similarly for specified data outputs
• Algorithms implemented

software and implement some algorithm

• Programming language

software and is encoded in some programming language

• Developer of software

output of some (software development process and
(has participant value Microsoft))

These dimensions can be combined in arbitrary forms,
e.g., Information processing task, inputs and outputs.
Defined classes instantiating these classifications are not
numerous within the SWO; instead these queries would
be deployed at time of use from within software applica-
tions using the SWO.

The SWO applied
BioMedBridges software registry
The Tools and Data Services Registry [36] is a catalogue
of the prevalent bioinformatics tool and data resources,
including the Web services, portals and applications used
by scientists within the BioMedBridges research infras-
tructures. The registry, which is developed in a sustainable
way by ELIXIR [52], requires a detailed description of
software and resources. The vocabulary for this descrip-
tion is provided by the SWO and EDAM, and includes
the type of software and software interface, topic (gen-
eral scientific domain), function, types of input and output
data, data formats, software maturity, supported platform,
language, license and cost. The registry is built using a
federated curation model in which software descriptions
are harvested from key providers and other registries,

Malone et al. Journal of Biomedical Semantics 2014, 5:25 Page 11 of 13
http://www.jbiomedsem.com/content/5/1/25

working with these partners to ensure annotations are
made at source. For example, the registry will include
content from BioCatalogue [53], which will also be anno-
tated using the SWO and EDAM.

eagle-I
The eagle-I network is a US$15 million NIH-funded
project with the aim of facilitating biomedical research by
creating a network of research resources repositories [34].
More than 50,000 resources which include biomedical
data, software, databases and services - are listed and
more are added every week. The Software Ontology
plays an important role within the eagle-I’s applica-
tion ontology which is used for indexing and searching
these resources. This includes the discovery of resources
based on data sets and formats, licenses and software
function.

Gene Expression Atlas Data
The Gene Expression Atlas has produced an RDF repre-
sentation [54] which describes summaries of whether or
not a gene is differentially expressed given a particular
condition, e.g. human liver. As part of these descriptions,
SWO and EDAM classes are used to capture which soft-
ware analysis packages were used to produce the summary
information and to type data resources which link to this
gene expression data, such as an Entrez Gene Database
Reference. SWO was also applied to the RDF export of
this data into the new EBI RDF Platform [55] wherein
the statistical packages used to generate the results were
typedwith SWOclasses enbling querying over the specific
software.

Evaluating the SWO
Our evaluation of the SWO took two forms:

1. Testing by competency questions—Do we meet the
tests as supplied by the competency questions set by
our customers?

2. Coverage—Does it it contain terms required to
annotate with?

As described above, the SWO has been used to describe
software in several settings. The informal feedback from
users browsing the ontology is that the SWO has the
appropriate ‘shape’ and talks about the right features for
customer’s tasks. The BMB project has, however, raised
the issue of describing the platform upon which the soft-
ware is capable of running or was run in a particular
setting. This was raised as an important issue in the SWO
workshops, but a complete description was deemed too
costly to be ‘bought’. A similar missing feature is the cost
of software; again, this was raised in the workshops, but
was not a high enough priority to be bought. Cost covers
many facets—there’s the monetary cost, but there is also

the cost of use and maintenance. Monetary cost is rela-
tively straight-forward to model, but the other costs are
highly subjective. Our current thoughts are to use a rich
description of licences to imply whether or not a software
is ‘free to use’ and form slightly more complex axioms to
cover the case when the software is free to a subset of
users, for example ‘free to academics’ and such like. This
latter modeling of cost is now being built into the latest
versions of the SWO.
As well as the features described, the in-use evalua-

tion naturally reveals a lack of content; the software that
needs to be described is not present. As previously men-
tioned, as well as direct submissions from the community,
the SWO has more recently been evaluating against the
BioNERDS list of software mentions in biomedical liter-
ature and is looking to improve to 100% coverage of the
top 200 within the next 6 months. The dynamic and fluid
nature of software availability and development within the
bioinformatics community is an ongoing issue and is not
unique to the SWO. The SWO has reused, where pos-
sible, reference bio-ontologies such as the OBO Relation
Ontology and Information Artifact Ontology and has con-
sulted with various other ontology consortia on the model
used to describe software. This has helped to populate
some small areas of the ontology more quickly than oth-
ers, though generally much of what is in the SWO does
not exist within these reference ontologies, reinforcing the
need for an ontology like the SWO.
Our on-going testing and ontologising to pass failed

tests works as a tactic in ontology development. However,
frameworks for doing this are only nascent. The processes
used in the SWO aspire to follow similar methods to those
used in the development of production ontologies such
as the EFO at the EBI [30]. Here, continuous integration
systems are used to test each commit of a version of an
ontology such that potential bugs are caught early.

Discussion and conclusions
An ontology of software is necessary for the description
of the data that are now central to the pursuit of life sci-
ence research. Just as we need ontologies to specify the
biomedical entities that are discovered through our sci-
ence, we also need a description of how those entities were
discovered—both in the wet lab and the dry computa-
tional analysis of the data produced by those biomedical
investigations. The SWO fits into this ontological land-
scape.
Descriptions of a software’s information processing

tasks, the data it consumes and produces, together with
the format of those data, are central to the SWO. In addi-
tion to the core areas, the SWOdescribes many peripheral
but useful concepts including software developers and
their organizational background as well as software ver-
sions, locations, and licensing. To create an ontology that

Malone et al. Journal of Biomedical Semantics 2014, 5:25 Page 12 of 13
http://www.jbiomedsem.com/content/5/1/25

is complete in any of these areas is ambitious. For instance,
it is not feasible to describe the universe of softwares’
information processing tasks. Instead, the SWO takes the
stance of doing what is necessary for the job in hand; our
Agile approach should help in keeping the SWO fit for
purpose. Nevertheless, the SWO’s conceptual framework
seeks to be able to accommodate the changes necessary to
keep it fit for purpose.
The work to integrate with EDAM has enriched the

SWO with additional concepts in the areas of bioinfor-
matics resources and Web services. In the context of
wider biomedical investigations, the SWO with EDAM
should play a significant role in annotating experimen-
tal protocols, alongside complementary ontologies such as
OBI.
Biomedical ontologies typically focus on biological and

medical entities which introduces its own levels of com-
plexity, particularly placing knowledge into the context
of evolution. Biomedical software faces different com-
plexities; evolution is replaced with the diversities of
human design and practice. It is clear that this varia-
tion introduces difficulties in making biomedical analyses
both describable and reproducible but this requires more
than just the appropriate ontologies to be available. There
needs to be a paradigm shift towards both releasing all
data associated with investigations and in describing the
components in sufficient detail that they are understand-
able and reproducible. This issue only becomes more
salient in the age of so called Big Data, lest we face the
problems we already encountered when interpreting the
current archive ofMediumData [56]. This requires a com-
bination of elements including tooling, funding and the
treatment of metadata as a first class citizen. An ontology
of software will play an important role in achieving this
aim.
The SWO has been developed under the Apache 2.0

open source license and is open to collaboration from
external bodies. Already, several groups are making edits
to the ontology and we hope to increase this number with
additional members of the community. New user groups
have recently emerged such as the new CLI-mate [57] tool
and we intend to support these activities.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JM, AB, ALL, JI, DL, HP and RS contributed content to the SWO. JI is lead
developer of EDAM. JM and RS managed the SWO project and organised user
workshops. All authors read and approved the final manuscript.

Acknowledgements
Work on the Software Ontology has been funded by the JISC SWORD project
and EPSRC grant EP/C536444/1. We acknowledge funding from European
Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI).
We would like to thank everyone that attended the SWO workshops for their
invaluable contributions.

Author details
1EMBL-EBI, Wellcome Trust Genome Campus, Cambridge, CB10 1SD, UK.
2School of Computer Science, University of Manchester, Oxford Road,
Manchester, M13 9PL, UK.

Received: 20 June 2013 Accepted: 19 April 2014
Published: 2 June 2014

References
1. Copeland M, Brown A, Parkinson H, Stevens R, Malone J: The SWO

Project: A case study of applying agile ontology engineering
methods in community driven ontologies. In International conference
on biomedical Ontology (ICBO). Graz, Austrial; 2012.

2. Malone J, Badarinarayan N, Ison J, Stevens R, Parkinson H: An ontology of
Bioinformatics software. In Proc. of Bio-ontologies SIG; Co-located with
ISMB. Boston, MA, USA; 2010.

3. Ioannidis JPA, Allison DB, Ball CA, Coulibaly I, Cui X, Culhane AC, Falchi M,
Furlanello C, Game L, Jurman G, Mangion J, Mehta T, Nitzberg M, Page GP,
Petretto E, van Noort V: Repeatability of published microarray gene
expression analyses. Nat Genet 2009, 41(2):149–155.

4. Janssens ACJ, Ioannidis JP, Bedrosian S, Boffetta P, Dolan SM, Dowling N,
Fortier I, Freedman AN, Grimshaw JM, Gulcher J, Gwinn M, Hlatky MA,
Janes H, Kraft P, Melillo S, O’Donnell CJ, Pencina MJ, Ransohoff D, Schully
SD, Seminara D, Winn DM, Wright CF, van Duijn CM, Little J, Khoury MJ:
Strengthening the reporting of Genetic {RIsk} Prediction Studies
(GRIPS): explanation and elaboration. J Clinic Epidemiol 2011,
64(8):e1–e22. [http://www.sciencedirect.com/science/article/pii/
S0895435611000588]

5. Gentleman R, Carey V, Bates D, Bolstad B, Dettling M, Dudoit S, Ellis B,
Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R,
Leisch F, Li C, Maechler M, Rossini A, Sawitzki G, Smith C, Smyth G, Tierney
L, Yang J, Zhang J: Bioconductor: open software development for
computational biology and bioinformatics. Genome Biol 2004,
5(10):R80. [http://genomebiology.com/2004/5/10/R80]

6. Stodden V: The scientific method in practice: reproducibility in the
computational sciences. 2010, MIT Sloan Research Paper No. 4773-10.

7. Peng RD: Reproducible research in computational science. Science
2011, 334(6060):1226–1227. [http://www.sciencemag.org/content/334/
6060/1226.abstract]

8. Hull D, Wolstencroft K, Stevens R, Goble C, Pocock MR, Li P, Oinn T:
Taverna: a tool for building and running workflows of services.
Nucleic Acids Res 2006, 34:729–732. [http://www.hubmed.org/display.cgi?
uids=16845108] [Web Server issue].

9. Goecks J, Nekrutenko A, Taylor J, Team TG: Galaxy: a comprehensive
approach for supporting accessible, reproducible, and transparent
computational research in the life sciences. Genome Biol 2010,
11(8):R86. [http://genomebiology.com/2010/11/8/R86]

10. Ludäscher B, Altintas I, Berkley C, Higgins D, Jaeger E, Jones M, Lee EA, Tao
J, Zhao Y: Scientific workflowmanagement and the Kepler system.
Concurrency Comput: Pract Exp 2006, 18(10):1039–1065. [http://dx.doi.org/
10.1002/cpe.994]

11. De Roure D, Goble C, Stevens R: The design and realisation of the
myExperiment Virtual Research Environment for social sharing of
workflows. Future Generation Comput Syst 2009, 25:561–567.

12. PROVmodel primer. [http://www.w3.org/TR/prov-primer/]
13. Bhagat J, Tanoh F, Nzuobontane E, Laurent T, Orlowski J, Roos M,

Wolstencroft K, Aleksejevs S, Stevens R, Pettifer S, Lopez R, Goble CA:
BioCatalogue: a universal catalogue of web services for the life
sciences. Nucleic Acids Res 2010, 38(suppl 2):W689–W694. [http://nar.
oxfordjournals.org/content/38/suppl_2/W689.abstract]

14. Belhajjame K, Embury SM, Paton NW, Stevens R, Goble CA: Automatic
annotation of Web services based on workflow definitions. ACM
TransWeb 2008, 2(2):11:1–11:34. [http://doi.acm.org/10.1145/1346237.
1346239]

15. Description of a Project Wiki Homepage. [https://github.com/
edumbill/doap/wiki]

16. Martin D, Burstein M, McDermott D, McIlraith S, Paolucci M, Sycara K,
McGuinness D, Sirin E, Srinivasan N: Bringing semantics to web services
with OWL-S.WorldWideWeb 2007, 10(3):243–277. [http://dx.doi.org/10.
1007/s11280-007-0033-x]

http://www.sciencedirect.com/science/article/pii/S0895435611000588
http://www.sciencedirect.com/science/article/pii/S0895435611000588
http://genomebiology.com/2004/5/10/R80
http://www.sciencemag.org/content/334/6060/1226.abstract
http://www.sciencemag.org/content/334/6060/1226.abstract
http://www.hubmed.org/display.cgi?uids=16845108
http://www.hubmed.org/display.cgi?uids=16845108
http://genomebiology.com/2010/11/8/R86
http://dx.doi.org/10.1002/cpe.994
http://dx.doi.org/10.1002/cpe.994
http://www.w3.org/TR/prov-primer/
http://nar.oxfordjournals.org/content/38/suppl_2/W689.abstract
http://nar.oxfordjournals.org/content/38/suppl_2/W689.abstract
http://doi.acm.org/10.1145/1346237.1346239
http://doi.acm.org/10.1145/1346237.1346239
https:// github.com/edumbill/doap/wiki
https:// github.com/edumbill/doap/wiki
http://dx.doi.org/10.1007/s11280-007-0033-x
http://dx.doi.org/10.1007/s11280-007-0033-x

Malone et al. Journal of Biomedical Semantics 2014, 5:25 Page 13 of 13
http://www.jbiomedsem.com/content/5/1/25

17. Roman D, Keller U, Lausen H, de Bruijn J, Lara R, Stollberg M, Polleres A,
Feier C, Bussler C, Fensel D:Web service modeling ontology. Appl Ontol
2005, 1:77–106. [http://portal.acm.org/citation.cfm?id=1412357]

18. Hilario M, Kalousis A, Nguyen P, Woznica A: A data mining ontology for
algorithm selection andmeta-mining. In Proceedings of the
ECML/PKDD09Workshop on 3rd Generation DataMining (SoKD-09): 7-11
September 2009. Bled, Slovenia; 2009:76–87.

19. Brinkman RR, Courtot M, Derom D, Fostel JM, He Y, Lord P, Malone J,
Parkinson H, Peters B, Rocca-Serra P, Ruttenberg A, Sansone SAA,
Soldatova LN, Stoeckert CJ, Turner JA, Zheng J, OBI consortium:Modeling
biomedical experimental processeswith OBI. J Biomed Semantics 2010,
1 Suppl 1(Suppl 1):S7+. [http://dx.doi.org/10.1186/2041-1480-1-S1-S7]

20. Information artifact ontologyr. [http://purl.obolibrary.org/obo/iao]
21. Ison J, Kalas M, Jonassen I, Bolser D, Uludag M, McWilliam H, Malone J,

Lopez R, Pettifer S, Rice P: EDAM: An ontology of bioinformatics
operations, types of data and identifiers, topics, and formats.
Bioinformatics 2013. [http://bioinformatics.oxfordjournals.org/content/
early/2013/03/11/bioinformatics.btt113.abstract]

22. Tenenbaum JD, Whetzel PL, Anderson K, Borromeo CD, Dinov ID, Gabriel
D, Kirschner B, Mirel B, Morris T, Noy N, Nyulas C, Rubenson D, Saxman PR,
Singh H, Whelan N, Wright Z, Athey BD, Becich MJ, Ginsburg GS, Musen
MA, Smith KA, Tarantal AF, Rubin DL, Lyster P: The Biomedical Resource
Ontology (BRO) to enable resource discovery in clinical and
translational research. J Biomed Inform 2011, 44:137–145. [http://www.
sciencedirect.com/science/article/pii/S1532046410001553]
[<ce:title>Ontologies for Clinical and Translational Research</ce:title>].

23. Wolstencroft K, Alper P, Hull D, Wroe C, Lord P, Stevens R, Goble C: The
myGrid Ontology: Bioinformatics Service Discovery. Int J Bioinform
Res Appl 2007, 3(3):326–340. [“http://www.cs.man.ac.uk/stevensr/papers/
IJBRA_3304_Wolstencroft.pdf”]

24. Reese M, Moore B, Batchelor C, Salas F, Cunningham F, Marth G, Stein L,
Flicek P, Yandell M, Eilbeck K: A standard variation file format for
human genome sequences. Genome Biol 2010, 11(8):R88.

25. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP,
Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis
A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G:
Gene ontology: tool for the unification of biology. The gene
ontology consortium. Nat Genet 2000, 25:25–29.

26. Bard J, Rhee S, Ashburner M: An ontology for cell types. Genome Biol
2005, 6(2):R21.

27. Mungall C, Torniai C, Gkoutos G, Lewis S, Haendel M: Uberon, an
integrative multi-species anatomy ontology. Genome Biol 2012, 13:R5.

28. Mungall C, Gkoutos G, Smith C, Haendel M, Lewis S, Ashburner M:
Integrating phenotype ontologies across multiple species. Genome
Biol 2010, 11:R2.

29. Degtyarenko K, de Matos P, Ennis M, Hastings J, Zbinden M, McNaught A,
Alcántara R, Darsow M, Guedj M, Ashburner M: ChEBI: a database and
ontology for chemical entities of biological interest. Nucleic Acids Res
2008, 36(suppl 1):D344–D350.

30. Malone J, Holloway E, Adamusiak T, Kapushesky M, Zheng J, Kolesnikov N,
Zhukova A, Brazma A, Parkinson H:Modeling sample variables with an
experimental factor ontology. Bioinformatics 2010, 26(8):1112–1118.
[http://bioinformatics.oxfordjournals.org/content/26/8/1112.abstract]

31. Visser U, Abeyruwan S, Vempati U, Smith R, Lemmon V, Schurer S:
BioAssay Ontology (BAO): a semantic description of bioassays and
high-throughput screening results. BMC Bioinformatics 2011, 12:257.
[http://www.biomedcentral.com/1471-2105/12/257]

32. Cohn M: User stories applied: for agile software development. Boston:
Addison Wesley; 2004.

33. Rustici G, Kolesnikov N, Brandizi M, Burdett T, Dylag M, Emam I, Farne A,
Hastings E, Ison J, Keays M, Kurbatova N, Malone J, Mani R, Mupo A, Pedro
Pereira R, Pilicheva E, Rung J, Sharma A, Tang YA, Ternent T, Tikhonov A,
Welter D, Williams E, Brazma A, Parkinson H, Sarkans U: ArrayExpress
update?trends in database growth and links to data analysis tools.
Nucleic Acids Res 2013, 41(D1):D987–D990. [http://nar.oxfordjournals.org/
content/41/D1/D987.abstract]

34. Vasilevsky N, Johnson T, Corday K, Torniai C, Brush M, Segerdell E, Wilson
M, Shaffer C, Robinson D, Haendel M: Research resources: curating the
new eagle-i discovery system. Database: J Biol Databases Curation
2012:2012. doi:10.1093/database/bar067.

35. BioMedBridges Consortium. [http://www.biomedbridges.eu/l]

36. BioMedBridges tool registry. [http://tinyurl.com/bmbtoolsui]
37. Cohn M: Succeeding with agile: software development using scrum. Boston,

MA: Pearson Education; 2004.
38. Principles behind the Agile Manifesto. [http://agilemanifesto.org/

principles.html]
39. Grüninger M, Fox MS: The role of competency questions in enterprise

engineering. In Benchmarking, Theory and Practice. Edited by Rolstadås A:
Springer; 1995:22–31. doi:10.1007/978-0-387-34847-6_3.

40. Kirk G: Democracy unleashed: bringing agility to citizen
engagement. In AGILE Conference: 7-13 August, 2011. Salt Lake City, Utah:
IEEE; 2011:209–215.

41. Jupp S, Horridge M, Iannone L, Klein J, Owen S, Schanstra J, Wolstencroft
K, Stevens R: Populous: a tool for building OWL ontologies from
templates. BMC Bioinformatics 2012, 13(Suppl 1):S5. [http://www.
biomedcentral.com/1471-2105/13/S1/S5]

42. Software ontology project. [http://softwareontology.wordpress.com]
43. Koskela L: Test driven: practical tdd and acceptance tdd for java developers.

Greenwich, CT, USA: Manning Publications Co.; 2007.
44. User sourced competency questions for software. [http://

softwareontology.wordpress.com/2011/04/01/user-sourced-
competency-questions-for-software/]

45. Horrocks I, Patel-Schneider PF, van Harmelen F: From SHIQ and RDF
to OWL: The making of a web ontology language. J Web Semantics
2003, 1:7–26.

46. Duck G, Nenadic G, Brass A, Robertson D, Stevens R: bioNerDS:
exploring bioinformatics’ database and software use through
literature mining. BMC Bioinformatics 2013, 14:194. [http://www.
biomedcentral.com/1471-2105/14/194]

47. Drummond N, Rector A, Stevens R, Moulton G, Horridge M, Wang H,
Sedenberg J: Putting OWL in order: Patterns for sequences in OWL. In
OWL Experiences and Directions OWLEd 2006. Athens Georgia, USA; 2006.

48. SWO EDAMmerge modifying EDAM inOWL. [http://softwareontology.
wordpress.com/2012/07/25/swo-edam-merge-modifying-edam-in-
owl/]

49. SWO EDAMmerge overview. [http://softwareontology.wordpress.com/
2012/07/25/swo-edam-merge-overview/]

50. SWO refactoring objective. [http://softwareontology.wordpress.com/
2013/07/04/refactoring-objective-specification-hierarchy/]

51. Rector AL:Modularisation of domain ontologies implemented in
description logics and related formalisms including OWL. In K-CAP
’03: Proceedings of the 2nd international conference on Knowledge capture.
New York, NY, USA: ACM Press; 2003:121–128. [http://dx.doi.org/10.1145/
945645.945664]

52. ELIXIR. [http://www.elixir-europe.org/]
53. Bhagat J, Tanoh F, Nzuobontane E, Laurent T, Orlowski J, Roos M,

Wolstencroft K, Aleksejevs S, Stevens R, Pettifer S, Lopez R, Goble CA:
BioCatalogue: a universal catalogue of web services for the life
sciences. Nucleic Acids Res 2010, 38(suppl 2):W689–W694.

54. Gene expression atlas RDF project. [http://www.ebi.ac.uk/fgpt/
atlasrdf/index.html]

55. Jupp S, Malone J, Bolleman J, Brandizi M, Davies M, Garcia L, Gaulton A,
Gehant S, Laibe C, Redaschi N, Wimalaratne SM, Martin M, Le Novère N,
Parkinson H, Birney E, Jenkinson AM: The EBI RDF platform: linked open data
for the life sciences; 2014. [http://bioinformatics.oxfordjournals.org/
content/early/2014/01/21/bioinformatics.btt765.abstract]

56. James Malone’s EBI blog. [http://drjamesmalone.blogspot.co.uk/]
57. CLI-mate. [http://cli-mate.lumc.nl/]

doi:10.1186/2041-1480-5-25
Cite this article as:Malone et al.: The Software Ontology (SWO): a resource
for reproducibility in biomedical data analysis, curation and digital
preservation. Journal of Biomedical Semantics 2014 5:25.

http://portal.acm.org/citation.cfm?id=1412357
http://dx.doi.org/10.1186/2041-1480-1-S1-S7
http://purl.obolibrary.org/obo/iao
http://bioinformatics.oxfordjournals.org/content/early/2013/03/11/bioinformatics.btt113.abstract
http://bioinformatics.oxfordjournals.org/content/early/2013/03/11/bioinformatics.btt113.abstract
http://www.sciencedirect.com/science/article/pii/S1532046410001553
http://www.sciencedirect.com/science/article/pii/S1532046410001553
http://www.cs.man.ac.uk/ stevensr/papers/IJBRA_3304_Wolstencroft.pdf
http://www.cs.man.ac.uk/ stevensr/papers/IJBRA_3304_Wolstencroft.pdf
http://bioinformatics.oxfordjournals.org/content/26/8/1112.abstract
http://www.biomedcentral.com/1471-2105/12/257
http://nar.oxfordjournals.org/content/41/D1/D987.abstract
http://nar.oxfordjournals.org/content/41/D1/D987.abstract
http://www.biomedbridges.eu/l
http://tinyurl.com/bmbtoolsui
http://agilemanifesto.org/principles.html
http://agilemanifesto.org/principles.html
http://www.biomedcentral.com/1471-2105/13/S1/S5
http://www.biomedcentral.com/1471-2105/13/S1/S5
http://softwareontology.wordpress.com
http://softwareontology.wordpress.com/2011/04/01/user-sourced-competency-questions-for-software/
http://softwareontology.wordpress.com/2011/04/01/user-sourced-competency-questions-for-software/
http://softwareontology.wordpress.com/2011/04/01/user-sourced-competency-questions-for-software/
http://www.biomedcentral.com/1471-2105/14/194
http://www.biomedcentral.com/1471-2105/14/194
http://softwareontology.wordpress.com/2012/07/25/swo-edam-merge-modifying-edam-in-owl/
http://softwareontology.wordpress.com/2012/07/25/swo-edam-merge-modifying-edam-in-owl/
http://softwareontology.wordpress.com/2012/07/25/swo-edam-merge-modifying-edam-in-owl/
http://softwareontology.wordpress.com/2012/07/25/swo-edam-merge-overview/
http://softwareontology.wordpress.com/2012/07/25/swo-edam-merge-overview/
http://softwareontology.wordpress.com/2013/07/04/refactoring-objective-specification-hierarchy/
http://softwareontology.wordpress.com/2013/07/04/refactoring-objective-specification-hierarchy/
http://dx.doi.org/10.1145/945645.945664
http://dx.doi.org/10.1145/945645.945664
http://www.elixir-europe.org/
http://www.ebi.ac.uk/fgpt/atlasrdf/index.html
http://www.ebi.ac.uk/fgpt/atlasrdf/index.html
http://bioinformatics.oxfordjournals.org/content/early/2014/01/21/bioinformatics.btt765.abstract
http://bioinformatics.oxfordjournals.org/content/early/2014/01/21/bioinformatics.btt765.abstract
http://drjamesmalone.blogspot.co.uk/
http://cli-mate.lumc.nl/

	Abstract
	Motivation
	Results
	Conclusion
	Availability

	Background
	User stories

	Materials and method
	Spreadsheets and populous
	Testing competency questions via DL queries

	Results
	What should be modelled in the SWO?
	The ontology
	Software licences
	Software versions

	Merging SWO and EDAM
	Annotations and Conversion to OWL
	Merging

	The SWO's polyhierarchy
	The SWO applied
	BioMedBridges software registry
	eagle-I
	Gene Expression Atlas Data

	Evaluating the SWO

	Discussion and conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

